BINA

3879 articles

77 publishers

Join mailing list

Dec 2021 • Optics

Analysis of Decoherence in Linear and Cyclic Quantum Walks

Mahesh N Jayakody, Asiri Nanayakkara, Eliahu Cohen

We theoretically analyze the case of noisy Quantum walks (QWs) by introducing four qubit decoherence models into the coin degree of freedom of linear and cyclic QWs. These models include flipping channels (bit flip, phase flip and bit-phase flip), depolarizing channel, phase damping channel and generalized amplitude damping channel. Explicit expressions for the probability distribution of QWs on a line and on a cyclic path are derived under localized and delocalized initial states. We show that QWs which begin from a delocalized state generate mixture probability distributions, which could give rise to useful algorithmic applications related to data encoding schemes. Specifically, we show how the combination of delocalzed initial states and decoherence can be used for computing the binomial transform of a given set of numbers. However, the sensitivity of QWs to noisy environments may negatively affect various other applications based on QWs.

Show more

Dec 2021 • OSA Continuum

Usage of fiber optics as an underground deployable radon gas detector

Yehuda Rodal, Amir Shemer, Ariel Schwarz, Nisan Ozana, Hovav Zafrir, Zeev Zalevsky

Radon gas was previously presented to be a good tool as a proxy for pre-seismic precursory before earthquakes, especially when the detector is deployed a few meters underground in regions of high seismic activity. In this paper, we present a fiber optic-based detector that can be deployed underground and assist in the measurement of radon gas temporal concentration variations. The sensitivity of the fiber-based sensor is enhanced due to Fabry-Perot resonator realized within the fiber. The sensing principle is related to the impact of the alpha particles released from the surrounding radon gas on the optical transmission parameters of the fiber. By incorporation of WDM filters along the fiber sensor, the dispersion of the radon's radiation damage along the deployed fiber can be allocated.

Show more

Dec 2021 • Desalination 520, 115336, 2021

Anions-capture materials for electrochemical electrode deionization: Mechanism, performance, and development prospects

Xiumei Ma, Wei Alex Wang, Lupeng Zhang, Qinghao Wu, Shanfu Lu, Doron Aurbach, Yan Xiang

Desalination is a critical process to resolve the crisis of insufficient freshwater resources. Among desalination technologies, electrochemical electrode deionization (EEDI) has attracted wide attention because of the advantages in low cost, no secondary pollution, and low energy consumption etc. Electrode materials are the critical factors for determining the performance of EEDI. However, the traditional EEDI with carbon electrode (capacitive deionization, CDI) often showed inefficient desalination capacity, charge efficiency, cycle stability as well as ions selectivity due to the anode oxidation. Therefore, the development of anions-capture materials is crucial for the development of EEDI devices. In this review, the anions-capture materials are classified into four categories according to their capture mechanisms: (i) Electrosorption materials, mainly including conventional and modified carbon materials; (ii) conversion …

Show more

Dec 2021 • ACS Applied Materials & Interfaces

Selective Catalyst Surface Access through Atomic Layer Deposition

Samuel S Hardisty, Shira Frank, Melina Zysler, Reut Yemini, Anya Muzikansky, Malachi Noked, David Zitoun

Catalyst poisoning is a prominent issue, reducing the lifetime of catalysts and increasing the costs of the processes that rely on them. The electrocatalysts that enable green energy conversion and storage, such as proton exchange membrane fuel cells and hydrogen bromine redox flow batteries, also suffer from this issue, hindering their utilization. Current solutions to protect electrocatalysts from harmful species fall short of effective selectivity without inhibiting the required reactions. This article describes the protection of a standard 50% Pt/C catalyst with a V2O5 coating through atomic layer deposition (ALD). The ALD selectively deposited V2O5 on the Pt, which enhanced hydrogen transport to the Pt surface and resulted in a higher mass activity in alkaline electrolytes. Cyclic voltammetry and X-ray photoelectron spectroscopy showed that the Pt was protected by the coating in the HBr/Br2 electrolyte which dissolved …

Show more

Dec 2021 • Big Data and Cognitive Computing

Gambling Strategies and Prize-Pricing Recommendation in Sports Multi-Bets

Oz Pirvandy, Moti Fridman, Gur Yaari

A sports multi-bet is a bet on the results of a set of N games. One type of multi-bet offered by the Israeli government is WINNER 16, where participants guess the results of a set of 16 soccer games. The prizes in WINNER 16 are determined by the accumulated profit in previous rounds, and are split among all winning forms. When the reward increases beyond a certain threshold, a profitable strategy can be devised. Here, we present a machine-learning algorithm scheme to play WINNER 16. Our proposed algorithm is marginally profitable on average in a range of hyper-parameters, indicating inefficiencies in this game. To make a better prize-pricing mechanism we suggest a generalization of the single-bet approach. We studied the expected profit and risk of WINNER 16 after applying our suggestion. Our proposal can make the game more fair and more appealing without reducing the profitability. View Full-Text

Show more

Dec 2021 • Optics Express

Broadband complex two-mode quadratures for quantum optics

Leon Bello, Yoad Michael, Michael Rosenbluh, Eliahu Cohen, Avi Pe’er

In their seminal paper, Caves and Schumaker presented a new formalism for quantum optics, intended to serve as a building block for describing two-photon processes, in terms of new, generalized qudratures. The important, revolutionary concept in their formalism was that it was fundamentally two-mode, ie the related observables could not be attributed to any single one of the comprising modes, but rather to a generalized complex quadrature that could only be attributed to both of them. Here, we propose a subtle, but fundamentally meaningful modification to their important work. Unlike the above proposal, we deliberately choose a frequency-agnostic definition of the two-mode quadrature, that we motivate on physical grounds. This simple modification has far-reaching implications to the formalism–the real and imaginary parts of the quadratures now coincide with the famous EPR variables, and our two-mode …

Show more

Nov 2021 • bioRxiv, 2021

The Conformational Plasticity of the Selectivity Filter Methionines Controls the In-Cell Cu (I) Uptake through the CTR1 transporter

P Janoš, J Aupič, S Ruthstein, A Magistrato

Copper is a trace element vital to many cellular functions. Yet its abnormal levels are toxic to cells, provoking a variety of severe diseases. The high affinity Copper Transporter 1 (CTR1), being the main in-cell copper (Cu (I)) entry route, tightly regulates its cellular uptake via a still elusive mechanism. Here, all-atoms simulations unlock the molecular terms of Cu (I) transport in eukaryotes disclosing that the two Methionine triads, forming the selectivity filter, play an unprecedented dual role both enabling selective Cu (I) transport and regulating its uptake-rate thanks to an intimate coupling between the conformational plasticity of their bulky side chains and the number of bound Cu (I) ions. Namely, the Met residues act as a gate reducing the Cu (I) import-rate when two ions simultaneously bind to CTR1. This may represent an elegant autoregulatory mechanism through which CTR1 protects the cells from excessively high, and hence toxic, in-cell Cu (I) levels. Overall, these outcomes resolve fundamental questions in CTR1 biology and open new windows of opportunity to tackle diseases associated with an imbalanced copper uptake.

Show more

Nov 2021 • ACS Sustainable Chemistry & Engineering

Phase-Dependent Photocatalytic Activity of Bulk and Exfoliated Defect-Controlled Flakes of Layered Copper Sulfides under Simulated Solar Light

Madina Telkhozhayeva, Rajashree Konar, Ronit Lavi, Eti Teblum, Bibhudatta Malik, Sharon Ruthstein, Elisa Moretti, Gilbert Daniel Nessim

Sunlight-driven photocatalysis is an environmentally friendly approach to solve ecological issues. The development of simple yet sufficiently stable photocatalytic materials capable of responding to the full-spectrum light remains challenging. Here, we demonstrate the phase transformations of bulk copper sulfides from digenite (Cu9S5) to djurleite (Cu1.97S) and low chalcocite (Cu2S) by the reactive thermal annealing during ambient pressure chemical vapor deposition, followed by their top-down exfoliation. Using multiple techniques, we confirm that monoclinic Cu2S is primarily formed at higher temperatures or greater reaction times and using a reducing atmosphere. We measured the average thickness to be approximately 4 nm for the exfoliated flakes with relatively large lateral sizes of up to 10 μm. We tested the three phases of bulk copper sulfides and their exfoliated forms as photocatalysts for dye degradation …

Show more

Nov 2021 • ACS Applied Materials & Interfaces

Evaluation of Mg[B(HFIP)4]2-Based Electrolyte Solutions for Rechargeable Mg Batteries

Ben Dlugatch, Meera Mohankumar, Ran Attias, Balasubramoniam Murali Krishna, Yuval Elias, Yosef Gofer, David Zitoun, Doron Aurbach

One of the greatest challenges toward rechargeable magnesium batteries is the development of noncorrosive electrolyte solutions with high anodic stability that can support reversible Mg deposition/dissolution. In the last few years, magnesium electrolyte solutions based on Cl-free fluorinated alkoxyborates were investigated for Mg batteries due to their high anodic stability and ionic conductivity and the possibility of reversible deposition/dissolution in ethereal solvents. Here, the electrochemical performance of Mg[B(hexafluoroisopropanol)4]2/dimethoxyethane (Mg[B(HFIP)4]2/DME) solutions was examined. These electrolyte solutions require a special “conditioning” pretreatment that removes undesirable active moieties. Such a process was developed and explored, and basic scientific issues related to the mechanism by which it affects Mg deposition/dissolution were addressed. The chemical changes that occur …

Show more

Nov 2021 • arXiv preprint arXiv:2111.05608

Highly stable, reactive and ultrapure nanoporous metallic films

Hyunah Kwon, Hannah-Noa Barad, Alex Ricardo Silva Olaya, Mariana Alarcon-Correa, Kersten Hahn, Gunther Richter, Gunther Wittstock, Peer Fischer

Nanoporous metals possess unique properties attributed to their high surface area and interconnected nanoscale ligaments. They are mostly fabricated by wet synthetic methods involving solution-based dealloying processes whose purity is compromised by residual amounts of the less noble metal. Here, we demonstrate a novel dry synthesis method to produce nanoporous metals, which is based on the plasma treatment of metal nanoparticles formed by physical vapor deposition. Our approach is general and can be applied to many metals including non-noble ones. The resultant nanoporous metallic films are impurity-free and possess highly curved ligaments and nanopores. The metal films are remarkably robust with many catalytically active sites, which is highly promising for electrocatalytic applications.

Show more

Nov 2021 • ACS Applied Nano Materials

Polydopamine Nanoparticles Containing a Cisplatin Analog for Anticancer Treatment and Diagnostics

Gil Yeroslavsky, Michal Richman, Asaf Gertler, Haim Y Cohen, Menachem Motiei, Rachela Popovtzer, Hugo E Gottlieb, Shai Rahimipour

Cancer is a leading cause of death with rates expected to grow with life expectancy. Among leading treatments, cisplatin, widely used to combat cancer, suffers from low stability and selectivity. Here, we covalently conjugated an analog of cisplatin to biocompatible polydopamine nanoparticles (PDA-NPs) to increase both properties. Dynamic light scattering and electron microscopy studies suggest that the platinum-conjugated PDA particles (Pt–PDA-NPs) are monodispersed and spherical with a diameter of about 200 nm with platinum atoms mostly in the shell. Particles were also characterized with inductively coupled plasma mass atomic emission spectroscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy to determine the localization and amount of Pt atoms. The chelated metal did not leach from the conjugated particles under normal physiological conditions, while it was released …

Show more

Nov 2021 • Progress in retinal and eye research, 101029, 2021

Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities

Nina Schneider, Yogapriya Sundaresan, Prakadeeswari Gopalakrishnan, Avigail Beryozkin, Mor Hanany, Erez Y Levanon, Eyal Banin, Shay Ben-Aroya, Dror Sharon

Inherited retinal diseases (IRDs) are a clinically complex and heterogenous group of visual impairment phenotypes caused by pathogenic variants in at least 277 nuclear and mitochondrial genes, affecting different retinal regions, and depleting the vision of affected individuals. Genes that cause IRDs when mutated are unique by possessing differing genotype-phenotype correlations, varying inheritance patterns, hypomorphic alleles, and modifier genes thus complicating genetic interpretation. Next-generation sequencing has greatly advanced the identification of novel IRD-related genes and pathogenic variants in the last decade. For this review, we performed an in-depth literature search which allowed for compilation of the Global Retinal Inherited Disease (GRID) dataset containing 4798 discrete variants and 17,299 alleles published in 31 papers, showing a wide range of frequencies and complexities among …

Show more

Nov 2021 • arXiv preprint arXiv:2111.09709

Generalized equipartition for nonlinear multiplicative Langevin dynamics: application to laser-cooled atoms

Gianmaria Falasco, Eli Barkai, Marco Baiesi

The virial theorem, and the equipartition theorem in the case of quadratic degrees of freedom, are handy constraints on the statistics of equilibrium systems. Their violation is instrumental in determining how far from equilibrium a driven system might be. We extend the virial theorem to nonequilibrium conditions for Langevin dynamics with nonlinear friction and multiplicative noise. In particular, we generalize the equipartition theorem for confined laser-cooled atoms in the semi-classical regime. The resulting relation between the lowest moments of the atom position and velocity allows to measure in experiments how dissipative the cooling mechanism is. Moreover, its violation can reveal the departure from a strictly harmonic confinement or from the semi-classical regime.

Show more

Nov 2021 • Sexual Development

Preface to the Special Issue on The Non-Coding Genome in Sex Determination

Francis Poulat, Nitzan Gonen

The process of sex determination involves the differentiation of an initially bipotential gonad into either a testis or an ovary. This remarkable process, driven by sex chromosomes in mammals, is first initiated within a somatic cell population called the supporting cell precursors. Once these differentiate into either Sertoli or granulosa cells, they instruct and direct other bipotential cell populations in the gonad, including other somatic progenitors but also the germ cells, to acquire the male or female path.Much of the study in the last 3 decades has been focused towards identifying and understanding the function of many pro-testicular versus pro-ovarian factors involved in this process. Most of these are transcription factors and signalling pathway components expressed in various cell populations, but mostly in Sertoli and granulosa cells, which constitute the driving force of gonad differentiation. Human genetics studies of …

Show more

Nov 2021 • 2021 AIChE Annual Meeting

Deep Learning-Assisted Analysis of Anomalous Nanoparticle Surface Diffusion in Liquid Phase Transmission Electron Microscopy

Vida Jamali, Cory Hargus, Assaf Ben-Moshe, Hyun Dong Ha, Kranthi K Mandadapu, A Paul Alivisatos


Nov 2021 • ChemSusChem

Cover Feature: AZ31 Magnesium Alloy Foils as Thin Anodes for Rechargeable Magnesium Batteries (ChemSusChem 21/2021)

Ananya Maddegalla, Ayan Mukherjee, J Alberto Blázquez, Eneko Azaceta, Olatz Leonet, Aroa R Mainar, Aleksey Kovalevsky, Daniel Sharon, Jean‐Frédéric Martin, Dane Sotta, Yair Ein‐Eli, Doron Aurbach, Malachi Noked

The Cover Feature shows the electrochemical performance of 25 μm AZ31 alloy as anode, in a full magnesium cell with Chevrel phase as cathode, in 0.25 m APC as electrolyte. The use of low concentration of foreign elements in magnesium AZ31 alloy (Al 3%, Zn 1%), increases the mechanical strength and ductility along with resistance to corrosion and weldability, giving similar electrochemical performance compared to 100 μm pure Magnesium metal foil. More information can be found in the Full Paper by A. Maddegalla et al.

Show more

Nov 2021 • ACS Omega

Thermal Stability of Carbon-Centered Radicals Involved in Low-Temperature Oxidation of Bituminous and Lignite Coals as a Function of Temperature

Tze’ela Taub, Sharon Ruthstein, Haim Cohen

Coal is intensively used worldwide as a main fuel source. However, it may undergo oxidation processes [i.e., low-temperature oxidation (LTO)] when stored under an air atmosphere in piles post-mining at low temperatures ranging from 300 to 425 K, specifically, a surface gas/solid reaction with molecular oxygen. Therefore, it is of major importance to prevent or appreciably slow down such reactions, which result in a loss in the energy content (calorific value) of coal. Previously, we showed that radicals are formed during the LTO process. In this work, the dependence of radical formation on coal rank as a function of heating (temperature) and the presence of oxygen gas were studied using electron paramagnetic resonance spectroscopy. It was shown that lignite coals are more sensitive than bituminous coals to the atmospheric environment (i.e., molecular oxygen and nitrogen content) and to temperature, as …

Show more

Nov 2021 • Journal of the American Chemical Society 143 (50), 21161-21176, 2021

High Energy Density Rechargeable Batteries Based on Li Metal Anodes. The Role of Unique Surface Chemistry Developed in Solutions Containing Fluorinated Organic Co-solvents

Doron Aurbach, Elena Markevich, Gregory Salitra

To date, lithium ion batteries are considered as a leading energy storage and conversion technology, ensuring a combination of high energy and power densities and prolonged cycle life. A critical point for elaboration of high energy density secondary Li batteries is the use of high specific capacity positive and negative electrodes. Among anode materials, Li metal anodes are considerably superior due to having the highest theoretical specific capacity (3860 mAh g–1) and lowest negative redox potential (−3.040 V vs a standard hydrogen electrode). Combination of Li metal anodes with Li[NiCoM]O2-layered cathodes with a high stable specific capacity of about 200 up to 250 mAh g–1 is particularly attractive. The development of advanced electrolyte solutions which ensure effective passivation of the electrodes’ surfaces is of critical importance. Considerable efforts have been focused on fluorinated organic co …

Show more

Nov 2021 • Elsevier BV, 2021

Double gas treatment

S Maiti, H Sclar, J Grinblat, M Talianker, M Tkachev, M Tsubery, X Wu, M Noked, B Markovsky, D Aurbach

Herein, a systematic surface modification approach via double gas (SO2 and NH3) treatment at elevated temperatures is described, aimed to achieve a stable electrochemical performance of Li and Mn-rich NCM cathode materials of a typical composition 0.33Li2MnO3·0.67LiNi0.4Co0.2Mn0.4O2 (HE-NCM). Partial surface reduction of Mn4+ and the formation of a modified interface comprising Li-ions conductive nano-sized Li2SO4/Li2SO3 phases are established. Li-coin cells’ prolonged cycling performance demonstrated significantly improved capacity retention (∼2.2 times higher than untreated cathode materials) for the double-gas-treated cathodes after 400 cycles at a 1.0 C rate. Stable discharge potential and lower voltage hysteresis during cycling were also achieved through the double gas treatment. Comparative electrochemical studies in full-pouch cells [vs. Graphite anodes] also demonstrated considerably …

Show more

Nov 2021 • Optics Communications

Digital micromirror device based ptychographic phase microscopy

Juanjuan Zheng, Kai Wen, Zhaolin Gao, Zeev Zalevsky, Peng Gao

In this paper, ptychographic phase microscopy (PPM) with digital illumination addressing via a digital micromirror device (DMD) was demonstrated. A moving circular pattern is sequentially lighted up by a DMD and projected on the sample for illumination stepping, and a CCD camera records the generated diffraction patterns. Then, the quantitative phase distribution of the sample can be reconstructed from the diffraction patterns by using an iterative algorithm. Compared with conventional PPM approaches, this method has a fundamentally enhanced imaging speed due to the usage of the digital scan to replace the conventional mechanical scan. Furthermore, parallelized illumination strategy, which loads multiple pupils to DMD simultaneously, is used to further improve the imaging speed to 0.8 s per phase image. We envisage that this method will contribute to high-contrast, quantitative phase imaging of …

Show more

Nov 2021 • Journal of Biomedical Optics

Bottom layer absorption coefficients extraction from two-layer phantoms based on crossover point in diffuse reflectance

Pavitra S Rudraiah, Hamootal Duadi, Dror Fixler

Significance: Numerous optical imaging and spectroscopy techniques are used to study the tissue-optical properties; the majority of them are limited in information regarding the penetration depth. A simple, safe, easily applicable diagnostic technique is required to get deeper tissue information in a multilayer structure. Aim: A fiber-based diffuse reflectance (DR) technique is used to extract and quantify the bottom layer absorption coefficients in two-layer (2L) tissue-mimicking solid phantoms. We determine the Indian black ink concentrations in a deep-hidden layer that is sandwiched between agar and silicone-based phantom layers. Approach: A fiber-based DR experiment was performed to study the optical properties of the tissue at higher penetration depth, with different fiber core diameters and a constant numerical aperture (0.5 NA). The optimal core diameter of the fiber was chosen by measuring solid phantoms …

Show more

logo
Articali

Powered by Articali

TermsPrivacy