Jul 2022 • ACS APPLIED NANO MATERIALS
Bibhudatta Malik, Hari Krishna Sadhanala, Rong Sun, Francis Leonard Deepak, Aharon Gedanken, Gilbert Daniel Nessim
Developing high performance, cost-effective, and durable electrocatalysts that must be derived from non-noble metals is crucial for alkaline oxygen evolution reaction (OER). OER, which takes place at the anode, is accepted as a major obstacle for commercialization due to its sluggish kinetics. In this study, a two-step synthesis method, such as a hydrothermal process followed by the annealing of the reactants in an Ar-filled Swagelok cell, is briefly described to obtain a cubic type of Co3O4 core and CoP shell. As a result of synergy, Co3O4 vertical bar CoP demonstrates an onset overpotential of 280 mV and reaches a current density of 10 mA cm(-2) at an overpotential of 320 mV in an alkaline medium (pH = 13.5). The electronic property of the heterojunction is verified by the Tauc plot and valence band XPS. The band structure indicates that Co3O4 vertical bar CoP exhibits a more metallic character than pristine …
Show moreJul 2022 • ACS APPLIED NANO MATERIALS
Bibhudatta Malik, Hari Krishna Sadhanala, Rong Sun, Francis Leonard Deepak, Aharon Gedanken, Gilbert Daniel Nessim
Developing high performance, cost-effective, and durable electrocatalysts that must be derived from non-noble metals is crucial for alkaline oxygen evolution reaction (OER). OER, which takes place at the anode, is accepted as a major obstacle for commercialization due to its sluggish kinetics. In this study, a two-step synthesis method, such as a hydrothermal process followed by the annealing of the reactants in an Ar-filled Swagelok cell, is briefly described to obtain a cubic type of Co3O4 core and CoP shell. As a result of synergy, Co3O4 vertical bar CoP demonstrates an onset overpotential of 280 mV and reaches a current density of 10 mA cm(-2) at an overpotential of 320 mV in an alkaline medium (pH = 13.5). The electronic property of the heterojunction is verified by the Tauc plot and valence band XPS. The band structure indicates that Co3O4 vertical bar CoP exhibits a more metallic character than pristine …
Show moreJul 2022 • ACS Applied Energy Materials
Noam Zion, Leigh Peles-Strahl, Ariel Friedman, David A Cullen, Lior Elbaz
Carbon aerogels have been studied in the context of fuel cell electrodes mainly as catalyst support materials due to their high surface area, porosity, and electrical conductivity. Recently, aerogels composed solely of inorganic molecular complexes have shown to be promising materials for the electrocatalysis of oxygen reduction reaction (ORR). These aerogels consist of atomically dispersed catalytic sites. Herein, we report on the synthesis and characterization of an aerogel-based catalyst: iron phthalocyanine aerogel. It was synthesized by coupling of ethynyl-terminated phthalocyanine monomers and then heat-treated at 800 °C to increase its electrical conductivity and catalytic activity. The aerogels reported here were tested as catalysts for ORR in acidic conditions for the first time and found to have a ultra-high number of atomically dispersed catalytic sites (7.11 × 1020 sites g–1) and very good catalytic activity (E …
Show moreJul 2022 • ACS Applied Nano Materials
Bibhudatta Malik, Hari Krishna Sadhanala, Rong Sun, Francis Leonard Deepak, Aharon Gedanken, Gilbert Daniel Nessim
Developing high performance, cost-effective, and durable electrocatalysts that must be derived from non-noble metals is crucial for alkaline oxygen evolution reaction (OER). OER, which takes place at the anode, is accepted as a major obstacle for commercialization due to its sluggish kinetics. In this study, a two-step synthesis method, such as a hydrothermal process followed by the annealing of the reactants in an Ar-filled Swagelok cell, is briefly described to obtain a cubic type of Co3O4 core and CoP shell. As a result of synergy, Co3O4|CoP demonstrates an onset overpotential of 280 mV and reaches a current density of 10 mA cm–2 at an overpotential of 320 mV in an alkaline medium (pH = 13.5). The electronic property of the heterojunction is verified by the Tauc plot and valence band XPS. The band structure indicates that Co3O4|CoP exhibits a more metallic character than pristine Co3O4 due to the fact that …
Show moreJul 2022 • ECS Meeting Abstracts
Lior Elbaz, Rifael Z Snitkoff-Sol
The rising interest in polymer electrolyte fuel cell (PEFC) technology, part of the global shift in energy production to clean sources, is accompanied by efforts to drive down the cost of this technology, which focus primarily on the cathode catalyst, the most expensive PEFC component. While platinum-group metals (PGMs) continues to be the materials of choice for oxygen reduction reaction (ORR) catalysts, use of these materials in PEFCs must be significantly reduced or eliminated without a penalty in the overall cell performance for PEFC technology to become fully viable.The most promising class ORR catalysts that do not utilize PGMs (i.e., PGM-free catalysts), involve first-row transition metals, such as iron and cobalt incorporated in a nitrogen-doped carbon (M-N-C catalysts). While advancements in M-N-C activity have been impressive, the much sought-after improvement in durability has been impeded by limited …
Show moreJul 2022 • Pharmaceutics
Hilla Pe’er-Nissan, Hadas Ahdoot-Levi, Oshra Betzer, Pnina Shirel Itzhak, Niva Shraga-Heled, Iris Gispan, Menachem Motiei, Arthur Doroshev, Yaakov Anker, Rachela Popovtzer, Racheli Ofir, Gal Yadid
Recent research points to mesenchymal stem cells’ potential for treating neurological disorders, especially drug addiction. We examined the longitudinal effect of placenta-derived mesenchymal stromal-like cells (PLX-PAD) in a rat model for cocaine addiction. Sprague–Dawley male rats were trained to self-administer cocaine or saline daily until stable maintenance. Before the extinction phase, PLX-PAD cells were administered by intracerebroventricular or intranasal routes. Neurogenesis was evaluated, as was behavioral monitoring for craving. We labeled the PLX-PAD cells with gold nanoparticles and followed their longitudinal migration in the brain parallel to their infiltration of essential peripheral organs both by micro-CT and by inductively coupled plasma-optical emission spectrometry. Cell locations in the brain were confirmed by immunohistochemistry. We found that PLX-PAD cells attenuated cocaine-seeking behavior through their capacity to migrate to specific mesolimbic regions, homed on the parenchyma in the dentate gyrus of the hippocampus, and restored neurogenesis. We believe that intranasal cell therapy is a safe and effective approach to treating addiction and may offer a novel and efficient approach to rehabilitation.
Show moreJul 2022 • Photonics Research
Moshe Katzman, Maayan Priel, Inbar Shafir, Saawan Kumar Bag, Dvir Munk, Naor Inbar, Moshe Feldberg, Tali Sharabani, Leroy Dokhanian, Matan Slook, Avi Zadok
Integrated microwave photonic filters are becoming increasingly important for signal processing within advanced wireless and cellular networks. Filters with narrow transmission passbands mandate long time delays, which are difficult to accommodate within photonic circuits. Long delays may be obtained through slow moving acoustic waves instead. Input radio-frequency information can be converted from one optical carrier to another via surface acoustic waves and filtered in the process. However, the transfer functions of previously reported devices consisted of multiple periodic passbands, and the selection of a single transmission band was not possible. In this work, we demonstrate surface acoustic wave, silicon-photonic filters of microwave frequency with a single transmission passband. The filter response consists of up to 32 tap coefficients, and the transmission bandwidth is only 7 MHz. The results extend the capabilities of integrated microwave photonics in the standard silicon-on-insulator platform.
Show moreJul 2022 • Imaging Systems and Applications, IW1C. 4, 2022
Nadav Shabairou, Zeev Zalevsky, Moshe Sinvani
We demonstrate a novel method for focusing a probe IR pulse laser beam in semiconductors. The shaping was done by a temporaly modifying the material complex refractive index by a second pulse pump laser beam absorbed in the sample, using pump-prob experiment.
Show moreJul 2022 • Journal of Solid State Electrochemistry, 1-12, 2022
Rifael Z Snitkoff-Sol, Lior Elbaz
Fuel cells are already employed in commercial transportation even though their price is still too high to enable widespread production. A viable and promising pathway taken to lower this price is the replacement of expensive constitutes, namely the platinum-based catalysts at the cathode, by platinum group metal-free catalysts based on abundant materials, such as iron. This led to the development of iron-based catalysts that show high activity towards the oxygen reduction reaction. The extraction of the intrinsic catalytic activity of any catalyst is important both for finding relations between the chemical properties of the active sites and their activity, as well as a comparison measure between catalysts. An important parameter that has been elusive for many years is the turnover frequency, which is derived form the number of electrochemical active sites’ density (EASD). The ability to measure the EASD was very limited …
Show moreJul 2022 • Optics Express
JuanJuan Zheng, Xiang Fang, Kai Wen, Jiaoyue Li, Ying Ma, Min Liu, Sha An, Jianlang Li, Zeev Zalevsky, Peng Gao
In this paper, we present large-field, five-step lattice structured illumination microscopy (Lattice SIM). This method utilizes a 2D grating for lattice projection and a spatial light modulator (SLM) for phase shifting. Five phase-shifted intensity images are recorded to reconstruct a super-resolution image, enhancing the imaging speed and reducing the photo-bleaching both by 17%, compared to conventional two-direction and three-shift SIM. Furthermore, lattice SIM has a three-fold spatial bandwidth product (SBP) enhancement compared to SLM/DMD-based SIM, of which the fringe number is limited by the SLM/DMD pixel number. We believe that the proposed technique will be further developed and widely applied in many fields.
Show moreJul 2022 • bioRxiv
Tom Maimon, Yaron Trink, Jacob Goldberger, Tomer Kalisky
Gene expression measurements of tissues, tumors, or cell lines taken over multiple time points are valuable for describing dynamic biological phenomena such as the response to growth factors. However, such phenomena typically involve multiple biological processes occurring in parallel, making it difficult to identify and discern their respective contributions at any time point. Here, we demonstrate the use of unsupervised machine learning to deconvolve a series of time-dependent gene expression measurements into its underlying temporal components. We first downloaded publicly available RNAseq data obtained from synchronized HeLa cells at consecutive time points following release from cell cycle arrest. Then, we used Fourier analysis and Topic modeling to reveal three underlying components and their relative contributions at each time point. We identified two temporal components with oscillatory behavior, corresponding to the G1-S and G2-M phases of the cell cycle, and a third component with a transient expression pattern, associated with the immediate-early response gene program, regulation of cell proliferation, and cervical cancer. This study demonstrates the use of unsupervised machine learning to identify hidden temporal components in biological systems, with potential applications to early detection and monitoring of diseases and recovery processes.
Show moreJul 2022 • arXiv preprint arXiv:2207.01669
I Bonamassa, B Gross, M Laav, I Volotsenko, A Frydman, S Havlin
Cascades are self-amplifying processes triggered by feedback mechanisms that may cause a substantial part of a macroscopic system to change its phase in response of a relatively small local event. The theoretical background for these phenomena is rich and interdisciplinary with interdependent networks providing a versatile "two-interactions" framework to study their multiscale evolution. Yet, physics experiments aimed at validating this ever-growing volume of predictions have remained elusive, hitherto hindered by the problem of identifying possible physical mechanisms realizing interdependent couplings. Here we develop and study the first experimental realization of an interdependent system as a multilayer network of two disordered superconductors separated by an insulating film. We show that Joule heating effects emerging at sufficiently large driving currents act as dependency links between the superconducting layers, igniting overheating cascades via adaptive back and forth electro-thermal feedbacks. Through theory and experiments, we unveil a rich phase diagram of mutual resistive transitions and cascading processes that physically realize and generalize interdependent percolation. The present work establishes the first physics laboratory bench for the manifestation of the theory of interdependent systems, enabling experimental studies to control and to further develop the multilayer phenomena of complex interdependent materials.
Show moreJul 2022 • International Conference on Ultrafast Phenomena, Th3A. 3, 2022
Xuan Trung Nguyen, Katrin Winte, Daniel Timmer, Yevgeny Rakita, David Cahen, Michael Lorke, Frank Jahnke, Christoph Lienau, Antonietta De Sio
We report persistent 100-fs period Rabi oscillations between 1s and 2p excitons in halide perovskite single crystals driven by off-resonant low-frequency phonon modes. This contrasts with prevailing models for the electron-phonon coupling in these materials.
Show moreJul 2022 • New Journal of Physics
Amin Padash, Erez Aghion, Alexander Schulz, Eli Barkai, Aleksei V Chechkin, Ralf Metzler, Holger Kantz
We perform numerical studies of a thermally driven, overdamped particle in a random quenched force field, known as the Sinai model. We compare the unbounded motion on an infinite 1-dimensional domain to the motion in bounded domains with reflecting boundaries and show that the unbounded motion is at every time close to the equilibrium state of a finite system of growing size. This is due to time scale separation: inside wells of the random potential, there is relatively fast equilibration, while the motion across major potential barriers is ultraslow. Quantities studied by us are the time dependent mean squared displacement, the time dependent mean energy of an ensemble of particles, and the time dependent entropy of the probability distribution. Using a very fast numerical algorithm, we can explore times up top 10 17 steps and thereby also study finite-time crossover phenomena.
Show moreJul 2022 • arXiv preprint arXiv:2207.12960
Santiago Hernández-Gómez, Stefano Gherardini, Alessio Belenchia, Matteo Lostaglio, Amikam Levy, Nicole Fabbri
The incompatibility of physical observables is one of the hallmarks of quantum mechanics. This form of non-classicality, encapsulated by negative quasiprobabilities, has been shown to underlie metrological and thermodynamical advantages and it can be related with information scrambling and dynamical phase transitions in many-body systems. In this work, we use a nitrogen-vacancy center in diamond to realize the experimental implementation of a weak two-point measurement scheme to reconstruct the Margenau-Hill quasiprobability distribution, whose negativity implies non-classicality. Finally, we experimentally show work extraction, empowered by non-classicality, beyond the classical case.
Show moreJul 2022 • Journal of Biological Chemistry
K Shanmugha Rajan, Katerina Adler, Tirza Doniger, Smadar Cohen-Chalamish, Noa Aharon-Hefetz, Saurav Aryal, Yitzhak Pilpel, Christian Tschudi, Ron Unger, Shulamit Michaeli
Trypanosoma brucei, the parasite that causes sleeping sickness, cycles between an insect and a mammalian host. However, the effect of RNA modifications such as pseudouridinylation on its ability to survive in these two different host environments is unclear. Here, two genome-wide approaches were applied for mapping pseudouridinylation sites (Ψs) on small nucleolar RNA (snoRNA), 7SL RNA, vault RNA, and tRNAs from T. brucei. We show using HydraPsiSeq and RiboMeth-seq that the Ψ on C/D snoRNA guiding 2′-O-methylation increased the efficiency of the guided modification on its target, rRNA. We found differential levels of Ψs on these noncoding RNAs in the two life stages (insect host and mammalian host) of the parasite. Furthermore, tRNA isoform abundance and Ψ modifications were characterized in these two life stages demonstrating stage-specific regulation. We conclude that the differential Ψ …
Show moreJul 2022 • Photonics Research
Moshe Katzman, Maayan Priel, Inbar Shafir, Saawan Kumar Bag, Dvir Munk, Naor Inbar, Moshe Feldberg, Tali Sharabani, Leroy Dokhanian, Matan Slook, Avi Zadok
Integrated microwave photonic filters are becoming increasingly important for signal processing within advanced wireless and cellular networks. Filters with narrow transmission passbands mandate long time delays, which are difficult to accommodate within photonic circuits. Long delays may be obtained through slow moving acoustic waves instead. Input radio-frequency information can be converted from one optical carrier to another via surface acoustic waves and filtered in the process. However, the transfer functions of previously reported devices consisted of multiple periodic passbands, and the selection of a single transmission band was not possible. In this work, we demonstrate surface acoustic wave, silicon-photonic filters of microwave frequency with a single transmission passband. The filter response consists of up to 32 tap coefficients, and the transmission bandwidth is only 7 MHz. The results extend the capabilities of integrated microwave photonics in the standard silicon-on-insulator platform.
Show moreJul 2022 • npj Computational Materials
CK Groschner, Alexander J Pattison, Assaf Ben-Moshe, A Paul Alivisatos, Wolfgang Theis, MC Scott
High-throughput scanning electron microscopy (SEM) coupled with classification using neural networks is an ideal method to determine the morphological handedness of large populations of chiral nanoparticles. Automated labeling removes the time-consuming manual labeling of training data, but introduces label error, and subsequently classification error in the trained neural network. Here, we evaluate methods to minimize classification error when training from automated labels of SEM datasets of chiral Tellurium nanoparticles. Using the mirror relationship between images of opposite handed particles, we artificially create populations of varying label error. We analyze the impact of label error rate and training method on the classification error of neural networks on an ideal dataset and on a practical dataset. Of the three training methods considered, we find that a pretraining approach yields the most accurate …
Show moreJul 2022 • Polymers
Sapir Shekef Aloni, Molhm Nassir, Yitzhak Mastai
Chiral surfaces, developed in the last decade, serve as media for enantioselective chemical reactions. Until today, they have been based mostly on developments in silica templating, and are made mainly from imprints of silicate materials developed a long time ago. Here, a chiral porous activated carbon surface was developed based on a chiral ionic liquid, and the surface chemistry and pore structure were studied to lay a new course of action in the field. The enantioselectivities of surfaces are examined by using variety of methods such as circular dichroism, linear sweep voltammetry and catalysis. These techniques revealed a 28.1% preference for the D enantiomer of the amino acid proline, and linear sweep voltammetry confirmed chirality recognition by another probe. An aldol surface chiral catalytic reaction was devised and allowed to determine the root of the enantiomeric excess. These results affirm the path toward a new type of chiral surface.
Show moreJul 2022 • International journal of molecular sciences
Aleksandra Ivanova, Kristina Ivanova, Luisa Fiandra, Paride Mantecca, Tiziano Catelani, Michal Natan, Ehud Banin, Gila Jacobi, Tzanko Tzanov
Jul 2022 • Journal of Power Sources
Kobby Saadi, Samuel S Hardisty, Zhanna Tatus-Portnoy, David Zitoun
Performance, durability, and abundance/cost of electrocatalytic materials are fundamental parameters in for large electrochemical storage solutions like redox-flow batteries (RFB). The acidic environment in Hydrogen–Bromine RFB (HBRFB), which targets tens of thousands of hours in durability, makes the challenge even more acute. Continuous effort to find the most effective and stable catalyst can promote HBRFB goal to become sustainable for high power storage systems. Herein, we explore the lower limits in catalyst loading for the two most active precious group metals (PGMs) – platinum and iridium (individually and in a bimetallic catalyst). The catalyst has been structurally characterized and lab-scale redox-flow cells have been cycled with a decreasing loading of PGM. Carbon support and polymeric coating on Pt catalyst shows a significant increase in the utilization of the catalyst. It enables low platinum …
Show more