BINA

3738 articles

75 publishers

Join mailing list

Oct 2021 • ACS Catalysis

3D Metal carbide aerogel network as a stable catalyst for the hydrogen evolution reaction

Oran Lori, Noam Zion, Hilah C Honig, Lior Elbaz

Electrolyzer technologies are essential for the Hydrogen Economy scheme, and in order to drive the hydrogen production price down, their lifetimes need to be extended. One important parameter that has not been given enough attention in this context is catalyst durability. In this work, a durable platinum-group metal-free catalyst was developed for the hydrogen evolution reaction based on a porous, high-surface area molybdenum carbide aerogel. The molybdenum oxide aerogel was synthesized by a sol–gel method and carburized by methane treatment. A three-dimensional molybdenum carbide network was obtained by reacting the molybdenum oxide aerogel with a CH4/H2 mixture at 700 °C. Surface area measurement confirmed a substantial increase in the volume of micropores in the transition from oxide to carbide. The carbide aerogel has low density (<0.4 g/mL) with a relatively high surface area of 109 m2 …

Show more

Oct 2021 • ACS omega

Optimization of gold nanorod features for the enhanced performance of plasmonic nanocavity arrays

Marianna Beiderman, Ariel Ashkenazy, Elad Segal, Menachem Motiei, Adi Salomon, Tamar Sadan, Dror Fixler, Rachela Popovtzer


Oct 2021 • Ultrasonics Sonochemistry

Facile ultrasonic preparation of a polypyrrole membrane as an absorbent for efficient oil-water separation and as an antimicrobial agent

Moorthy Maruthapandi, Arumugam Saravanan, Shanmugasundaram Manoj, John HT Luong, Aharon Gedanken

Polypyrrole (PPY) spherical particles synthesized using carbon dots as an efficient catalyst were strongly embedded on fluorinated nonwoven fabric by ultrasonication to form a membrane with high hydrophilicity. An optimal amount of PPY adhered to the membrane after 30 min of sonication enhanced the overall membrane area with high hydrophilicity. Oil with high hydrophobicity was repelled by the resulting membrane, whereas water was freely penetrated and diffused from the membrane. The membrane exhibited good reusability and efficiency for the recovery of oil from a cooking oil–water mixture within 30 s. The incorporation of PPY in the fluorinated fabric imparts significant antibacterial properties against two common pathogens, Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The anti-biofouling membrane could pave the way for its potential application to separate spilled oil …

Show more

Oct 2021 • New Journal of Physics

Optimal detection of ultra-broadband bi-photons with quantum nonlinear SU (1, 1) interference

Nir Nechushtan, Hanzhong Zhang, Mallachi Meller, Avi Pe'er

The visibility of nonlinear SU (1, 1) interference directly reflects the nonclassical properties of entangled bi-photons and squeezed light with practically unlimited bandwidth, high efficiency and ultra-high photon flux, orders of magnitude beyond the abilities of standard photo-detectors. We study experimentally the dependence of the SU (1, 1) visibility on the phase matching conditions and beam parameters in a free-space configuration, and show that maximal SU (1, 1) visibility requires extreme collinear conditions, which deviate from the conditions for maximal nonlinear conversion. We demonstrate near-ideal visibility of∼ 95%(limited only by internal loss) in an ultra-broadband SU (1, 1), interferometer with over 120 THz of squeezed light bandwidth. Utilizing this analysis we demonstrate efficient detection of the spectral phase of single-cycle bi-photons and precise compensation of the dispersion over a full octave …

Show more

Oct 2021 • Materials Science and Engineering: C

Sonochemically engineered nano-enabled zinc oxide/amylase coatings prevent the occurrence of catheter-associated urinary tract infections

Aleksandra Ivanova, Kristina Ivanova, Ilana Perelshtein, Aharon Gedanken, Katerina Todorova, Rositsa Milcheva, Petar Dimitrov, Teodora Popova, Tzanko Tzanov

Catheter-associated urinary tract infections (CAUTIs), caused by biofilms, are the most frequent health-care associated infections. Novel antibiofilm coatings are needed to increase the urinary catheters' life-span, decrease the prevalence of CAUTIs and reduce the development of antimicrobial resistance. Herein, antibacterial zinc oxide nanoparticles (ZnO NPs) were decorated with a biofilm matrix-degrading enzyme amylase (AM) and simultaneously deposited onto silicone urinary catheters in a one-step sonochemical process. The obtained nano-enabled coatings inhibited the biofilm formation of Escherichia coli and Staphylococcus aureus by 80% and 60%, respectively, for up to 7 days in vitro in a model of catheterized bladder with recirculation of artificial urine due to the complementary mode of antibacterial and antibiofilm action provided by the NPs and the enzyme. Over this period, the coatings did not …

Show more

Oct 2021 • Bioconjugate Chemistry

Novel nanocarrier platform for effective treatment of visceral leishmaniasis

Sriram Kannan, Yifat Harel, Liron Limor Israel, Emmanuel Lellouche, Alexander Varvak, Merav Nadav Tsubery, Jean-Paul Lellouche, Shulamit Michaeli

Leishmaniasis is among the five parasitic diseases that still require the development of new drugs. Ultrasmall cerium (Ce3/4+) cation-doped maghemite (γ-Fe2O3) nanoparticles (NPs) were tested as a potential drug to treat visceral leishmaniasis, a disease affecting millions of people worldwide. The NPs were engineered for binding a polycationic branched polyethylenimine (PEI) polymer, thereby rupturing the single lysosome of these parasites and enabling entry of the anti-Leishmania drug, pentamidine. Exploiting the known lanthanide cation/complex-based coordinative chemical reactivity enabled the binding of both active agents onto the surface of the NPs. To optimize the fabrication of the cytotoxic NPs, optimization via a DoE (Design of Experiments) process was used to identify the optimal NP with toxicity against the two stages of the parasite, promastigotes, which propagate in the insect, and amastigotes …

Show more

Oct 2021 • JOSA A

Effects of lidar and radar resolution on DNN-based vehicle detection

Itai Orr, Harel Damari, Meir Halachmi, Mark Raifel, Kfir Twizer, Moshik Cohen, Zeev Zalevsky

Vehicle detection plays a critical role in autonomous driving, where two central sensing modalities are lidar and radar. Although many deep neural network (DNN)-based methods have been proposed to solve this task, a systematic and methodological examination on the influence of the data on those methods is still missing. In this work, we examine the effects of resolution on the performance of vehicle detection for both lidar and radar sensors. We propose subsampling methods that can improve the performance and efficiency of DNN-based solutions and offer an alternative approach to traditional sensor-design trade-offs.

Show more

Oct 2021 • Genome Research

Global quantification exposes abundant low-level off-target activity by base editors

Ilana Buchumenski, Shalom Hillel Roth, Eli Kopel, Efrat Katsman, Ariel Feiglin, Erez Y Levanon, Eli Eisenberg

Base editors are dedicated engineered deaminases that enable directed conversion of specific bases in the genome or transcriptome in a precise and efficient manner, and hold promise for correcting pathogenic mutations. A major concern limiting application of this powerful approach is the issue of off-target edits. Several recent studies have shown substantial off-target RNA activity induced by base editors and demonstrated that off-target mutations may be suppressed by improved deaminases versions or optimized guide RNAs. Here we describe a new class of off-target events that are invisible to the established methods for detection of genomic variations, and were thus far overlooked. We show that much of the off-target activity of the deaminases is nonspecific, seemingly stochastic, affecting a large number of sites throughout the genome or the transcriptome and accounting for the majority of off-target activity …

Show more

Oct 2021 • Journal of The Electrochemical Society

Toward High Performance All Solid-State Na Batteries: Investigation of Electrolytes Comprising NaPF6, Poly (ethylene oxide) and TiO2

Shaul Bublil, Yuval Elias, Netanel Shpigel, Miryam Fayena-Greenstein, Diana Golodnitsky, Doron Aurbach

Solid electrolytes based on polyethylene oxide (PEO) have been studied for decades, owing to their facile and low-cost processing, good electrochemical stability, and excellent complexation with alkali metal salts. Complexes of PEO with appropriate sodium salts are well known for ionic conduction. Here, pristine NaPF6:P(EO)16 and a composite solid electrolyte containing TiO2 nanowires were investigated as candidates for rechargeable solid-state sodium batteries. Comprehensive electrochemical characterizations were carried out, including ionic conductivity, transference number, and structural stability. At elevated temperatures, the specific capacity of an all-solid-state Na3Ti2(PO4)3 (Na/NTP) sodium battery was 110 mAh g-1, higher than room-temperature cells with liquid electrolyte solutions. We attribute this behavior to increased con-ductivity of the polymer electrolyte, induced by the ceramic nanofiller, combined with enhanced electronic conductivity of the NTP cathode.

Show more

Oct 2021 • Energy Technology

Silver Oxygen Reduction Electrocatalyst in Alkaline Medium: Aging and Protective Coating

Anna Kitayev, Melina Zysler, Samuel Hardisty, Miles Page, Ervin Tal-Gutelmacher, David Zitoun

The oxygen reduction reaction (ORR) is a key process in anion exchange membrane fuel cells. The alkaline conditions should allow silver‐based cost‐efficient catalysts to replace platinum group metal materials. However, Ag electrochemical stability or lack of stability in alkaline medium is still to be demonstrated. Herein, Ag catalyst nanoparticles (NPs) are characterized by identical location transmission electron microscopy and X‐ray photoelectron spectroscopy after electrochemical cycling, revealing the losses of activity and surface. Herein, a facile method for enhancing the chemical stability of Ag catalysts in an alkaline environment by depositing a protective polydopamine (PDA) coating is reported. It is enhanced via crosslinking with polyethyleneimine (PEI), on the surface of Ag NPs. The enhanced electrochemical stability of Ag PDA–PEI nanocatalyst via the analysis of ORR polarization curves during …

Show more

Oct 2021 • Iscience

Germline polymorphisms and alternative splicing of human immunoglobulin light chain genes

Ivana Mikocziova, Ayelet Peres, Moriah Gidoni, Victor Greiff, Gur Yaari, Ludvig M Sollid


Oct 2021 • Small

Interfacial Engineering of Na3V2(PO4)2F3 Hollow Spheres through Atomic Layer Deposition of TiO2: Boosting Capacity and Mitigating Structural Instability

Tali Sharabani, Sarah Taragin, Ilana Perelshtein, Malachi Noked, Ayan Mukherjee

To mitigate the associated challenges of instability and capacity improvement in Na3V2(PO4)2F3 (NVPF), rationally designed uniformly distributed hollow spherical NVPF and coating the surface of NVPF with ultrathin (≈2 nm) amorphous TiO2 by atomic layer deposition is demonstrated. The coating facilitates higher mobility of the ion through the cathode electrolyte interphase (CEI) and enables higher capacity during cycling. The TiO2@NVPF exhibit discharge capacity of >120 mAhg−1, even at 1C rates, and show lower irreversible capacity in the first cycle. Further, nearly 100% capacity retention after rate performance in high current densities and 99.9% coulombic efficiency after prolonged cycling in high current density is reported. The improved performance in TiO2@NVPF is ascribed to the passivation behavior of TiO2 coating which protects the surface of NVPF from volume expansion, significantly less …

Show more

Oct 2021 • Genes & Immunity

Commentary on Population matched (pm) germline allelic variants of immunoglobulin (IG) loci: relevance in infectious diseases and vaccination studies in human populations

Andrew M Collins, Ayelet Peres, Martin M Corcoran, Corey T Watson, Gur Yaari, William D Lees, Mats Ohlin

In their recent publication, Khatri et al.[1] describe an immunoglobulin germline gene database inferred from shortread genomic sequence data derived from five superpopulations. The development of methods for the compilation of more complete and accurate germline gene databases would be an important achievement, but we do not believe that this has been achieved. Existing databases are clearly incomplete. Germline sequences differ substantially between subjects, and alleles found in some populations may be absent in others. Existing databases are likely biased towards alleles found in European populations and may lack many sequences found in understudied populations [2]. Improved, properly designed and curated germline gene databases are therefore needed for analysis of antibody repertoires.Extensive efforts are under way to better document germline genes, and the study by Khatri et al …

Show more

Oct 2021 • Sexual Development, 1-18, 2021

Cis-Regulatory Control of Mammalian Sex Determination

Meshi Ridnik, Stefan Schoenfelder, Nitzan Gonen

Sex determination is the process by which an initial bipotential gonad adopts either a testicular or ovarian cell fate. The inability to properly complete this process leads to a group of developmental disorders classified as disorders of sex development (DSD). To date, dozens of genes were shown to play roles in mammalian sex determination, and mutations in these genes can cause DSD in humans or gonadal sex reversal/dysfunction in mice. However, exome sequencing currently provides genetic diagnosis for only less than half of DSD patients. This points towards a major role for the non-coding genome during sex determination. In this review, we highlight recent advances in our understanding of non-coding, cis-acting gene regulatory elements and discuss how they may control transcriptional programmes that underpin sex determination in the context of the 3-dimensional folding of chromatin. As a paradigm, we …

Show more

Oct 2021 • New Journal of Physics

Optimal detection of ultra-broadband bi-photons with quantum nonlinear SU (1, 1) interference

Nir Nechushtan, Hanzhong Zhang, Mallachi Meller, Avi Pe'er

The visibility of nonlinear SU(1,1) interference directly reflects the nonclassical properties of entangled bi-photons and squeezed light with practically unlimited bandwidth, high efficiency and ultra-high photon flux, orders of magnitude beyond the abilities of standard photo-detectors. We study experimentally the dependence of the SU(1,1) visibility on the phase matching conditions and beam parameters in a free-space configuration, and show that maximal SU(1,1) visibility requires extreme collinear conditions, which deviate from the conditions for maximal nonlinear conversion. We demonstrate near-ideal visibility of ~95% (limited only by internal loss) in an ultra-broadband SU(1,1), interferometer with over 120THz of squeezed light bandwidth. Utilizing this analysis we demonstrate efficient detection of the spectral phase of single-cycle bi-photons and precise compensation of the dispersion over a full octave of …

Show more

Oct 2021 • ACS Omega

Noninvasive Tracking of Natural Killer Cells Using Gold Nanoparticles

Katerina Shamalov, Rinat Meir, Menachem Motiei, Rachela Popovtzer, Cyrille J Cohen

Natural killer (NK)-cell-based immunotherapy is emerging as an attractive approach for cancer treatment. However, to facilitate and expedite clinical implementation, important questions must be answered regarding the in vivo functionality and trafficking patterns of the transferred cells. We have recently developed a noninvasive cell-tracking technique, based on gold nanoparticles (GNPs) as cell-labeling and contrast agents for whole-body computed tomography (CT) imaging. Herein, we report the implementation of this technique for longitudinal and quantitative tracking of NK cell kinetics, the migration and biodistribution in tumor-bearing mice. NK cells were successfully labeled with GNPs, without impairing their biological function, as assessed both in vitro, by cytokine release and cytotoxicity assays, and in vivo, using a xenograft model of human tumors. Using CT, we longitudinally tracked the migration of …

Show more

Oct 2021 • Photochemical & Photobiological Sciences

Fluorophore spectroscopy in aqueous glycerol solution: the interactions of glycerol with the fluorophore

Haim Feldman, Mark A Iron, Dror Fixler, Sergei Moshkov, Naomi Zurgil, Elena Afrimzon, Mordechai Deutsch

A common perception exists that glycerol provides an inert-like environment modifying viscosity and index of refraction by its various concentrations in aqueous solution. Said perception is herein challenged by investigating the effects of the glycerol environment on the spectroscopic properties of fluorescein, as a representative fluorophore, using steady-state and time-resolved techniques and computational chemistry. Results strongly suggest that the fluorescence quantum yield, measured fluorescence lifetime (FLT), natural lifetime and calculated fluorescence lifetime are all highly sensitive to the presence of glycerol. Glycerol was found to impact both the ground and first excited states of fluorescein, quenching and modifying both absorption and emission spectra, affecting the fundamental electrical dipoles of the ground and first excited singlet states, and lowering FLT and quantum yield. Furthermore, the Stern …

Show more

Oct 2021 • ACS Applied Materials & Interfaces

Polarization-Driven Asymmetric Electronic Response of Monolayer Graphene to Polymer Zwitterions Probed from Both Sides

Nicholas Hight-Huf, Yehiel Nagar, Adi Levi, James Nicolas Pagaduan, Avdhoot Datar, Reika Katsumata, Todd Emrick, Ashwin Ramasubramaniam, Doron Naveh, Michael D Barnes

We investigated the nature of graphene surface doping by zwitterionic polymers and the implications of weak in-plane and strong through-plane screening using a novel sample geometry that allows direct access to either the graphene or the polymer side of a graphene/polymer interface. Using both Kelvin probe and electrostatic force microscopies, we observed a significant upshift in the Fermi level in graphene of ∼260 meV that was dominated by a change in polarizability rather than pure charge transfer with the organic overlayer. This physical picture is supported by density functional theory (DFT) calculations, which describe a redistribution of charge in graphene in response to the dipoles of the adsorbed zwitterionic moieties, analogous to a local DC Stark effect. Strong metallic-like screening of the adsorbed dipoles was observed by employing an inverted geometry, an effect identified by DFT to arise from a …

Show more

Oct 2021 • Nature Communications

Unveiling unconventional magnetism at the surface of Sr2RuO4

R Fittipaldi, R Hartmann, MT Mercaldo, S Komori, A Bjørlig, W Kyung, Y Yasui, T Miyoshi, LAB Olde Olthof, Palomares Garcia, V Granata, I Keren, W Higemoto, A Suter, T Prokscha, A Romano, C Noce, C Kim, Y Maeno, E Scheer, B Kalisky, JWA Robinson, M Cuoco, Z Salman, A Vecchione, A Di Bernardo

Materials with strongly correlated electrons often exhibit interesting physical properties. An example of these materials is the layered oxide perovskite Sr 2 RuO 4, which has been intensively investigated due to its unusual properties. Whilst the debate on the symmetry of the superconducting state in Sr 2 RuO 4 is still ongoing, a deeper understanding of the Sr 2 RuO 4 normal state appears crucial as this is the background in which electron pairing occurs. Here, by using low-energy muon spin spectroscopy we discover the existence of surface magnetism in Sr 2 RuO 4 in its normal state. We detect static weak dipolar fields yet manifesting at an onset temperature higher than 50 K. We ascribe this unconventional magnetism to orbital loop currents forming at the reconstructed Sr 2 RuO 4 surface. Our observations set a reference for the discovery of the same magnetic phase in other materials and unveil an electronic …

Show more

Oct 2021 • ACS Omega

Optimization of Gold Nanorod Features for the Enhanced Performance of Plasmonic Nanocavity Arrays

Marianna Beiderman, Ariel Ashkenazy, Elad Segal, Menachem Motiei, Adi Salomon, Tamar Sadan, Dror Fixler, Rachela Popovtzer

Nanoplasmonic biosensors incorporating noble metal nanocavity arrays are widely used for the detection of various biomarkers. Gold nanorods (GNRs) have unique properties that can enhance spectroscopic detection capabilities of such nanocavity-based biosensors. However, the contribution of the physical properties of multiple GNRs to resonance enhancement of gold nanocavity arrays requires further characterization and elucidation. In this work, we study how GNR aspect ratio (AR) and surface area (SA) modify the plasmonic resonance spectrum of a gold triangular nanocavity array by both simulations and experiments. The finite integration technique (FIT) simulated the extinction spectrum of the gold nanocavity array with 300 nm periodicity onto which the GNRs of different ARs and SAs are placed. Simulations showed that matching of the GNRs longitudinal peak, which is affected by AR, to the nanocavity …

Show more

Oct 2021 • Journal of Cell Biology

Subunit cooperation in the Get1/2 receptor promotes tail-anchored membrane protein insertion

Un Seng Chio, Yumeng Liu, SangYoon Chung, Woo Jun Shim, Sowmya Chandrasekar, Shimon Weiss, Shu-ou Shan

The guided entry of tail-anchored protein (GET) pathway, in which the Get3 ATPase delivers an essential class of tail-anchored membrane proteins (TAs) to the Get1/2 receptor at the endoplasmic reticulum, provides a conserved mechanism for TA biogenesis in eukaryotic cells. The membrane-associated events of this pathway remain poorly understood. Here we show that complex assembly between the cytosolic domains (CDs) of Get1 and Get2 strongly enhances the affinity of the individual subunits for Get3•TA, thus enabling efficient capture of the targeting complex. In addition to the known role of Get1CD in remodeling Get3 conformation, two molecular recognition features (MoRFs) in Get2CD induce Get3 opening, and both subunits are required for optimal TA release from Get3. Mutation of the MoRFs attenuates TA insertion into the ER in vivo. Our results demonstrate extensive cooperation between the Get1/2 …

Show more

logo
Articali

Powered by Articali

TermsPrivacy