Nov 2022 • Superconductor Science and Technology
Ariel Roitman, A Shaulov, Y Yeshurun
We demonstrate an improved YBa 2 Cu 3 O 7− δ-based microwave kinetic inductance detector with a quality factor and noise equivalent power, $\sim {10^{-12}}{\mkern 1mu}{\text {W}}{\mkern 1mu}{\sqrt {{\text {Hz}}}^{-1}} $ at 10 K. Zero field cooled (ZFC) and field cooled (FC) measurements of the magnetic field dependence of the resonance characteristics, show substantially different behavior, indicating that both the screening currents and vortices play a role. The ZFC measurements exhibit a sharp decrease of the resonance frequency, , and at low fields, up to the full penetration field, revealing the dominant role of the screening currents. In contrast, the FC measurements exhibit a moderate decrease of and with field, revealing the role of vortices and reflecting the field dependence of the penetration depth in a d-wave superconductor.
Show moreNov 2022 • ACS Applied Polymer Materials
Poushali Das, Sayan Ganguly, Syed Rahin Ahmed, Masoomeh Sherazee, Shlomo Margel, Aharon Gedanken, Seshasai Srinivasan, Amin Reza Rajabzadeh
Heteroatom-doped carbon dot (CD)-reinforced flexible, antioxidant, and UV-resistant polymeric thin films have been fabricated by a facile physical compounding strategy associated with the ‘cast and peel’ technique. The prepared CDs were found to be stable in aqueous media because of their zeta potential value (−5.85 mV). There was no significant change in the zeta potential values during 7 days of storage, indicating the long-term stability of CPCDs. CD-reinforced thermoplastic starch (TPS)/κ-carrageenan hybrid films have been developed as antioxidants to improve the shelf-life of agro-products. Besides this, they also qualified for mechanical strength (>40 MPa), transparency (∼77%), nondeteriorative dimensional integrity at a high relative humidity (∼97%), and UV-resistant properties. For assessing the food preservation behavior, the leaching of CDs also has been studied by time-dependent sustained …
Show moreNov 2022 • Desalination 542, 116043, 2022
Qinghao Wu, Dawei Liang, Shanfu Lu, Haining Wang, Yan Xiang, Doron Aurbach, Eran Avraham, Izaak Cohen
Capacitive deionization (CDI) has been considered as the most promising and environmentally friendly electrical desalination technology owing to its low energy consumption and no secondary pollution. CDI is based on the principle of electric double layer for salt ion adsorption, but the existence of co-ions repulsion reduce the charge efficiency, leading to the low salt adsorption capacity. To prevent the intrinsic “co-ion effect” inside the porous carbon electrodes, membrane capacitive deionization (MCDI) by applying an ion-exchange membrane (IEM) to the surface of electrode is of increasing interest. However, MCDI brings various resistances, such as the internal and interface resistances of membrane, as well as the contact resistance between membrane and carbon electrode. More recently, by integrating “membrane” with carbon electrode without the introduction of free-standing IEM, integrated-MCDI has …
Show moreNov 2022 • Nano Letters
Hadas Shtrikman, Man Suk Song, Magdalena A Załuska-Kotur, Ryszard Buczko, Xi Wang, Beena Kalisky, Perla Kacman, Lothar Houben, Haim Beidenkopf
In the pursuit of magneto-electronic systems nonstoichiometric magnetic elements commonly introduce disorder and enhance magnetic scattering. We demonstrate the growth of (EuIn)As shells, with a unique crystal structure comprised of a dense net of Eu inversion planes, over InAs and InAs1–xSbx core nanowires. This is imaged with atomic and elemental resolution which reveal a prismatic configuration of the Eu planes. The results are supported by molecular dynamics simulations. Local magnetic and susceptibility mappings show magnetic response in all nanowires, while a subset bearing a DC signal points to ferromagnetic order. These provide a mechanism for enhancing Zeeman responses, operational at zero applied magnetic field. Such properties suggest that the obtained structures can serve as a preferred platform for time-reversal symmetry broken one-dimensional states including intrinsic topological …
Show moreNov 2022 • Journal of The Electrochemical Society
Shaul Bublil, Miryam Fayena-Greenstein, Yuval Elias, Doron Aurbach
The transference number for cations, t+, is one of the most important parameters for characterizing polymeric and/or composite solid electrolytes. It expresses the contribution of the positive charge carriers to the total conductivity, which in turn reflects the degree of polarization due to the negative carriers in the electrolyte systems. Four electrochemical methods based on different equations commonly used for obtaining t+ are compared. A series of experiments were conducted with solid polymer electrolytes based on polyethylene oxide with and without TiO2 ceramic additive. Interestingly, the oldest method developed and presented four decades ago, emerges as the most simple, reliable, sensitive, repeatable, and stable option for determining t+ values over time.
Show moreNov 2022 • Journal of Physics: Condensed Matter
Netanel Shpigel, Mikhael D Levi, Sergey Sigalov, Doron Aurbach, Leonid Daikhin, Volker Presser
It has been brought to the authors' notice that the SEM images in figure 2 panels (b) and (d) are related to the incorrect carbon material. A corrected version is shown here in figure 2. The authors apologize for the unfortunate mistake.
Show moreNov 2022 • Energy Storage Materials
Sandipan Maiti, Hadar Sclar, Judith Grinblat, Michael Talianker, Maria Tkachev, Merav Tsubery, Xiaohan Wu, Malachi Noked, Boris Markovsky, Doron Aurbach
Herein, a systematic surface modification approach via double gas (SO2 and NH3) treatment at elevated temperatures is described, aimed to achieve a stable electrochemical performance of Li and Mn-rich NCM cathode materials of a typical composition 0.33Li2MnO3•0.67LiNi0.4Co0.2Mn0.4O2 (HE-NCM). Partial surface reduction of Mn4+ and the formation of a modified interface comprising Li-ions conductive nano-sized Li2SO4/Li2SO3 phases are established. Li-coin cells’ prolonged cycling performance demonstrated significantly improved capacity retention (∼2.2 times higher than untreated cathode materials) for the double-gas-treated cathodes after 400 cycles at a 1.0 C rate. Stable discharge potential and lower voltage hysteresis during cycling were also achieved through the double gas treatment. Comparative electrochemical studies in full-pouch cells [vs. Graphite anodes] also demonstrated …
Show moreNov 2022 • Nature Energy
Doron Aurbach, Mikhael Levi, Netanel Shpigel
One of the biggest hurdles to realise high-performance Li-metal batteries is the instability of Li metal towards all relevant electrolytes. Now, an approach is reported to improve Li cells’ stability by upshifting the Li electrodes’ potential to reduce their voltage gap with the electrolyte electrochemical stability windows.
Show moreNov 2022 • Nano letters
Hadas Shtrikman, Man Suk Song, Magdalena A Załuska-Kotur, Ryszard Buczko, Xi Wang, Beena Kalisky, Perla Kacman, Lothar Houben, Haim Beidenkopf
In the pursuit of magneto-electronic systems nonstoichiometric magnetic elements commonly introduce disorder and enhance magnetic scattering. We demonstrate the growth of (EuIn)As shells, with a unique crystal structure comprised of a dense net of Eu inversion planes, over InAs and InAs1–xSbx core nanowires. This is imaged with atomic and elemental resolution which reveal a prismatic configuration of the Eu planes. The results are supported by molecular dynamics simulations. Local magnetic and susceptibility mappings show magnetic response in all nanowires, while a subset bearing a DC signal points to ferromagnetic order. These provide a mechanism for enhancing Zeeman responses, operational at zero applied magnetic field. Such properties suggest that the obtained structures can serve as a preferred platform for time-reversal symmetry broken one-dimensional states including intrinsic topological …
Show moreNov 2022 • ACS Applied Polymer Materials
Poushali Das, Sayan Ganguly, Syed Rahin Ahmed, Masoomeh Sherazee, Shlomo Margel, Aharon Gedanken, Seshasai Srinivasan, Amin Reza Rajabzadeh
Nov 2022 • Journal of The Electrochemical Society
Shalev Blanga, Reut Yemini, Eti Teblum, Merav Tsubery, Sarah Taragin, Malachi Noked
Lithium-sulfur batteries (LSB) are considered a very attractive alternative to lithium-ion batteries due to their high theoretical capacity and low cost of the active materials. However, the realization of LSB is hostage to many challenges associated with the cathode and anode response to the electrochemical conditions inside the battery cell. While working with LSB, elemental sulfur undergoes multielectron reduction reactions until it is reduced to Li 2 S. The intermediate long chain lithium-polysulfide (LiPS) species are soluble, hence diffuse through the electrolyte solution from the cathode side to the anode. This" shuttle" phenomenon considered to be one of the main issues of LSB. Most effort in investigating LSB focused on the cathode side while only few considered the importance of the lithium anode reversibility and the separator role in preventing the" shuttle" phenomenon. In the current work, we use Atomic Layer …
Show moreNov 2022 • Nature Communications
David Barcons Ruiz, Hanan Herzig Sheinfux, Rebecca Hoffmann, Iacopo Torre, Hitesh Agarwal, Roshan Krishna Kumar, Lorenzo Vistoli, Takashi Taniguchi, Kenji Watanabe, Adrian Bachtold, Frank HL Koppens
Nanofabrication research pursues the miniaturization of patterned feature size. In the current state of the art, micron scale areas can be patterned with features down to ~30 nm pitch using electron beam lithography. Here, we demonstrate a nanofabrication technique which allows patterning periodic structures with a pitch down to 16 nm. It is based on focused ion beam milling of suspended membranes, with minimal proximity effects typical to standard electron beam lithography. The membranes are then transferred and used as hard etching masks. We benchmark our technique by electrostatically inducing a superlattice potential in graphene and observe bandstructure modification in electronic transport. Our technique opens the path towards the realization of very short period superlattices in 2D materials, but with the ability to control lattice symmetries and strength. This can pave the way for a versatile solid-state …
Show moreNov 2022 • Advanced Energy Materials
Xiaodong Qi, Langyuan Wu, Zhiwei Li, Yuxuan Xiang, Yunan Liu, Kangsheng Huang, Elias Yuval, Doron Aurbach, Xiaogang Zhang
Anionic redox provides an effective way to overcome the capacity bottleneck of sodium‐ion batteries. A dominant role is played by the arrangement of alkali A and transition metal M in the NaxAyM1‐yO2 superstructure. Here, in situ X‐ray diffraction and ex situ 7Li nuclear magnetic resonance of P2 type Na0.6Li0.2Mn0.8O2 with ribbon‐ordered superstructure illustrate structural changes and explain the evolution of the electrochemical behavior of electrodes comprising this active mass, during cycling. Upon substitution of a small amount of manganese by iron, Na0.67Li0.2Mn0.73Fe0.07O2 is formed with a honeycomb‐ordered superstructure. Experimental characterizations and theoretical calculations elucidate the effect of iron on oxygen redox activity. The iron‐doped material considerably outperforms the undoped Na0.6Li0.2Mn0.8O2 as a cathode material for rechargeable Na‐ion batteries. This research reveals …
Show moreNov 2022 • Beilstein Journal of Organic Chemistry
Liang Shi, Zhiyu Gao, Yiqing Li, Yuanhao Dai, Yu Liu, Lili Shi, Hong-Dong Hao
An approach to aberrarone, an antimalarial diterpenoid natural product with tetracyclic skeleton is reported. Key to the stereoselective preparation of the 6-5-5 tricyclic skeleton includes the mediation of Nagata reagent for constructing the C1 all-carbon quaternary centers and gold-catalyzed cyclopentenone synthesis through C–H insertion.
Show moreNov 2022 • Cell Reports
Hadar Bootz-Maoz, Ayelet Pearl, Ehud Melzer, Stephen Malnick, Efrat Sharon, Yifat Bennet, Rotem Tsentsarevsky, Shlomi Abuchatzera, Sivan Amidror, Elana Aretz, Shalhevet Azriel, Chen Gam Ze Letova, Maria Naama, Irit Shoval, Orly Yaron, Sarit Karako-Lampert, Shai Bel, Nissan Yissachar
Changes in microbiome composition are associated with a wide array of human diseases, turning the human microbiota into an attractive target for therapeutic intervention. Yet, clinical translation of these findings requires the establishment of causative connections between specific microbial taxa and their functional impact on host tissues. Here, we infuse gut organ cultures with longitudinal microbiota samples collected from therapy-naive patients with irritable bowel syndrome (IBS) under a low-fermentable oligo-, di-, mono-saccharides and polyols (FODMAP) diet. We show that post-diet microbiota regulates intestinal expression of inflammatory and neuro-muscular gene sets. Specifically, we identify Bifidobacterium adolescentis as a diet-sensitive pathobiont that alters tight junction integrity and disrupts gut barrier functions. Collectively, we present a pathway discovery platform for mechanistic dissection and …
Show moreNov 2022 • Springer Nature, 2022
Avi Zadok, Hilel Hagai Diamandi, Yosef London, Gil Bashan
This book, the first dedicated to the topic, provides a comprehensive treatment of forward stimulated Brillouin scattering (SBS) in standard optical fibers. SBS interactions between guided light and sound waves have drawn much attention for over fifty years, and optical fibers provide an excellent playground for the study of Brillouin scattering as they support guided modes of both wave types and provide long interaction lengths. This book is dedicated to forward SBS processes that are driven by co-propagating optical fields. The physics of forward SBS is explained in detail, starting from the fundamentals of interactions between guided optical and acoustic waves, with emphasis given to the acoustic modes that are stimulated in the processes. The realization of forward SBS in standard single-mode, polarization-maintaining and multi-core fibers is then discussed in depth. Innovative potential applications in sensors, monitoring of coating layers, lasers, and radio-frequency oscillators are presented. This book introduces the subject to graduate students in optics and applied physics, and it will be of interest to scientists working in fiber-optics, nonlinear optics and opto-mechanics. Provides the first treatment of forward stimulated Brillouin scattering (SBS) in book form; Reflects the dramatic recent increase in interest in forward SBS processes, driven in part by the promise of new fiber sensing concepts; Delivers a solid and comprehensive grounding in the physics of forward SBS along with detailed experimental set-ups, measurement protocols, and applications.
Show moreNov 2022
Leonardo Ricotti, Andrea Cafarelli, Cristina Manferdini, Diego Trucco, Lorenzo Vannozzi, Elena Gabusi, Francesco Fontana, Paolo Dolzani, Yasmin Saleh, Enrico Lenzi, Marta Columbaro, Manuela Piazzi, Jessika Bertacchini, Andrea Aliperta, Markys Cain, Paola Parlanti, Carsten Jost, Yirij Fedutik, Gilbert Nessim, Madina Telkhozhayeva, Eti Teblum, Erik Dumont, Chiara Delbaldo, Giorgia Codispoti, Lucia Martini, Matilde Tschon, Milena Fini, Gina Lisignoli
Osteoarthritis implies a progressive degeneration of the whole joint. Cartilage is particularly affected, with in ammation playing a pivotal role1. In recent years, cartilage regeneration has been pursued through several bioengineering strategies and using different stem cell types2-6. Adipose-derived mesenchymal stromal cells (ASCs) constitute an intriguing and minimally invasive option. However, the use of ASCs for cartilage regeneration is hampered by a relatively ine cient expression of key chondrogenic markers7. Thus, new strategies to boost both in situ targeting and chondrogenesis of ASCs are highly desirable. Here we show that ASCs embedded in a nanocomposite hydrogel including piezoelectric nanomaterials and graphene oxide nano akes, and stimulated with ultrasound waves with precisely controlled parameters (1 MHz and 250 mW/cm2, for 5 min once every two days for a period of 10 days) dramatically boost cell chondrogenic commitment. Furthermore, this stimulation regimen also has a considerable anti-in ammatory effect. The proposed nanocomposite hydrogel also shows excellent biocompatibility in vivo. Our results show for the rst time the chondrogenic potential of the combined piezoelectric nanoparticle-ultrasound stimulus; the proposed paradigm has the potential to trigger cartilage regeneration in osteoarthritis, focal cartilage defects and other pathological conditions involving cartilage lesions and degeneration. Future efforts should expand preclinical data, and target clinical applications of this therapeutic strategy.
Show moreNov 2022 • The Journal of Physical Chemistry C
Bharathi Rajeswaran, Rajashree Konar, Sriram Guddala, Tali Sharabani, Eti Teblum, Yaakov Raphael Tischler, Gilbert Daniel Nessim
Low-wavenumber Raman (LWR) spectroscopy determines signatures in structural information and layer-to-layer dependency of transition metal dichalcogenides (TMDCs). It supports proper 2D TMDC analysis and subsequent layer verification. The nondestructive nature and ultrafast detection make LWR measurements imperative for layer variations and defect investigations. Interference-enhanced Raman scattering utilizes a metal–dielectric layer to enhance the Raman signal. This has been used to study graphene, C60, and Te. Here, we investigate using Al/Al2O3 coatings to enhance the LWR scattering of different 2H-WS2 layers and understand the structures of these large-area nanosheets. Phase-pure WS2 is synthesized by CVD, and the layers are exfoliated via ultrasonication at 80 kHz. Layers were drop-casted on Al/Al2O3 coatings of different thicknesses of Al2O3 to study differences in bilayers up to a …
Show moreNov 2022 • The Journal of Physical Chemistry C
Bharathi Rajeswaran, Rajashree Konar, Sriram Guddala, Tali Sharabani, Eti Teblum, Yaakov Raphael Tischler, Gilbert Daniel Nessim
Nov 2022 • arXiv e-prints
Subhajit Sarkar, Seif Alwan, Amos Sharoni, Yonatan Dubi
We detail here some matters arising from the recent paper by Qin et al., Nature 606, pages902–908 (2022). We demonstrate, based on data supplied by Qian et al, and corroborated by theoretical modeling, that one of the central conclusions of the manuscript–namely the behavior of the chiralityinduced spin-selectivity (CISS) effect at low temperatures–can actually be consistently interpreted in a different way, which is in fact opposite to the interpretation proposed by Qian et al.In a recent paper Qian, et al.,[1] demonstrate chiral molecular intercalation superlattices (CMIS) as a new class of solid-state chiral material platform for exploring chirality induced spin selectivity effect (CISS). Notably, they demonstrate state-of-the-art technique for fabricating well-defined, stable and robust chiral devices with the potential to serve as spintronic devices. Specifically, Qian et al. show that CMIS can be used to accurately characterize the CISS effect and explore its dependence on temperature, and other material properties. They show a very high degree of polarization of the spincurrent P (T), that monotonically decreases with increasing temperature, and the average conductance GSI (T)
Show moreNov 2022 • The Journal of Physical Chemistry C
Shira Gigi, Tom Naor, Nir Waiskopf, David Stone, Michal Natan, Gila Jacobi, Adar Levi, Sergei Remennik, Yael Levi-Kalisman, Ehud Banin, Uri Banin