May 2024 • Carbon
Alisa Kozhushner, Oran Lori, David A Cullen, Hilah C Honig, Yeela Persky, Leigh Peles-Strahl, Qing Li, Lior Elbaz
Carbonaceous materials are the most common catalyst supports in proton exchange membrane fuel cell (PEMFCs), yet their corrosion is one of the limiting factors in achieving high durability. Herein, we doped carbon supports with boron (B) to increase the corrosion-resistance of the support. Two types of B-doped carbons were synthesized and studied as platinum support materials. They varied in their morphologies, surface areas, and the types of boron species. The durability of Pt/B-doped carbon catalysts was investigated using the US-DOE catalysts’ supports accelerated stress test (AST) and a mass-spectrometer connected to the fuel cell effluent stream to quantify the mass of corroded carbon support in operando. The addition of boron to the carbon increased the stability of Pt catalysts in long-term usage of PEMFC. After 4,000 AST cycles, more than 50% of initial current density was preserved for the boron …
Show moreMay 2024 • Optica Publishing Group
Tomer Bucher, Harel Nahari, Hanan Herzig Sheinfux, Ron Ruimy, Arthur Niedermayr, Raphael Dahan, Qinghui Yan, Yuval Adiv, Michael Yannai, Jialin Chen, Yaniv Kurman, Sang Tae Park, Daniel J Masiel, Eli Janzen, James H Edgar, Fabrizio Carbone, Guy Bartal, Shai Tsesses, Frank HL Koppens, Giovanni Maria Vanacore, Ido Kaminer
We present free-electron imaging of sub-cycle spatio-temporal dynamics of 2D polariton wavepackets, demonstrating the first simultaneous time-, space-, and phase-resolved measurement of such phenomena, and resolving their novel features like vortex-anti-vortex singularities for record-low intensities.
Show moreMay 2024 • Angewandte Chemie International Edition
Renana Schwartz, Shani Zev, Dan T Major
Terpene synthases (TPSs) catalyze the first step in the formation of terpenoids, which comprise the largest class of natural products in nature. TPSs employ a family of universal natural substrates, composed of isoprenoid units bound to a diphosphate moiety. The intricate structures generated by TPSs are the result of substrate binding and folding in the active site, enzyme‐controlled carbocation reaction cascades, and final reaction quenching. A key unaddressed question in class I TPSs is the asymmetric nature of the diphosphate‐(Mg2+)3 cluster, which forms a critical part of the active site. In this asymmetric ion cluster, two diphosphate oxygen atoms protrude into the active site pocket. The substrate hydrocarbon tail, which is eventually molded into terpenes, can bind to either of these oxygen atoms, yet to which is unknown. Herein, we employ structural, bioinformatics, and EnzyDock docking tools to address this …
Show moreMay 2024 • arXiv preprint arXiv:2405.02036
TR Devidas, Jonathan T Reichanadter, Shannon C Haley, Matan Sterenberg, Joel E Moore, Jeffrey B Neaton, James G Analytis, Beena Kalisky, Eran Maniv
Materials that transition between metal and insulator, the two opposing states that distinguish all solids, are fascinating because they underlie many mysteries in the physics of the solid state. In 1T-TaS, the metal-insulator transition is linked to a series of metastable states of a chiral charge density wave whose basic nature is still an open question. In this work, we show that pulses of current through these materials create current-carrying boundary channels that distinguish the metallic and insulating states. We demonstrate electrical control of these channels' properties, suggesting their formation could be due to the complex interplay of the formation of domain walls and the viscous flow of electrons. Our findings show that physical boundaries play a key role in the properties of the metastable states of the metal-insulator transition, highlighting new possibilities for in-situ electrical design and active manipulation of electrical components.
Show moreMay 2024 • Langmuir
Adan Marzouq, Lion Morgenstein, Carlos A Huang-Zhu, Shimon Yudovich, Ayelet Atkins, Asaf Grupi, Reid C Van Lehn, Shimon Weiss
Insertion of hydrophobic nanoparticles into phospholipid bilayers is limited to small particles that can incorporate into a hydrophobic membrane core between two lipid leaflets. Incorporation of nanoparticles above this size limit requires the development of challenging surface engineering methodologies. In principle, increasing the long-chain lipid component in the lipid mixture should facilitate incorporation of larger nanoparticles. Here, we explore the effect of incorporating very long phospholipids (C24:1) into small unilamellar vesicles on the membrane insertion efficiency of hydrophobic nanoparticles that are 5–11 nm in diameter. To this end, we improve an existing vesicle preparation protocol and utilized cryogenic electron microscopy imaging to examine the mode of interaction and evaluate the insertion efficiency of membrane-inserted nanoparticles. We also perform classical coarse-grained molecular …
Show moreMay 2024 • arXiv preprint arXiv:2305.12468
A Ben Yehuda, O Sefi, Y Klein, RH Shukrun, H Schwartz, E Cohen, S Shwartz
X-ray imaging is a prevalent technique for non-invasively visualizing the interior of the human body and opaque instruments. In most commercial x-ray modalities, an image is formed by measuring the x-rays that pass through the object of interest. However, despite the potential of scattered radiation to provide additional information about the object, it is often disregarded due to its inherent tendency to cause blurring. Consequently, conventional imaging modalities do not measure or utilize these valuable data. In contrast, we propose and experimentally demonstrate a high-resolution technique for x-ray computed tomography (CT) that measures scattered radiation by exploiting computational ghost imaging (CGI). We show that our method can provide sub-200 {\mu}m resolution, exceeding the capabilities of most existing x-ray imaging modalities. Our research reveals a promising technique for incorporating scattered radiation data in CT scans to improve image resolution and minimize radiation exposure for patients. The findings of our study suggest that our technique could represent a significant advancement in the fields of medical and industrial imaging, with the potential to enhance the accuracy and safety of diagnostic imaging procedures.
Show moreMay 2024 • arXiv preprint arXiv:2405.21041
Santiago Hernández-Gómez, Takuya Isogawa, Alessio Belenchia, Amikam Levy, Nicole Fabbri, Stefano Gherardini, Paola Cappellaro
The Kirkwood-Dirac quasiprobability distribution emerges from the quantum correlation function of two observables measured at distinct times and is therefore relevant for fundamental physics and quantum technologies. These quasiprobabilities follow all but one of Kolmogorov axioms for joint probability distributions: they can take non-positive values. Their experimental reconstruction becomes challenging when expectation values of incompatible observables are involved. Previous strategies aimed to reconstruct them using weak measurements or combining strong measurements. Here, we use a more direct approach, an interferometric scheme aided by an auxiliary system, to reconstruct the Kirkwood-Dirac quasiprobability distribution. We experimentally demonstrate the interferometric scheme in an electron-nuclear spin system associated with a nitrogen-vacancy center in diamond. By measuring the characteristic function, we reconstruct the quasiprobability distribution of the work and analyze the behavior of the first and second moments of work. Our results clarify the physical meaning of the work quasiprobability distribution in the context of quantum thermodynamics. Finally, having measured the real and imaginary parts of the Kirkwood-Dirac quasiprobability of work, we are also able to study the uncertainty of measuring the Hamiltonian of the system at two times, via the Robertson-Schr{\"o}dinger uncertainty relation, for different initial states.
Show moreMay 2024 • Optica Publishing Group
Y Klein, E Strizhevsky, H Aknin, M Deutsch, E Cohen, A Peer, K Tamasaku, T Schulli, E Karimi, S Shwartz
We demonstrate the pioneering use of a quantum interferometer with x-rays, highlighting its effectiveness in precisely measuring the phase accumulated in opaque media. Our work uncovers novel opportunities for measuring sub-Angstrom optical-path differences.
Show moreApr 2024 • arXiv preprint arXiv:2404.05013
Richard Berkovits
The Anderson localization transition in quantum graphs has garnered significant recent attention due to its relevance to many-body localization studies. Typically, graphs are constructed using top-down methods. Here, we explore a bottom-up approach, employing a simple local rewriting rule to construct the graph. Through the use of ratio statistics for the energy spectrum and Kullback-Leibler divergence correlations for the eigenstates, numerical analysis demonstrates that slight adjustments to the rewriting rule can induce a transition from a localized to an extended quantum phase. This extended state exhibits non-ergodic behavior, akin to the non-ergodic extended phase observed in the Porter-Rosenzweig model and suggested for many-body localization. Thus, by adapting straightforward local rewriting rules, it becomes feasible to assemble complex graphs from which desired global quantum phases emerge. This approach holds promise for numerical investigations and could be implemented in building optical realizations of complex networks using optical fibers and beam splitters.
Show moreApr 2024 • Angewandte Chemie International Edition
Zijie Lin, Nadaraj Sathishkumar, Yu Xia, Shenzhou Li, Xuan Liu, Jialun Mao, Hao Shi, Gang Lu, Tanyuan Wang, Hsing-Lin Wang, Yunhui Huang, Lior Elbaz, Qing Li
Developing efficient and anti‐corrosive oxygen reduction reaction (ORR) catalysts is of great importance for the applications of proton exchange membrane fuel cells (PEMFCs). Herein, we report a novel approach to prepare metal oxides‐supported intermetallic Pt alloy nanoparticles (NPs) via the reactive metal‐support interaction (RMSI) as ORR catalysts, using Ni‐doped cubic ZrO2 (Ni/ZrO2) supported L10‐PtNi NPs as a proof of concept. Benefiting from the Ni migration during RMSI, the oxygen vacancy concentration in the support is increased, leading to an electron enrichment of Pt. The optimal L10‐PtNi‐Ni/ZrO2‐RMSI catalyst achieves remarkably low mass activity (MA) loss (17.8%) after 400,000 accelerated durability test cycles in a half‐cell and exceptional PEMFC performance (MA = 0.76 A mgPt−1 at 0.9 V, peak power density = 1.52/0.92 W cm−2 in H2‐O2/‐air, and 18.4% MA decay after 30,000 …
Show moreApr 2024 • BMC medicine
Oryan Agranyoni, Debpali Sur, Sivan Amidror, Nuphar Shidlovsky, Anastasia Bagaev, Nissan Yissachar, Albert Pinhasov, Shiri Navon-Venezia
BackgroundThe exact mechanisms linking the gut microbiota and social behavior are still under investigation. We aimed to explore the role of the gut microbiota in shaping social behavior deficits using selectively bred mice possessing dominant (Dom) or submissive (Sub) behavior features. Sub mice exhibit asocial, depressive- and anxiety-like behaviors, as well as systemic inflammation, all of which are shaped by their impaired gut microbiota composition.MethodsAn age-dependent comparative analysis of the gut microbiota composition of Dom and Sub mice was performed using 16S rRNA sequencing, from early infancy to adulthood. Dom and Sub gastrointestinal (GI) tract anatomy, function, and immune profiling analyses were performed using histology, RT-PCR, flow cytometry, cytokine array, and dextran-FITC permeability assays. Short chain fatty acids (SCFA) levels in the colons of Dom and Sub mice were …
Show moreApr 2024 • Angewandte Chemie International Edition
Xu Yang, Zhiqiang Fu, Ran Han, Yaojie Lei, Shijian Wang, Xin Zhao, Yuefeng Meng, Hao Liu, Dong Zhou, Doron Aurbach, Guoxiu Wang
The high energy density and cost‐effectiveness of chloride‐ion batteries (CIBs) make them promising alternatives to lithium‐ion batteries. However, the development of CIBs is greatly restricted by the lack of compatible electrolytes to support cost‐effective anodes. Herein, we present a rationally designed solid polycationic electrolyte (SPE) to enable room‐temperature chloride‐ion batteries utilizing aluminum (Al) metal as an anode. This SPE endows the CIB configuration with improved air stability and safety (i.e. free of flammability and liquid leakage). A high ionic conductivity (1.3×10−2 S cm−1 at 25 °C) has been achieved by the well‐tailored solvation structure of the SPE. Meanwhile, the solid polycationic electrolyte ensures stable electrodes|electrolyte interfaces, which effectively inhibit the growth of dendrites on the Al anodes and degradation of the FeOCl cathodes. The Al|SPE|FeOCl chloride‐ion batteries …
Show moreApr 2024 • Cancer Research
Rona Merdler-Rabinowicz, Ariel Dadush, Sumeet Patiyal, Padma Sheila Rajagopal, Gulzar Daya, Alejandro Schäffer, Eli Eisenberg, Eytan Ruppin, Erez Y Levanon
Base editing encompasses techniques that efficiently alter specific nucleotides at the DNA or RNA level. Initially explored for inherited diseases, these techniques hold promise for addressing various genetically driven disorders caused by single nucleotide variants (SNVs). The precise programmability of base editors (BEs) for specific sequences allows customization for rare genetic variants, tailoring them to individual patients within affordability and delivery constraints. Cancer stems from the accumulation of mutations. However, the relevance of BEs in cancer therapy is doubted due to the limited types of mutations they can address within tumors. Yet, their untapped potential in the realm of cancer treatment invites exploration. BEs utilize a modified form of a deaminase enzyme to catalyze the conversion of one nucleotide to another by removing an amino group. A 'classic' BE consists of a deaminase, a Cas …
Show moreApr 2024 • Proceedings of 24th International Conference on Solid State Ionics (SSI24), 2024
Angus Pedersen, Rifael Snitkoff-Sol, Yan Yurko, Jesús Barrio, Rongsheng Cai, Theo Suter, Guangmeimei Yang, Sarah Haigh, Dan Brett, Rhodri Jervis, Magda Titirici, Ifan Stephens, Lior Elbaz
The next generation of proton exchange membrane fuel cells (PEMFCs) require a substantial reduction or elimination of Pt-based electrocatalyst from the cathode,[1],[2] where O 2 reduction takes place. The most promising alternative to Pt is atomic Fe embedded in N-doped C (Fe-NC). Successful incorporation of Fe-NC in PEMFCs relies on a thorough understanding of the catalyst layer properties, both ex situ and in situ, with tailored electrode interface engineering.[3] Here, it is demonstrated that a previously developed high pore volume Fe-NC [4] requires a sufficiently high ionomer to catalyst mass ratio (I/C, 2.8≤ I/C≤ 4.2) for optimum PEMFC performance under H 2/O 2. Advanced in situ electrochemical techniques (distribution of relaxation times [5] and Fourier transform alternating current voltammetry [6]) were used to deconvolute for the first time the trade-off between proton and electron resistance and in situ …
Show moreApr 2024 • arXiv preprint arXiv:2404.12381
CJ Xin, Shengyuan Lu, Jiayu Yang, Amirhassan Shams-Ansari, Boris Desiatov, Letícia S Magalhães, Soumya S Ghosh, Erin McGee, Dylan Renaud, Nicholas Achuthan, Arseniy Zvyagintsev, David Barton III, Neil Sinclair, Marko Lončar
Recent advancements in thin-film lithium niobate (TFLN) photonics have led to a new generation of high-performance electro-optic devices, including modulators, frequency combs, and microwave-to-optical transducers. However, the broader adoption of TFLN-based devices that rely on all-optical nonlinearities have been limited by the sensitivity of quasi-phase matching (QPM), realized via ferroelectric poling, to fabrication tolerances. Here, we propose a scalable fabrication process aimed at improving the wavelength-accuracy of optical frequency mixers in TFLN. In contrast to the conventional pole-before-etch approach, we first define the waveguide in TFLN and then perform ferroelectric poling. This sequence allows for precise metrology before and after waveguide definition to fully capture the geometry imperfections. Systematic errors can also be calibrated by measuring a subset of devices to fine-tune the QPM design for remaining devices on the wafer. Using this method, we fabricated a large number of second harmonic generation devices aimed at generating 737 nm light, with 73% operating within 5 nm of the target wavelength. Furthermore, we also demonstrate thermo-optic tuning and trimming of the devices via cladding deposition, with the former bringing ~96% of tested devices to the target wavelength. Our technique enables the rapid growth of integrated quantum frequency converters, photon pair sources, and optical parametric amplifiers, thus facilitating the integration of TFLN-based nonlinear frequency mixers into more complex and functional photonic systems.
Show moreApr 2024 • Journal of Energy Storage
Sankalpita Chakrabarty, Tali Sharabani, Sarah Taragin, Reut Yemini, Ananya Maddegalla, Ilana Perelshtein, Ayan Mukherjee, Malachi Noked
Phosphate-based materials [e.g. Na3V2(PO4)2F3-2xO2x; (NVPFO2x;0 < x < 1)] are regarded as a promising intercalation cathodes for Sodium-ion batteries (SIBs) due to their high reversible specific capacity and stability. However, so far only 2 Na ion were demonstrated to be active in these polyanionic cathodes, which limit their capacity. Herein we provide a strategic approach towards electrochemical activation of a 3rd Na ion, which leads to higher capacity, and preserves structural integrity. We synthesize and study a series of NVPFO2x (0 < x < 1) with well-controlled surface morphology and vanadium oxidation state, and study the dependence of the electrochemical behavior on the various composition and morphology. The optimized NVPFO cathode exhibited highest initial specific discharge capacity (131 mA h g−1) indicating the activation of 3rd Na ion. Nevertheless, the material suffers rapid capacity fading …
Show moreApr 2024 • The Journal of Physical Chemistry C
Seif Alwan, Amos Sharoni, Yonatan Dubi
The electron transport manifestation of the chirality-induced spin-selectivity (CISS) effect is observed in metal-molecule-ferromagnet junctions, where the total current is different when the ferromagnet is magnetized parallel or antiparallel to the molecular chirality axis. Here, we discuss the relation between this appearance of the CISS effect and spin polarization of the ferromagnetic electrode. We show analytically that the experimental results indicate that the origin of the CISS effect must involve some interaction mechanism (as opposed to noninteracting electronic effects), since the observed CISS polarization can be much larger than the ferromagnetic electrode spin-polarization. Specifically, we show that a noninteracting single-level model cannot reproduce experimental data even if the molecular spin-filtering is perfect, and on the other hand, that the recently suggested spinterface mechanism for the CISS effect …
Show moreApr 2024 • Materials Today Chemistry
Elisheva Sasson, Eyal Malka, Ayelet Caspi, Naftali Kanovsky, Shlomo Margel
With world population on the rise, animal food source production has significantly increased. Susceptibility of hay and other sources to molds poses a serious threat to food quality and safety. This study proposes an innovative approach to address this issue – an anti-mold fungicide comprising thymol bound on silica urea thin coating of polypropylene fabrics. The coating enhances the thermal stability of thymol allowing prolonged release. Coating composition and morphology as well as thermal stability and release rates were investigated. The coating provided efficient protection against mold growth with no side effects on hay exposed to thymol fumes. The results underscore the potential of this fungicide as a safe and effective hay preservative.
Show moreApr 2024 • Journal of Energy Storage
Sankalpita Chakrabarty, Tali Sharabani, Sarah Taragin, Reut Yemini, Ananya Maddegalla, Ilana Perelshtein, Ayan Mukherjee, Malachi Noked
Phosphate-based materials [e.g. Na3V2(PO4)2F3-2xO2x; (NVPFO2x;0 < x < 1)] are regarded as a promising intercalation cathodes for Sodium-ion batteries (SIBs) due to their high reversible specific capacity and stability. However, so far only 2 Na ion were demonstrated to be active in these polyanionic cathodes, which limit their capacity. Herein we provide a strategic approach towards electrochemical activation of a 3rd Na ion, which leads to higher capacity, and preserves structural integrity. We synthesize and study a series of NVPFO2x (0 < x < 1) with well-controlled surface morphology and vanadium oxidation state, and study the dependence of the electrochemical behavior on the various composition and morphology. The optimized NVPFO cathode exhibited highest initial specific discharge capacity (131 mA h g−1) indicating the activation of 3rd Na ion. Nevertheless, the material suffers rapid capacity fading …
Show moreApr 2024 • Heliyon
Shira Zelikman, Reut Dudkevich, Hadar Korenfeld-Tzemach, Esther Shmidov, Mor Levi-Ferber, Sivan Shoshani, Shay Ben-Aroya, Sivan Henis-Korenblit, Ehud Banin
Pseudomonas aeruginosa is one of the leading nosocomial opportunistic pathogens causing acute and chronic infections. Among its main virulent factors is the Type III secretion system (T3SS) which enhances disease severity by delivering effectors to the host in a highly regulated manner. Despite its importance for virulence, only six T3SS-dependent effectors have been discovered so far. Previously, we identified two new potential effectors using a machine-learning algorithm approach. Here we demonstrate that one of these effectors, PemB, is indeed virulent. Using a live Caenorhabditis elegans infection model, we demonstrate this effector damages the integrity of the intestine barrier leading to the death of the host. Implementing a high-throughput assay using Saccharomyces cerevisiae, we identified several candidate proteins that interact with PemB. One of them, EFT1, has an ortholog in C. elegans (eef-2 …
Show moreApr 2024 • Energy Storage Materials
Abhinanda Sengupta, Ajit Kumar, Amreen Bano, Aakash Ahuja, Harshita Lohani, Sri Harsha Akella, Pratima Kumari, Malachi Noked, Dan T Major, Sagar Mitra
A synergistic stabilization effect in a Nb-doped P2-type single crystal cobalt-free layered oxide cathode material, offering remarkable cycling stability and high-power performance for Na-ion batteries have unveiled in this study. The introduction of Nb in the transition metal layer not only reduces the electronic band gap but also enhances electronic conductivity and mitigates ionic diffusion energy barriers. The induction of a robust Nb-O bond expedites electron and Na+ transfer, contributing to the stabilization of the host structure is further confirmed through the density functional theory calculations, including electron localization function (ELF) and crystal orbital Hamiltonian population (COHP). To the best of our knowledge, this study is the first to demonstrate a homogeneous distribution of niobium throughout the single crystal, specifically doped at the nickel site within the bulk, without inducing atomic-scale surface …
Show more