BINA

4462 articles

77 publishers

Join mailing list

Oct 2024 • Nature Nanotechnology

Deep subwavelength topological edge state in a hyperbolic medium

Lorenzo Orsini, Hanan Herzig Sheinfux, Yandong Li, Seojoo Lee, Gian Marcello Andolina, Orazio Scarlatella, Matteo Ceccanti, Karuppasamy Soundarapandian, Eli Janzen, James H Edgar, Gennady Shvets, Frank HL Koppens

Topological photonics offers the opportunity to control light propagation in a way that is robust from fabrication disorders and imperfections. However, experimental demonstrations have remained on the order of the vacuum wavelength. Theoretical proposals have shown topological edge states that can propagate robustly while embracing deep subwavelength confinement that defies diffraction limits. Here we show the experimental proof of these deep subwavelength topological edge states by implementing periodic modulation of hyperbolic phonon polaritons within a van der Waals heterostructure composed of isotopically pure hexagonal boron nitride flakes on patterned gold films. The topological edge state is confined in a subdiffraction volume of 0.021 µm3, which is four orders of magnitude smaller than the free-space excitation wavelength volume used to probe the system, while maintaining the resonance …

Show more

Oct 2024 • Active Photonic Platforms (APP) 2024 13110, 1311002, 2024

Dynamics of optical vortices in Van der Waals materials

T Bucher, Y Kurman, K Wang, Q Yan, A Niedermayr, R Ruimy, H Nahari, R Dahan, H Herzig Sheinfux, GM Vanacore, I Kaminer

Recent advancements in ultrafast electron microscopy have provided direct access to polariton dynamics, visualizing such dynamics in space and time. This work presents new experimental results revealing a myriad of phenomena involving interactions of vortex-anti-vortex pairs, their creation and annihilation. We show new behaviors that became accessible thanks to a new development in electron microscopy - Free-Electron Ramsey Imaging (FERI) - which enabled extracting both the sub-cycle and group dynamics of polariton wavepackets. Our demonstrations involve optical phonon-polaritons in hexagonal boron nitride (hBN) and Molybdenum oxide, renowned for their unique dispersion and novel wavepacket propagations behaviors. These discoveries not only enhance our understanding of vortex phenomena across various systems, but also offer promising avenues for accessing new kinds of light-matter …

Show more

Oct 2024 • arXiv preprint arXiv:2310.02644

Deep subwavelength topological edge state in a hyperbolic medium

Lorenzo Orsini, Hanan Herzig Sheinfux, Yandong Li, Seojoo Lee, Gian Marcello Andolina, Orazio Scarlatella, Matteo Ceccanti, Karuppasamy Soundarapandian, Eli Janzen, James H Edgar, Gennady Shvets, Frank HL Koppens

Topological nanophotonics presents the potential for cutting-edge photonic systems, with a core aim revolving around the emergence of topological edge states. These states are primed to propagate robustly while embracing deep subwavelength confinement that defies diffraction limits. Such attributes make them particularly appealing for nanoscale applications, where achieving these elusive states has remained challenging. We unveil the first experimental proof of deep subwavelength topological edge states by implementing periodic modulation of hyperbolic phonon polaritons within a Van der Waals heterostructure. This finding represents a significant milestone in the field of nanophotonics, and it can be directly extended to and hybridized with other Van der Waals materials in various applications. The extensive scope for material substitution facilitates broadened operational frequency ranges, streamlined integration of diverse polaritonic materials, and compatibility with electronic and excitonic systems.

Show more

Oct 2024 • Journal of Magnesium and Alloys, 2024

Magnesium alloys as alternative anode materials for rechargeable magnesium-ion batteries: Review on the alloying phase and reaction mechanisms

Dedy Setiawan, Hyeonjun Lee, Jangwook Pyun, Amey Nimkar, Netanel Shpigel, Daniel Sharon, Seung-Tae Hong, Doron Aurbach, Munseok S Chae

Magnesium-ion batteries (MIBs) are promising candidates for lithium-ion batteries because of their abundance, non-toxicity, and favorable electrochemical properties. This review explores the reaction mechanisms and electrochemical characteristics of Mg-alloy anode materials. While Mg metal anodes provide high volumetric capacity and dendrite-free electrodeposition, their practical application is hindered by challenges such as sluggish Mg²⁺ ion diffusion and electrolyte compatibility. Alloy-type anodes that incorporate groups XIII, XIV, and XV elements have the potential to overcome these limitations. We review various Mg alloys, emphasizing their alloying/dealloying reaction mechanisms, their theoretical capacities, and the practical aspects of MIBs. Furthermore, we discuss the influence of the electrolyte composition on the reversibility and efficiency of these alloy anodes. Emphasis is placed on overcoming …

Show more

Oct 2024 • Nature nanotechnology

High-energy all-solid-state lithium batteries enabled by Co-free LiNiO2 cathodes with robust outside-in structures

Longlong Wang, Ayan Mukherjee, Chang-Yang Kuo, Sankalpita Chakrabarty, Reut Yemini, Arrelaine A Dameron, Jaime W DuMont, Sri Harsha Akella, Arka Saha, Sarah Taragin, Hagit Aviv, Doron Naveh, Daniel Sharon, Ting-Shan Chan, Hong-Ji Lin, Jyh-Fu Lee, Chien-Te Chen, Boyang Liu, Xiangwen Gao, Suddhasatwa Basu, Zhiwei Hu, Doron Aurbach, Peter G Bruce, Malachi Noked

A critical current challenge in the development of all-solid-state lithium batteries (ASSLBs) is reducing the cost of fabrication without compromising the performance. Here we report a sulfide ASSLB based on a high-energy, Co-free LiNiO2 cathode with a robust outside-in structure. This promising cathode is enabled by the high-pressure O2 synthesis and subsequent atomic layer deposition of a unique ultrathin LixAlyZnzOδ protective layer comprising a LixAlyZnzOδ surface coating region and an Al and Zn near-surface doping region. This high-quality artificial interphase enhances the structural stability and interfacial dynamics of the cathode as it mitigates the contact loss and continuous side reactions at the cathode/solid electrolyte interface. As a result, our ASSLBs exhibit a high areal capacity (4.65 mAh cm−2), a high specific cathode capacity (203 mAh g−1), superior cycling stability (92% capacity retention …

Show more

Oct 2024 • PRiME 2024 (October 6-11, 2024), 2024

(Invited) Aerogel-Based 3D NixFeyMzOq Frameworks for the Electrocatalysis of the Oxygen Evolution Reaction in Anion Exchange Membrane Water Electrolyzers

Lior Elbaz, Masahiro Yasutake


Oct 2024 • bioRxiv

Resolving haplotype variation and complex genetic architecture in the human immunoglobulin kappa chain locus in individuals of diverse ancestry

Eric Engelbrecht, Oscar L Rodriguez, Kaitlyn Shields, Steven Schulze, David Tieri, Uddalok Jana, Gur Yaari, William Lees, Melissa L Smith, Corey T Watson

Immunoglobulins (IGs), critical components of the human immune system, are composed of heavy and light protein chains encoded at three genomic loci. The IG Kappa (IGK) chain locus consists of two large, inverted segmental duplications. The complexity of IG loci has hindered effective use of standard high-throughput methods for characterizing genetic variation within these regions. To overcome these limitations, we leverage long-read sequencing to create haplotype-resolved IGK assemblies in an ancestrally diverse cohort (n=36), representing the first comprehensive description of IGK haplotype variation at population-scale. We identify extensive locus polymorphism, including novel single nucleotide variants (SNVs) and a common novel ~24.7 Kbp structural variant harboring a functional IGKV gene. Among 47 functional IGKV genes, we identify 141 alleles, 64 (45.4%) of which were not previously curated. We report inter-population differences in allele frequencies for 14 of the IGKV genes, including alleles unique to specific populations within this dataset. Finally, we identify haplotypes carrying signatures of gene conversion that associate with enrichment of SNVs in the IGK distal region. These data provide a critical resource of curated genomic reference information from diverse ancestries, laying a foundation for advancing our understanding of population-level genetic variation in the IGK locus.

Show more

Oct 2024 • Optics Express

Addressing broadening challenges in m-plane GaN two-well terahertz quantum cascade laser

Shiran Levy, Nathalie Lander Gower, Silvia Piperno, Asaf Albo

In this study, we address the challenges that result from line broadening on m-plane GaN terahertz quantum cascade lasers (THz QCLs). While past research has highlighted the difficulty of line broadening in GaN THz QCLs, our work varies from previous studies in that it questions the primary impact attributed to the strong longitudinal-optical (LO) phonon coupling. We investigate carrier transport in an m-plane GaN two-well (TW) THz QCL, using non-equilibrium Green's functions (NEGF) to quantify gain while accounting for correlation effects in level broadening. Our study reveals that LO-phonon is not the primary contributor to line broadening at relatively high doping levels in our model. Moreover, despite the observed substantial broadening, increasing the doping density by an order of magnitude over the value of GaAs-based THz QCLs leads to a substantial gain rise. These results suggest the feasibility of …

Show more

Oct 2024 • Cells

Structure–Function Correlation in Cobalt-Induced Brain Toxicity

Basel Obied, Stephen Richard, Alon Zahavi, Dror Fixler, Olga Girshevitz, Nitza Goldenberg-Cohen

Cobalt toxicity is difficult to detect and therefore often underdiagnosed. The aim of this study was to explore the pathophysiology of cobalt-induced oxidative stress in the brain and its impact on structure and function. Thirty-five wild-type C57B16 mice received intraperitoneal cobalt chloride injections: a single high dose with evaluations at 24, 48, and 72 h (n = 5, each) or daily low doses for 28 (n = 5) or 56 days (n = 15). A part of the 56-day group also received minocycline (n = 5), while 10 mice served as controls. Behavioral changes were evaluated, and cobalt levels in tissues were measured with particle-induced X-ray emission. Brain sections underwent magnetic resonance imaging (MRI), electron microscopy, and histological, immunohistochemical, and molecular analyses. High-dose cobalt caused transient illness, whereas chronic daily low-dose administration led to long-term elevations in cobalt levels …

Show more

Oct 2024 • ACS Energy Letters

π-Electron-Assisted Charge Storage in Fused-Ring Aromatic Carbonyl Electrodes for Aqueous Manganese-Ion Batteries

Hyungjin Lee, Amey Nimkar, Netanel Shpigel, Daniel Sharon, Seung-Tae Hong, Doron Aurbach, Munseok S Chae

Rechargeable manganese batteries hold promise for large-scale energy storage due to the abundance and eco-friendly nature of manganese. A key challenge is developing cathode materials capable of reversibly inserting Mn ions with a high specific capacity. Here, we demonstrate that perylene-3,4,9,10-tetracarboxylic dianhydride electrodes efficiently and reversibly insert Mn2+ ions in 3 M MnCl2 aqueous electrolyte solutions. Leveraging the carbonyl groups and the π-electron configuration, such compounds can serve as robust redox centers, facilitating reversible interactions with divalent ions such as Mn2+. Through comprehensive studies involving electrochemistry, elemental analyses, spectroscopy, and structural analysis, we explored these systems and found them as promising anode materials for Mn batteries. Demonstrating excellent Mn storage capabilities, such molecules could attain a reversible …

Show more

Oct 2024 • 244th ECS Meeting (October 8-12, 2023)

A Scalable Approach to Synthesize Cobalt-Free LNMO Cathode Materials for High Energy Density Lithium Ion Batteries

Tao Hu, Yan Lin, Pekka Tynjälä, Shubo Wang, Gayathri Peta, Harishchandra Singh, Doron Aurbach, Ulla Lassi


Oct 2024 • mBio

A molecular comparison of [Fe-S] cluster-based homeostasis in Escherichia coli and Pseudomonas aeruginosa

Alessandra Lo Sciuto, Francesca D'Angelo, Maria Concetta Spinnato, Pierre Simon Garcia, Shirley Genah, Cervoni Matteo, Emmanuel Séchet, Ehud Banin, Frédéric Barras, Francesco Imperi

Iron-sulfur [Fe-S] clusters are essential protein cofactors allowing bacteria to perceive environmental redox modification and to adapt to iron limitation. Escherichia coli, which served as a bacterial model, contains two [Fe-S] cluster biogenesis systems, ISC and SUF, which ensure [Fe-S] cluster synthesis under balanced and stress conditions, respectively. However, our recent phylogenomic analyses revealed that most bacteria possess only one [Fe-S] cluster biogenesis system, most often SUF. The opportunist human pathogen Pseudomonas aeruginosa is atypical as it harbors only ISC. Here, we confirmed the essentiality of ISC in P. aeruginosa under both normal and stress conditions. Moreover, P. aeruginosa ISC restored viability, under balanced growth conditions, to an E. coli strain lacking both ISC and SUF. Reciprocally, the E. coli SUF system sustained growth and [Fe-S] cluster-dependent enzyme activities of …

Show more

Oct 2024 • Nature Medicine

A multi-modal single-cell and spatial expression map of metastatic breast cancer biopsies across clinicopathological features

Johanna Klughammer, Daniel L Abravanel, Åsa Segerstolpe, Timothy R Blosser, Yury Goltsev, Yi Cui, Daniel R Goodwin, Anubhav Sinha, Orr Ashenberg, Michal Slyper, Sébastien Vigneau, Judit Jané‐Valbuena, Shahar Alon, Chiara Caraccio, Judy Chen, Ofir Cohen, Nicole Cullen, Laura K DelloStritto, Danielle Dionne, Janet Files, Allison Frangieh, Karla Helvie, Melissa E Hughes, Stephanie Inga, Abhay Kanodia, Ana Lako, Colin MacKichan, Simon Mages, Noa Moriel, Evan Murray, Sara Napolitano, Kyleen Nguyen, Mor Nitzan, Rebecca Ortiz, Miraj Patel, Kathleen L Pfaff, Caroline Porter, Asaf Rotem, Sarah Strauss, Robert Strasser, Aaron R Thorner, Madison Turner, Isaac Wakiro, Julia Waldman, Jingyi Wu, Jorge Gómez Tejeda Zañudo, Diane Zhang, Nancy U Lin, Sara M Tolaney, Eric P Winer, Edward S Boyden, Fei Chen, Garry P Nolan, Scott J Rodig, Xiaowei Zhuang, Orit Rozenblatt-Rosen, Bruce E Johnson, Aviv Regev, Nikhil Wagle

Although metastatic disease is the leading cause of cancer-related deaths, its tumor microenvironment remains poorly characterized due to technical and biospecimen limitations. In this study, we assembled a multi-modal spatial and cellular map of 67 tumor biopsies from 60 patients with metastatic breast cancer across diverse clinicopathological features and nine anatomic sites with detailed clinical annotations. We combined single-cell or single-nucleus RNA sequencing for all biopsies with a panel of four spatial expression assays (Slide-seq, MERFISH, ExSeq and CODEX) and H&E staining of consecutive serial sections from up to 15 of these biopsies. We leveraged the coupled measurements to provide reference points for the utility and integration of different experimental techniques and used them to assess variability in cell type composition and expression as well as emerging spatial expression …

Show more

Oct 2024 • arXiv preprint arXiv:2410.22900

Probing quantum anomalous heat flow using mid-circuit measurements

Aabhaas Vineet Mallik, Loris Maria Cangemi, Amikam Levy, Emanuele G Dalla Torre

Gate-based quantum computers are an innovative tool for experimentally studying the core principles of quantum mechanics. This work presents the first observation of quantum anomalous heat flow between two qubits and investigates the role of mid-circuit measurements in this context. Using mid-circuit measurements, we designed quantum circuits that violate the semi-classical heat flow bound, witnessing negativities in the underlying Kirkwood-Dirac quasiprobability distribution, which indicates the presence of quantum correlations between the subsystems. Mid-circuit measurements, crucial for probing qubits during the experiment, enabled these observations but also introduced disturbances, such as energy leakage, leading to deviations from theoretical predictions. We modeled these noise effects, providing insight into the limitations of current mid-circuit measurement techniques.

Show more

Oct 2024 • Small

Fluorinated Co‐Solvents Enable Excellent Performances of Practical Cells Comprising LixSiO‐Graphite Composite Anodes and LiNi0. 89Co0. 05Mn0. 05Al0. 01O2 (NCMA) Cathodes

Naresh Vangapally, David Lusztig, Suman Rathod, Amreen Bano, Hadar Scalar, Sri Harsha Akella, Malachi Noked, Dan T Major, Ion C Halalay, Suresh Sriramulu, Shalom Luski, Doron Aurbach

Li‐ion batteries based on high specific capacity LixSiO‐Graphite anodes and LiNi0.89Co0.05 Mn0.05Al0.01O2 (NCMA) cathodes may have numerous practical applications owing to high energy density without a necessary compromise on safety. SiO, which is an attractive Li insertion anode material, offers more cycling stability than Si and a higher capacity than graphite. Therefore, a new trend has emerged for developing composite C‐Si anodes, possessing the excellent cyclability of graphite coupled with high capacity SiO. The composite structure described herein prevents the volume expansion of SiO and maintains the structural integrity during prolonged cycling. However, graphite electrodes suffer from exfoliation in propylene carbonate (PC) based electrolyte solutions, which avoids well known safety benefits related to a possible use of PC based electrolyte solutions in all kinds of Li batteries. Herein, it is …

Show more

Oct 2024 • arXiv preprint arXiv:2410.11264

Change in Magnetic Order in NiPS3 Single Crystals Induced by a Molecular Intercalation

Nirman Chakraborty, Adi Harchol, Azhar Abu-Hariri, Rajesh Kumar Yadav, Muhamed Dawod, Diksha Prabhu Gaonkar, Kusha Sharma, Anna Eyal, Yaron Amouyal, Doron Naveh, Efrat Lifshitz

Intercalation is a robust method for tuning the physical properties of a vast number of van der Waals (vdW) materials. However, the prospects of using intercalation to modify magnetism in vdWs systems and the associated mechanisms have not been investigated adequately. In this work, we modulate magnetic order in an XY antiferromagnet NiPS3 single crystals by introducing pyridine molecules into the vdWs gap under different thermal conditions. X-ray diffraction measurements indicated pronounced changes in the lattice parameter beta, while magnetization measurements at in-plane and out-of-plane configurations exposed reversal trends in the crystals Neel temperatures through intercalation-de-intercalation processes. The changes in magnetic ordering were also supported by three-dimensional thermal diffusivity experiments. The preferred orientation of the pyridine dipoles within vdW gaps was deciphered via polarized Raman spectroscopy. The results highlight the relation between the preferential alignment of the intercalants, thermal transport, and crystallographic disorder along with the modulation of anisotropy in the magnetic order. The theoretical concept of double-exchange interaction in NiPS3 was employed to explain the intercalation-induced magnetic ordering. The study uncovers the merit of intercalation as a foundation for spin switches and spin transistors in advanced quantum devices.

Show more

Oct 2024 • International Journal of Molecular Sciences 25 (20), 11268, 2024

Comparative Review of the Conserved UL24 Protein Family in Herpesviruses

Odelia Orbaum-Harel, Ronit Sarid

The UL24 protein family, conserved across all subfamilies of Orthoherpesviridae, plays diverse and significant roles in viral replication, host–virus interactions and pathogenesis. Understanding the molecular mechanisms and interactions of UL24 proteins is key to unraveling the complex interplay between herpesviruses and their hosts. This review provides a comparative and comprehensive overview of current knowledge on UL24 family members, including their conservation, expression patterns, cellular localization, and functional roles upon their expression and during viral infection, highlighting their significance in herpesvirus biology and their potential functions.

Show more

Oct 2024 • Small

Fluorinated Co‐Solvents Enable Excellent Performances of Practical Cells Comprising LixSiO‐Graphite Composite Anodes and LiNi0. 89Co0. 05Mn0. 05Al0. 01O2 (NCMA) Cathodes

Naresh Vangapally, David Lusztig, Suman Rathod, Amreen Bano, Hadar Scalar, Sri Harsha Akella, Malachi Noked, Dan T Major, Ion C Halalay, Suresh Sriramulu, Shalom Luski, Doron Aurbach

Li‐ion batteries based on high specific capacity LixSiO‐Graphite anodes and LiNi0.89Co0.05 Mn0.05Al0.01O2 (NCMA) cathodes may have numerous practical applications owing to high energy density without a necessary compromise on safety. SiO, which is an attractive Li insertion anode material, offers more cycling stability than Si and a higher capacity than graphite. Therefore, a new trend has emerged for developing composite C‐Si anodes, possessing the excellent cyclability of graphite coupled with high capacity SiO. The composite structure described herein prevents the volume expansion of SiO and maintains the structural integrity during prolonged cycling. However, graphite electrodes suffer from exfoliation in propylene carbonate (PC) based electrolyte solutions, which avoids well known safety benefits related to a possible use of PC based electrolyte solutions in all kinds of Li batteries. Herein, it is …

Show more

Oct 2024 • Physics Reports 1087, 1-71, 2024

Quantum engines and refrigerators

Loris Maria Cangemi, Chitrak Bhadra, Amikam Levy

Engines are systems and devices that convert one form of energy into another, typically into a more useful form that can perform work. In the classical setup, physical, chemical, and biological engines largely involve the conversion of heat into work. This energy conversion is at the core of thermodynamic laws and principles and is codified in textbook material. In the quantum regime, however, the principles of energy conversion become ambiguous, since quantum phenomena come into play. As with classical thermodynamics, fundamental principles can be explored through engines and refrigerators, but, in the quantum case, these devices are miniaturized and their operations involve uniquely quantum effects. Our work provides a broad overview of this active field of quantum engines and refrigerators, reviewing the latest theoretical proposals and experimental realizations. We cover myriad aspects of these devices …

Show more

Oct 2024 • Nature Communications

How synchronized human networks escape local minima

Elad Shniderman, Yahav Avraham, Shir Shahal, Hamootal Duadi, Nir Davidson, Moti Fridman

Finding the global minimum in complex networks while avoiding local minima is challenging in many types of networks. In human networks and communities, adapting and finding new stable states amid changing conditions due to conflicts, climate changes, or disasters, is crucial. We studied the dynamics of complex networks of violin players and observed that such human networks have different methods to avoid local minima than other non-human networks. Humans can change the coupling strength between them or change their tempo. This leads to different dynamics than other networks and makes human networks more robust and better resilient against perturbations. We observed high-order vortex states, oscillation death, and amplitude death, due to the unique dynamics of the network. This research may have implications in politics, economics, pandemic control, decision-making, and predicting the …

Show more

Oct 2024 • PRiME 2024 (October 6-11, 2024)

High-Entropy Co-Free Air-Stable Cathode for Sodium-Ion Batteries

Malachi Noked, Akanksha Joshi, Sankalpita Chakraborty, Sri Harsha Akella, Mia Ramos


logo
Articali

Powered by Articali

TermsPrivacy