BINA

3583 articles

75 publishers

Join mailing list

Oct 2023 • Angewandte Chemie International Edition

Polymeric Carbon nitride with chirality inherited from supramolecular assemblies

Adi Azoulay, Sapir Shekef Aloni, Lidan Xing, Ayelet Tashakory, Yitzhak Mastai, Menny Shalom

The facile synthesis of chiral materials is of paramount importance for various applications. Supramolecular preorganization of monomers for thermal polymerization has been proven as an effective tool to synthesize carbon and carbon nitride‐based (CN) materials with ordered morphology and controlled properties. However, the transfer of an intrinsic chemical property, such as chirality from supramolecular assemblies to the final material after thermal condensation, was not shown. Here, we report the large‐scale synthesis of chiral CN materials capable of enantioselective recognition. To achieve this, we designed supramolecular assemblies with a chiral center that remains intact at elevated temperatures. The optimized chiral CN demonstrates an enantiomeric preference of ca. 14 %; CN electrodes were also prepared and show stereoselective interactions with enantiomeric probes in electrochemical …

Show more

Oct 2023 • Nano Letters

Unveiling Local Optical Properties Using Nanoimaging Phase Mapping in High-Index Topological Insulator Bi2Se3 Resonant Nanostructures

Sukanta Nandi, Shany Z Cohen, Danveer Singh, Michal Poplinger, Pilkhaz Nanikashvili, Doron Naveh, Tomer Lewi

Topological insulators are materials characterized by an insulating bulk and high mobility topologically protected surface states, making them promising candidates for future optoelectronic and quantum devices. Although their electronic properties have been extensively studied, their mid-infrared (MIR) properties and prospective photonic capabilities have not been fully uncovered. Here, we use a combination of far-field and near-field nanoscale imaging and spectroscopy to study chemical vapor deposition-grown Bi2Se3 nanobeams (NBs). We extract the MIR optical constants of Bi2Se3, revealing refractive index values as high as n ∼ 6.4, and demonstrate that the NBs support Mie resonances across the MIR. Local near-field reflection phase mapping reveals domains of various phase shifts, providing information on the local optical properties of the NBs. We experimentally measure up to 2π phase-shift across the …

Show more

Oct 2023 • 244th ECS Meeting (October 8-12, 2023)

A Scalable Approach to Synthesize Cobalt-Free LNMO Cathode Materials for High Energy Density Lithium Ion Batteries

Tao Hu, Yan Lin, Pekka Tynjälä, Shubo Wang, Gayathri Peta, Harishchandra Singh, Doron Aurbach, Ulla Lassi


Oct 2023 • Heliyon

Sonochemical treatment of packaging materials for prolonging fresh produce shelf life

Belal Abu Salha, Ilana Perelshtein, Aharon Gedanken

Packaging bags made of polyethylene (PE) were sonochemically coated with edible antibacterial nanoparticles of chitosan (CS). In this work, the nanoparticles (NPs) were deposited on the surface of PE packaging bags by applying sonication waves on an acetic solution of chitosan. The characterization of CS NPs and PE bags was conducted by physicochemical techniques. The results showed that the coated bags had longer freshness than the uncoated ones. Furthermore, the characterization of cucumber, mushroom, and garlic placed into coated and uncoated PE bags was conducted by monitoring various parameters such as mass loss, total soluble solids, pH, and visual inspection. The study revealed that the PE bags coated with CS NPs showed a noticeable result in extending the shelf life of fresh produce. Finally, the antibacterial activity of PE bags was evaluated against various bacterial species. Hence …

Show more

Oct 2023 • ACS Applied Bio Materials

Bioimaging based on Poly (ethylenimine)-Coated Carbon Dots and Gold Nanoparticles for pH Sensing and Metal Enhanced Fluorescence

Shweta Pawar, Hamootal Duadi, Moran Friedman Gohas, Yoram Cohen, Dror Fixler

When exposed to specific light wavelengths, carbon dots (CDs), which tend to be fluorescent, can emit colorful light. It provides them with a lot of adaptability for different applications including bioimaging, optoelectronics, and even environmental sensing. Poly(ethylenimine) (PEI) coated carbon dots (PEI-CDs) with a long emission wavelength were synthesized via the hydrothermal method. The resultant CDs show strong fluorescence with quantum yield up to 20.2%. The PEI-CDs exist with distinct pH-sensitive features with pH values in the range of 2–14. The optical characteristics of CDs are pH-responsive due to the presence of different amine groups on PEI, which is a functional polycationic polymer. One of the most widely employed nanoparticles for improving the fluorescence plasmonic characteristics of a nanocomposite is gold. Gold nanoparticles were coupled with PEI-CDs in this assay by using the EDC …

Show more

Oct 2023 • Optics Letters

Measuring glass transition of a polymer coating layer over working fiber using forward Brillouin scattering

Alon Bernstein, Elad Zehavi, Yosef London, Mirit Hen, Andrei A Stolov, Avi Zadok

The glass transition temperature is a key parameter of polymer coating layers that protect optical fibers, and it affects the proper function of the fibers in their service environment. Established protocols for glass transition temperature measurements are destructive, require samples of specific geometries, and may only be carried out offline. In this work, we report the nondestructive measurement of the glass transition temperature of an acrylate polymer coating layer over a working standard fiber. The method is based on forward stimulated Brillouin scattering. A large decrease in the modulus of the coating layer above the glass transition temperature manifests in the narrowing of the modal linewidths in the forward Brillouin scattering spectrum. The transition temperature agrees with the standard dynamic mechanical analysis of samples made of the same polymer. The protocol can be useful for coating materials …

Show more

Oct 2023 • ACS Omega

Synthesis and Characterization of Durable Antibiofilm and Antiviral Silane-Phosphonium Thin Coatings for Medical and Agricultural Applications

Matan Nissim, Taly lline-Vul, Sivan Shoshani, Gila Jacobi, Eyal Malka, Aviv Dombrovsky, Ehud Banin, Shlomo Margel

Pathogens such as bacteria and viruses cause disease in a range of hosts, from humans to plants. Bacterial biofilms, communities of bacteria, e.g., Staphylococcus aureusand Escherichia coli, attached to the surface, create a protective layer that enhances their survival in harsh environments and resistance to antibiotics and the host’s immune system. Biofilms are commonly associated with food spoilage and chronic infections, posing challenges for treatment and prevention. Tomato brown rugose fruit virus (ToBRFV), a newly discovered tobamovirus, infects tomato plants, causing unique symptoms on the fruit, posing a risk for tomato production. The present study focuses on the effectiveness of silane-phosphonium thin coatings on polymeric films, e.g., polypropylene. Phosphonium has significant antibacterial activity and is less susceptible to antibacterial resistance, making it a safer alternative with a reduced …

Show more

Oct 2023 • 244th ECS Meeting (October 8-12, 2023), 2023

G01-Molecular Layer Deposition

Oana Leonte, Oscar van der Straten, Malachi Noked


Oct 2023 • Chemistry of Materials

Theoretical Insights into High-Entropy Ni-Rich Layered Oxide Cathodes for Low-Strain Li-Ion Batteries

Amreen Bano, Malachi Noked, Dan Thomas Major

Ni-rich, Co-free layered oxide cathode materials are promising candidates for next-generation Li-ion batteries due to their high energy density. However, these cathode materials suffer from rapid capacity fading during electrochemical cycling. To overcome this shortcoming, so-called high-entropy (HE) materials, which are obtained by incorporating multiple dopants, have been suggested. Recent experimental work has shown that HE Ni-rich cathode materials can offer excellent capacity retention on cycling, although a thorough rationale for this has yet to be provided. Here, we present classical and first-principles calculations to elucidate the salient features of HE layered oxides as cathode materials in Li-ion batteries. We suggest that a combination of five prime factors may be responsible for the enhanced performance of HE Ni-rich layered oxide cathode materials over other Ni-rich cathodes: (1) low crystal lattice …

Show more

Oct 2023 • Quantum

Kirkwood-Dirac quasiprobability approach to the statistics of incompatible observables

Matteo Lostaglio, Alessio Belenchia, Amikam Levy, Santiago Hernández-Gómez, Nicole Fabbri, Stefano Gherardini

Recent work has revealed the central role played by the Kirkwood-Dirac quasiprobability (KDQ) as a tool to properly account for non-classical features in the context of condensed matter physics (scrambling, dynamical phase transitions) metrology (standard and post-selected), thermodynamics (power output and fluctuation theorems), foundations (contextuality, anomalous weak values) and more. Given the growing relevance of the KDQ across the quantum sciences, our aim is two-fold: First, we highlight the role played by quasiprobabilities in characterizing the statistics of quantum observables and processes in the presence of measurement incompatibility. In this way, we show how the KDQ naturally underpins and unifies quantum correlators, quantum currents, Loschmidt echoes, and weak values. Second, we provide novel theoretical and experimental perspectives by discussing a wide variety of schemes to access the KDQ and its non-classicality features.

Show more

Oct 2023 • Nature Nanotechnology

High-energy all-solid-state lithium batteries enabled by Co-free LiNiO2 cathodes with robust outside-in structures

Longlong Wang, Ayan Mukherjee, Chang-Yang Kuo, Sankalpita Chakrabarty, Reut Yemini, Arrelaine A Dameron, Jaime W DuMont, Sri Harsha Akella, Arka Saha, Sarah Taragin, Hagit Aviv, Doron Naveh, Daniel Sharon, Ting-Shan Chan, Hong-Ji Lin, Jyh-Fu Lee, Chien-Te Chen, Boyang Liu, Xiangwen Gao, Suddhasatwa Basu, Zhiwei Hu, Doron Aurbach, Peter G Bruce, Malachi Noked

A critical current challenge in the development of all-solid-state lithium batteries (ASSLBs) is reducing the cost of fabrication without compromising the performance. Here we report a sulfide ASSLB based on a high-energy, Co-free LiNiO2 cathode with a robust outside-in structure. This promising cathode is enabled by the high-pressure O2 synthesis and subsequent atomic layer deposition of a unique ultrathin LixAlyZnzOδ protective layer comprising a LixAlyZnzOδ surface coating region and an Al and Zn near-surface doping region. This high-quality artificial interphase enhances the structural stability and interfacial dynamics of the cathode as it mitigates the contact loss and continuous side reactions at the cathode/solid electrolyte interface. As a result, our ASSLBs exhibit a high areal capacity (4.65 mAh cm−2), a high specific cathode capacity (203 mAh g−1), superior cycling stability (92% capacity retention …

Show more

Oct 2023 • ACS nano

Triggering Gaussian-to-Exponential Transition of Displacement Distribution in Polymer Nanocomposites via Adsorption-Induced Trapping

Ming Hu, Hongbo Chen, Hongru Wang, Stanislav Burov, Eli Barkai, Dapeng Wang

In many disordered systems, the diffusion of classical particles is described by a displacement distribution P(x, t) that displays exponential tails instead of Gaussian statistics expected for Brownian motion. However, the experimental demonstration of control of this behavior by increasing the disorder strength has remained challenging. In this work, we explore the Gaussian-to-exponential transition by using diffusion of poly(ethylene glycol) (PEG) in attractive nanoparticle–polymer mixtures and controlling the volume fraction of the nanoparticles. In this work, we find “knobs”, namely nanoparticle concentration and interaction, which enable the change in the shape of P(x,t) in a well-defined way. The Gaussian-to-exponential transition is consistent with a modified large deviation approach for a continuous time random walk and also with Monte Carlo simulations involving a microscopic model of polymer trapping via …

Show more

Oct 2023 • Journal of Energy Storage

Influence of strong bromine binding complexing agent in electrolytes on the performance of hydrogen/bromine redox flow batteries

Michael Küttinger, Kobby Saadi, Théo Faverge, Nagaprasad Reddy Samala, Ilya Grinberg, David Zitoun, Peter Fischer

1-n-Hexylpyridin-1-ium bromide [C6Py]Br is investigated in this work as bromine complexing agent (BCA) in aqueous bromine electrolytes on its influence on hydrogen bromine redox flow battery (H2/Br2-RFB) performance. [C6Py]+-cations bind bromine of aqueous polybromide solutions safely in an additional fused salt phase limiting the vapor pressure of Br2. Dissolved in aqueous electrolyte solutions, however, [BCA]+ cations drastically lower PFSA membranes' conductivity in the H2/Br2-RFB. In this work the combination of the very strong bromine-binding [C6Py]+cation and an excess of bromine in the electrolyte lead to an almost complete absorption of 99.6 mol% [C6Py]+ into the fused salt within the electrolyte's operation range. In comparison to similar application of short side chain 1-ethylpyridinium bromide, adverse effects are stronger compensated by use of [C6Py]Br. Increases in membrane resistance of …

Show more

Oct 2023 • ACS Omega

Synthesis and Characterization of Durable Antibiofilm and Antiviral Silane-Phosphonium Thin Coatings for Medical and Agricultural Applications

Matan Nissim, Taly lline-Vul, Sivan Shoshani, Gila Jacobi, Eyal Malka, Aviv Dombrovsky, Ehud Banin, Shlomo Margel

Pathogens such as bacteria and viruses cause disease in a range of hosts, from humans to plants. Bacterial biofilms, communities of bacteria, e.g., Staphylococcus aureusand Escherichia coli, attached to the surface, create a protective layer that enhances their survival in harsh environments and resistance to antibiotics and the host’s immune system. Biofilms are commonly associated with food spoilage and chronic infections, posing challenges for treatment and prevention. Tomato brown rugose fruit virus (ToBRFV), a newly discovered tobamovirus, infects tomato plants, causing unique symptoms on the fruit, posing a risk for tomato production. The present study focuses on the effectiveness of silane-phosphonium thin coatings on polymeric films, e.g., polypropylene. Phosphonium has significant antibacterial activity and is less susceptible to antibacterial resistance, making it a safer alternative with a reduced …

Show more

Oct 2023 • ACS Nano

Triggering Gaussian-to-Exponential Transition of Displacement Distribution in Polymer Nanocomposites via Adsorption-Induced Trapping

Ming Hu, Hongbo Chen, Hongru Wang, Stanislav Burov, Eli Barkai, Dapeng Wang

Triggering Gaussian-to-Exponential Transition of Displacement Distribution in Polymer Nanocomposites via Adsorption-Induced Trapping | ACS Nano ACS ACS Publications C&EN CAS Find my institution Log In ACS Nano ACS Publications. Most Trusted. Most Cited. Most Read Share Share on Facebook Twitter WeChat Linked In Reddit Email ACS Nano All Publications/Website OR SEARCH CITATIONS My Activity Recently Viewed New Polycyclic Diamine Scaffolds from Dimerization of 3-Alkyl-1,4-dihydropyridines in Acidic Medium. Clinical Translation of Aptamers for COVID-19 Synthesis of an Advanced Intermediate of the Jatrophane Diterpene Pl-4: A Dibromide Coupling Approach Photoelectron Spectroscopic and Theoretical Studies of MmC6F5 Anionic Complexes (M = Pb and Bi; m = 1−4) Thermodynamics and Its Applications, Second Edition (Modell, Michael; Reid, Robert C.) Publications publications my …

Show more

Oct 2023 • Nature Nanotechnology

High-energy all-solid-state lithium batteries enabled by Co-free LiNiO2 cathodes with robust outside-in structures

Longlong Wang, Ayan Mukherjee, Chang-Yang Kuo, Sankalpita Chakrabarty, Reut Yemini, Arrelaine A Dameron, Jaime W DuMont, Sri Harsha Akella, Arka Saha, Sarah Taragin, Hagit Aviv, Doron Naveh, Daniel Sharon, Ting-Shan Chan, Hong-Ji Lin, Jyh-Fu Lee, Chien-Te Chen, Boyang Liu, Xiangwen Gao, Suddhasatwa Basu, Zhiwei Hu, Doron Aurbach, Peter G Bruce, Malachi Noked

A critical current challenge in the development of all-solid-state lithium batteries (ASSLBs) is reducing the cost of fabrication without compromising the performance. Here we report a sulfide ASSLB based on a high-energy, Co-free LiNiO2 cathode with a robust outside-in structure. This promising cathode is enabled by the high-pressure O2 synthesis and subsequent atomic layer deposition of a unique ultrathin LixAlyZnzOδ protective layer comprising a LixAlyZnzOδ surface coating region and an Al and Zn near-surface doping region. This high-quality artificial interphase enhances the structural stability and interfacial dynamics of the cathode as it mitigates the contact loss and continuous side reactions at the cathode/solid electrolyte interface. As a result, our ASSLBs exhibit a high areal capacity (4.65 mAh cm−2), a high specific cathode capacity (203 mAh g−1), superior cycling stability (92% capacity retention …

Show more

Oct 2023 • 244th ECS Meeting (October 8-12, 2023)

High Entropy Configuration Strategy: Boosting Kinetics, Air Stability and Suppressing Phase Transition in Co-Free O3-Layered Cathode for Sodium-Ion Batteries

Akanksha Joshi, Sankalpita Chakrabarty, Sri Harsha Akella, Arka Saha, Ayan Mukherjee, Rosy Sharma, Malachi Noked


Oct 2023 • Journal of Energy Storage

Influence of strong bromine binding complexing agent in electrolytes on the performance of hydrogen/bromine redox flow batteries

Michael Küttinger, Kobby Saadi, Théo Faverge, Nagaprasad Reddy Samala, Ilya Grinberg, David Zitoun, Peter Fischer

1-n-Hexylpyridin-1-ium bromide [C6Py]Br is investigated in this work as bromine complexing agent (BCA) in aqueous bromine electrolytes on its influence on hydrogen bromine redox flow battery (H2/Br2-RFB) performance. [C6Py]+-cations bind bromine of aqueous polybromide solutions safely in an additional fused salt phase limiting the vapor pressure of Br2. Dissolved in aqueous electrolyte solutions, however, [BCA]+ cations drastically lower PFSA membranes' conductivity in the H2/Br2-RFB. In this work the combination of the very strong bromine-binding [C6Py]+cation and an excess of bromine in the electrolyte lead to an almost complete absorption of 99.6 mol% [C6Py]+ into the fused salt within the electrolyte's operation range. In comparison to similar application of short side chain 1-ethylpyridinium bromide, adverse effects are stronger compensated by use of [C6Py]Br. Increases in membrane resistance of …

Show more

Oct 2023 • Materials Today Energy

Aqueous proton batteries based on acetic acid solutions: mechanistic insights

Bar Gavriel, Gil Bergman, Meital Turgeman, Amey Nimkar, Yuval Elias, Mikhael D Levi, Daniel Sharon, Netanel Shpigel, Doron Aurbach

Large grid energy storage devices are critical for the success of the clean and sustainable energy revolution. As Li-ion batteries are earmarked for electric vehicles and portable devices such as laptops and cellphones, other electrochemical systems should be developed that enable cost-effective, safe, and durable large-scale energy storage. Due to the low cost and non-flammability of aqueous electrolyte solutions, much effort is being put into development of 'beyond-Li' batteries and supercapacitors that can work in these environments. Here, we propose new proton batteries comprising an acetic acid electrolyte solution, NiII[FeIII(CN)6]2/3·4H2O Prussian blue analog cathodes, and Ti3C2Tx MXene anodes. Both electrodes were investigated independently to discover ideal settings for electrochemical performance and stability. Significant attention was given to the cathodes' protons storage mechanism. In-situ …

Show more

Oct 2023 • Nano Letters

Unveiling Local Optical Properties Using Nanoimaging Phase Mapping in High-Index Topological Insulator Bi2Se3 Resonant Nanostructures

Sukanta Nandi, Shany Z Cohen, Danveer Singh, Michal Poplinger, Pilkhaz Nanikashvili, Doron Naveh, Tomer Lewi

Topological insulators are materials characterized by an insulating bulk and high mobility topologically protected surface states, making them promising candidates for future optoelectronic and quantum devices. Although their electronic properties have been extensively studied, their mid-infrared (MIR) properties and prospective photonic capabilities have not been fully uncovered. Here, we use a combination of far-field and near-field nanoscale imaging and spectroscopy to study chemical vapor deposition-grown Bi2Se3 nanobeams (NBs). We extract the MIR optical constants of Bi2Se3, revealing refractive index values as high as n ∼ 6.4, and demonstrate that the NBs support Mie resonances across the MIR. Local near-field reflection phase mapping reveals domains of various phase shifts, providing information on the local optical properties of the NBs. We experimentally measure up to 2π phase-shift across the …

Show more

Oct 2023 • arXiv preprint arXiv:2310.02722

Discrete-Time Quantum Walk on Multilayer Networks

MN Jayakody, Priodyuti Pradhan, Dana Ben Porath, E Cohen

Multilayer network is a potent platform which paves a way to study the interactions among entities in various networks with multiple types of relationships. In this study, the dynamics of discrete-time quantum walk on a multilayer network are explored in detail. We derive recurrence formulae for the coefficients of the wave function of a quantum walker on an undirected graph with finite number of nodes. By extending these formulae to include extra layers, we develop a simulation model to describe the time-evolution of the quantum walker on a multilayer network. The time-averaged probability and the return probability of the quantum walker are studied in relation to Fourier and Grover walks on multilayer networks. Furthermore, we analyze the impact of decoherence on the quantum transport, shedding light on how environmental interactions may impact the behavior of quantum walkers on multilayer network structures.

Show more

logo
Articali

Powered by Articali

TermsPrivacy