Nov 2024 • Journal of Applied Physics
Vladimir Kostriukov, Lidor Geri, Amos Sharoni
The magnetic state of an antiferromagnetic (AFM) insulator can be read and manipulated in spintronics devices using bilayers of an AFM and a conducting layer, making it useful for spintronics devices. To date, research has focused on single crystals of AFMs, which enables the study of properties related to different crystallographic surfaces. However, combining single-crystal AFMs in spintronics devices may be problematic due to substrate selectivity and deposition conditions. In this work, we study the properties of polycrystalline Fe 2 O 3 coupled with Pt as the conducting layer, asking how the magnetoresistive behavior differs in polycrystalline AFMs. We report on the angle dependent magnetoresistance and transverse magnetoresistance properties as a function of temperature and magnetic fields, comparing Fe 2 O 3/Pt and Fe 2 O 3/Cu/Pt thin films, in addition to magnetometry and structural characterization …
Show moreNov 2024 • arXiv preprint arXiv:2311.00590
Ilya Olevsko, Omer Shavit, Moshe Feldberg, Yossi Abulafia, Adi Salomon, Martin Oheim
Recent progress has boosted the resolving power of optical microscopies to spatial dimensions well below the diffraction limit. Yet, axial super-resolution and axial single-molecule localisation typically require more complicated implementations than their lateral counterparts. In the present work, we propose a simple solution for axial metrology by providing a multi-layered single-excitation, dual-emission test slide, in which axial distance is colour-encoded. Our test slide combines on a standard microscope coverslip substrate two flat, thin, uniform and brightly emitting fluorophore layers, separated by a nanometric transparent spacer layer having a refractive index close to a biological cell. The ensemble is sealed in an index-matched protective polymer. As a proof-of-principle, we estimate the light confinement resulting from evanescent-wave excitation in total internal reflection fluorescence (TIRF) microscopy. Our test sample permits, even for the non-expert user, a facile axial metrology at the sub-100-nm scale, a critical requirement for axial super-resolution, as well as near-surface imaging, spectroscopy and sensing.
Show moreNov 2024 • The Journal of Physical Chemistry C
Pallavi Singh, Davide Raffaele Ceratti, Yahel Soffer, Sudipta Bera, Yishay Feldman, Michael Elbaum, Dan Oron, David Cahen, Gary Hodes
Self-healing materials can become game changers for developing sustainable (opto)electronics. APbX3 halide (=X–) perovskites, HaPs, have shown a remarkable ability to self-heal damage. While we demonstrated self-healing in pure HaP compounds, in single crystals, and in polycrystalline thin films (as used in most devices), HaP compositions with multiple A+ (and X–) constituents are preferred for solar cells. We now show self-healing in mixed A+ HaPs. Specifically, if at least 15 atom % of the methylammonium (MA+) A cation is substituted for by guanidinium (Gua+) or acetamidinium (AA+), then the self-healing rate after damage is enhanced. In contrast, replacing MA+ with dimethylammonium (DMA+), comparable in size to Gua+ or AA+, does not alter this rate. Based on the times for self-healing, we infer that the rate-determining step involves short-range diffusion of A+ and/or Pb2+ cations and that the self …
Show moreNov 2024 • Nature Communications
Sebastian Schimmel, Yanina Fasano, Sven Hoffmann, Julia Besproswanny, Laura Teresa Corredor Bohorquez, Joaquín Puig, Bat-Chen Elshalem, Beena Kalisky, Grigory Shipunov, Danny Baumann, Saicharan Aswartham, Bernd Büchner, Christian Hess
Topological superconductivity is a promising concept for generating fault-tolerant qubits. Early experimental studies looked at hybrid systems and doped intrinsic topological or superconducting materials at very low temperatures. However, higher critical temperatures are indispensable for technological exploitation. Recent angle-resolved photoemission spectroscopy results have revealed that superconductivity in the type-I Weyl semimetal—trigonal PtBi2 (t-PtBi2)—is located at the Fermi-arc surface states, which renders the material a potential candidate for intrinsic topological superconductivity. Here we show, using scanning tunnelling microscopy and spectroscopy, that t-PtBi2 presents surface superconductivity at elevated temperatures (5 K). The gap magnitude is elusive: it is spatially inhomogeneous and spans from 0 to 20 meV. In particular, the large gap value and the shape of the quasiparticle excitation …
Show moreNov 2024 • Journal of Biomedical Optics 29 (3), 037003-037003, 2024
Zeev Kalyuzhner, Sergey Agdarov, Yevgeny Beiderman, Aviya Bennett, Yafim Beiderman, Zeev Zalevsky
Intraocular pressure (IOP) measurements comprise an essential tool in modern medicine for the early diagnosis of glaucoma, the second leading cause of human blindness. The world's highest prevalence of glaucoma is in low-income countries.Current diagnostic methods require experience in running expensive equipment as well as the use of anesthetic eye drops. We present herein a remote photonic IOP biomonitoring method based on deep learning of secondary speckle patterns, captured by a fast camera, that are reflected from eye sclera stimulated by an external sound wave. By combining speckle pattern analysis with deep learning, high precision measurements are possible.
Show moreNov 2024 • arXiv preprint arXiv:2411.04684
Ohad Vilk, Motti Charter, Sivan Toledo, Eli Barkai, Ran Nathan
Natural and anomalous diffusion are widely observed and used to explore causes and consequences of movement across organisms, resulting in extensive use of the mean and mean-squared displacement (MSD). Using high-resolution data from over 70 million localizations of young and adult free-ranging Barn Owls (\textit{Tyto alba}), we demonstrate the necessity of a broad spectrum of displacement moments to characterize bird movement across scales. The mean and MSD -- interchangeable with moments and 2 -- are insufficient special cases. We reveal empirical strong anomalous diffusion as a nonlinear growth of displacement moments according to . The moment spectrum function displays piecewise linearity with a critical moment marking the crossover point between two scaling regimes, linked to a combination of age-specific behavioral modes. A critical timescale of five minutes marks an unexpected transition from a convex to a concave , related to environmental and behavioral constraints. Using two stochastic models of varying ecological complexity, we demonstrate that strong anomalous diffusion may be widespread in animal movement, underscoring the importance of expanding analysis beyond the average and MSD.
Show moreNov 2024 • Investigative ophthalmology & visual science
Basel Obied, Stephen Richard, Alon Zahavi, Hila Kreizman-Shefer, Jacob Bajar, Dror Fixler, Matea Krmpotić, Olga Girshevitz, Nitza Goldenberg-Cohen
Methods: A total of 103 wild-type (WT) mice were injected with cobalt chloride by two routes in different concentrations: single intravenous (IV) high or low doses (total, n= 43); or daily repeated intraperitoneal (IP) high (three days) or low (28 days, 56 days) dose, and low-dose cobalt with added minocycline (56 days)(total, n= 60); 10 WT mice served as a control group. An additional group of 17 immunodeficient NOD scid gamma (NSG) mice were injected IV or IP with cobalt, and 10 NSG mice served as control. Cobalt levels were measured in blood, urine, and tears by particle-induced X-ray emission (PIXE). Macroscopic, immunohistochemical, electroretinography (ERG), and molecular studies were done. Results: PIXE revealed cobalt elimination from the blood by two hours, with increased levels in urine but under the detection limit in tears. In the retina, ERG recordings showed decreased b-wave amplitude. Apoptosis mainly involved the inner retina, with inner retinal inflammatory reaction in both WT and less in the NSG mice. In the optic nerves, an increased microglial and astrocytic activation was noted. Conclusions: This study demonstrated functional visual impairment with extensive inflammatory reaction secondary to cobalt toxicity in mice.
Show moreNov 2024 • Briefings in Bioinformatics
Thomas Konstantinovsky, Ayelet Peres, Pazit Polak, Gur Yaari
Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) is critical for our understanding of the adaptive immune system’s dynamics in health and disease. Reliable analysis of AIRR-seq data depends on accurate rearranged immunoglobulin (Ig) sequence alignment. Various Ig sequence aligners exist, but there is no unified benchmarking standard representing the complexities of AIRR-seq data, obscuring objective comparisons of aligners across tasks. Here, we introduce GenAIRR, a modular simulation framework for generating Ig sequences alongside their ground truths. GenAIRR realistically simulates the intricacies of V(D)J recombination, somatic hypermutation, and an array of sequence corruptions. We comprehensively assessed prominent Ig sequence aligners across various metrics, unveiling unique performance characteristics for each aligner. The GenAIRR-produced datasets, combined with …
Show moreNov 2024 • ChemCatChem
Stephanie Himpich, Marion Ringel, Renana Schwartz, Nicole Dimos, Ronja Driller, Carl PO Helmer, Prashant Kumar Gupta, Martina Haack, Dan Thomas Major, Thomas Brück, Bernhard Loll
Structural diversity of diterpenes is mediated by the enigmatic family of diterpene synthases. The overall enzymatic contribution hereby lies in a carefully concerted chemistry of highly reactive carbocation intermediates mainly guided by aromatic and polar amino acid side chains and the pyrophosphate cofactor. To date several studies aimed to shed light on the mechanism underlining terpene synthases chemistry. Specifically, the diterpene synthase CotB2 serves as model enzyme for detailed mutagenesis studies. Here we investigate the catalytic mechanism of CotB2 variant V80L in a holistic, biochemical, structural, and computational biology approach. We were able to identify an altered product profile compared to CotB2WT for the substrates geranylgeranyl diphosphate and farnesyl diphosphate. Moreover, we solved the crystal structure, and shed further light on terpene synthase chemistry by modelling of the …
Show moreNov 2024 • Investigative Ophthalmology & Visual Science
Basel Obied, Stephen Richard, Alon Zahavi, Hila Kreizman-Shefer, Jacob Bajar, Dror Fixler, Matea Krmpotić, Olga Girshevitz, Nitza Goldenberg-Cohen
Nov 2024 • ACS Omega
Ya’akov Mandelbaum, Maria Tkachev, Abhijit Sanjeev, Zeev Zalevsky, David Zitoun, Avi Karsenty
Plasmonic nanostructure arrays, designed for performance as pixels in an advanced SERS imaging device, were fabricated by gallium focused ion beam (FIB). Though the FIB is best suited for etching holes and negative structures, our previously reported simulations favor protrusions. Herein, we report on the FIB methodology to “sculpt” positive structures by “ion-blasting” away the surrounding material. Nanoprotrusions and nanoholes with different aspect ratios are compared experimentally with depth and height controlled by the dwell time. The amplitude and spectra of optical absorption and scattering from the two species are compared as a function of structure height. Measurements were performed using ASI’s model Rainbow hyperspectral camera, demonstrating the utility of hyperspectral microscopy for plasmonic imaging applications. Both the scattered and absorbed radiation display the broad peak …
Show moreNov 2024 • arXiv preprint arXiv:2411.12702
Yishai Klein, Edward Strizhevsky, Haim Aknin, Moshe Deutsch, Eliahu Cohen, Avi Pe'er, Kenji Tamasaku, Tobias Schulli, Ebrahim Karimi, Sharon Shwartz
The invention of X-ray interferometers has led to advanced phase-sensing devices that are invaluable in various applications. These include the precise measurement of universal constants, e.g. the Avogadro number, of lattice parameters of perfect crystals, and phase-contrast imaging, which resolves details that standard absorption imaging cannot capture. However, the sensitivity and robustness of conventional X-ray interferometers are constrained by factors, such as fabrication precision, beam quality, and, importantly, noise originating from external sources or the sample itself. In this work, we demonstrate a novel X-ray interferometric method of phase measurement with enhanced immunity to various types of noise, by extending, for the first time, the concept of the SU(1,1) interferometer into the X-ray regime. We use a monolithic silicon perfect crystal device with two thin lamellae to generate correlated photon pairs via spontaneous parametric down-conversion (SPDC). Arrival time coincidence and sum-energy filtration allow a high-precision separation of the correlated photon pairs, which carry the phase information from orders-of-magnitude larger uncorrelated photonic noise. The novel SPDC-based interferometric method presented here is anticipated to exhibit enhanced immunity to vibrations as well as to mechanical and photonic noise, compared to conventional X-ray interferometers. Therefore, this SU(1,1) X-ray interferometer should pave the way to unprecedented precision in phase measurements, with transformative implications for a wide range of applications.
Show moreNov 2024
Yogendra Kumar, BEN Dlugatch, Ananya Maddegalla, Yuri Glagovsky, Natalia Fridman, Sri Harsha Akella, Nicole Leifer, Doron Aurbach, Dmitry Bravo-Zhivotovski, Malachi Noked
The development of efficient electrolytes is crucial for advancing magnesium (Mg) batteries, which hold promise for next-generation energy storage systems. Previously, electrolytes such as [Mg2(µ-Cl)3•6THF]+ [Ph4Al]-, A, and [Mg2(µ-Cl)3•6THF]+ [Ph3AlCl]-, B, have been studied, but their performance has been limited by issues related to ion dissociation and electrochemical stability. In this study, we report the synthesis of novel electrolytes by introducing polydentate ligands to these known systems, leading to the formation of [DME•MgCl•3THF]+ [Ph4Al]- 1 and [DG•MgCl•2THF]+ [Ph4Al]- 2, [Mg•3DME]2+ [Ph3AlCl-]2 3 and [Mg•2DG]2+ [Ph3AlCl-]2 4. These firstly discovered compounds were thoroughly characterized using X-ray crystallography and NMR spectroscopy. Our findings reveal that the choice of counter anion plays a pivotal role in the products and mechanism of the dissociation of the bridged [Mg2(µ-Cl)3•6THF]+ cation upon the addition of polydentate ligands. Specifically, with the [Ph4Al]- counter anion (precursor A), the dissociation results in a [MgCl]+ mono-cation, while with the [Ph3AlCl]- counter anion (precursor B), a [Mg]2+ divalent cation is formed. The resultant MgCl2 byproduct enhances solubility, expands electrochemical windows, and improves cyclic stability, leading to superior electrochemical performance of the new electrolytes (1, 2, 3, and 4) compared to the original precursors. These insights offer valuable guidelines for the design and synthesis of advanced electrolytes for rechargeable magnesium batteries, potentially paving the way for more efficient and stable energy storage solutions.
Show moreNov 2024 • arXiv preprint arXiv:2311.12980
Rana Darweesh, Rajesh Kumar Yadav, Elior Adler, Michal Poplinger, Adi Levi, Jea-Jung Lee, Amir Leshem, Ashwin Ramasubramaniam, Fengnian Xia, Doron Naveh
Optical spectroscopy the measurement of electromagnetic spectra is fundamental to various scientific domains and serves as the building block of numerous technologies. Computational spectrometry is an emerging field that employs an array of photodetectors with different spectral responses or a single photodetector device with tunable spectral response, in conjunction with numerical algorithms, for spectroscopic measurements. Compact single photodetectors made from layered materials are particularly attractive, since they eliminate the need for bulky mechanical and optical components used in traditional spectrometers and can easily be engineered as heterostructures to optimize device performance. However, compact tunable photodetectors are typically nonlinear devices and this adds complexity to extracting optical spectra from the device response. Here, we report on the training of an artificial neural network (ANN) to recover the full nonlinear spectral photoresponse of a nonlinear problem of high dimensionality of a single GeSe-InSe p-n heterojunction device. We demonstrate the functionality of a calibrated spectrometer in the spectral range of 400-1100 nm, with a small device footprint of ~25X25 micrometers, and we achieve a mean reconstruction error of 0.0002 for the power-spectrum at a spectral resolution of 0.35 nm. Using our device, we demonstrate a solution to metamerism, an apparent matching of colors with different power spectral distributions, which is a fundamental problem in optical imaging.
Show moreNov 2024 • Nucleic Acids Research, gkae1083, 2024
Pietro D’Addabbo, Roni Cohen-Fultheim, Itamar Twersky, Adriano Fonzino, Domenico Alessandro Silvestris, Ananth Prakash, Pietro Luca Mazzacuva, Juan Antonio Vizcaino, Andrew Green, Blake Sweeney, Andy Yates, Yvonne Lussi, Jie Luo, Maria-Jesus Martin, Eli Eisenberg, Erez Y Levanon, Graziano Pesole, Ernesto Picardi
A-to-I RNA editing is the most common non-transient epitranscriptome modification. It plays several roles in human physiology and has been linked to several disorders. Large-scale deep transcriptome sequencing has fostered the characterization of A-to-I editing at the single nucleotide level and the development of dedicated computational resources. REDIportal is a unique and specialized database collecting ∼16 million of putative A-to-I editing sites designed to face the current challenges of epitranscriptomics. Its running version has been enriched with sites from the TCGA project (using data from 31 studies). REDIportal provides an accurate, sustainable and accessible tool enriched with interconnections with widespread ELIXIR core resources such as Ensembl, RNAcentral, UniProt and PRIDE. Additionally, REDIportal now includes information regarding RNA editing in putative double-stranded RNAs …
Show moreNov 2024 • arXiv preprint arXiv:2411.12702
Yishai Klein, Edward Strizhevsky, Haim Aknin, Moshe Deutsch, Eliahu Cohen, Avi Pe'er, Kenji Tamasaku, Tobias Schulli, Ebrahim Karimi, Sharon Shwartz
The invention of X-ray interferometers has led to advanced phase-sensing devices that are invaluable in various applications. These include the precise measurement of universal constants, e.g. the Avogadro number, of lattice parameters of perfect crystals, and phase-contrast imaging, which resolves details that standard absorption imaging cannot capture. However, the sensitivity and robustness of conventional X-ray interferometers are constrained by factors, such as fabrication precision, beam quality, and, importantly, noise originating from external sources or the sample itself. In this work, we demonstrate a novel X-ray interferometric method of phase measurement with enhanced immunity to various types of noise, by extending, for the first time, the concept of the SU(1,1) interferometer into the X-ray regime. We use a monolithic silicon perfect crystal device with two thin lamellae to generate correlated photon pairs via spontaneous parametric down-conversion (SPDC). Arrival time coincidence and sum-energy filtration allow a high-precision separation of the correlated photon pairs, which carry the phase information from orders-of-magnitude larger uncorrelated photonic noise. The novel SPDC-based interferometric method presented here is anticipated to exhibit enhanced immunity to vibrations as well as to mechanical and photonic noise, compared to conventional X-ray interferometers. Therefore, this SU(1,1) X-ray interferometer should pave the way to unprecedented precision in phase measurements, with transformative implications for a wide range of applications.
Show moreNov 2024 • Journal of the American Chemical Society
Qidi Wang, Chenglong Zhao, Xia Hu, Jianlin Wang, Swapna Ganapathy, Stephen Eustace, Xuedong Bai, Baohua Li, Hong Li, Doron Aurbach, Marnix Wagemaker
The formation of stable interphases on the electrodes is crucial for rechargeable lithium (Li) batteries. However, next-generation high-energy batteries face challenges in controlling interphase formation due to the high reactivity and structural changes of electrodes, leading to reduced stability and slow ion transport, which accelerate battery degradation. Here, we report an approach to address these issues by introducing multicomponent grain-boundary-rich interphase that boosts the rapid transport of ions and enhances passivation toward prolonged lifespan. This is guided by fundamental principles of solid-state ionics and geological crystallization differentiation theory, achieved through improved solvation chemistry. Demonstrations showcase how the introduction of the interphase substantially impacts the Li-ion transport across the interphase and the electrode–electrolyte compatibility in cost-effective electrolyte …
Show moreNov 2024
Yogendra Kumar, BEN Dlugatch, Ananya Maddegalla, Yuri Glagovsky, Natalia Fridman, Sri Harsha Akella, Nicole Leifer, Doron Aurbach, Dmitry Bravo-Zhivotovski, Malachi Noked
The development of efficient electrolytes is crucial for advancing magnesium (Mg) batteries, which hold promise for next-generation energy storage systems. Previously, electrolytes such as [Mg2(µ-Cl)3•6THF]+ [Ph4Al]-, A, and [Mg2(µ-Cl)3•6THF]+ [Ph3AlCl]-, B, have been studied, but their performance has been limited by issues related to ion dissociation and electrochemical stability. In this study, we report the synthesis of novel electrolytes by introducing polydentate ligands to these known systems, leading to the formation of [DME•MgCl•3THF]+ [Ph4Al]- 1 and [DG•MgCl•2THF]+ [Ph4Al]- 2, [Mg•3DME]2+ [Ph3AlCl-]2 3 and [Mg•2DG]2+ [Ph3AlCl-]2 4. These firstly discovered compounds were thoroughly characterized using X-ray crystallography and NMR spectroscopy. Our findings reveal that the choice of counter anion plays a pivotal role in the products and mechanism of the dissociation of the bridged [Mg2(µ-Cl)3•6THF]+ cation upon the addition of polydentate ligands. Specifically, with the [Ph4Al]- counter anion (precursor A), the dissociation results in a [MgCl]+ mono-cation, while with the [Ph3AlCl]- counter anion (precursor B), a [Mg]2+ divalent cation is formed. The resultant MgCl2 byproduct enhances solubility, expands electrochemical windows, and improves cyclic stability, leading to superior electrochemical performance of the new electrolytes (1, 2, 3, and 4) compared to the original precursors. These insights offer valuable guidelines for the design and synthesis of advanced electrolytes for rechargeable magnesium batteries, potentially paving the way for more efficient and stable energy storage solutions.
Show moreNov 2024 • ACS omega
Ya’akov Mandelbaum, Maria Tkachev, Abhijit Sanjeev, Zeev Zalevsky, David Zitoun, Avi Karsenty
Plasmonic nanostructure arrays, designed for performance as pixels in an advanced SERS imaging device, were fabricated by gallium focused ion beam (FIB). Though the FIB is best suited for etching holes and negative structures, our previously reported simulations favor protrusions. Herein, we report on the FIB methodology to “sculpt” positive structures by “ion-blasting” away the surrounding material. Nanoprotrusions and nanoholes with different aspect ratios are compared experimentally with depth and height controlled by the dwell time. The amplitude and spectra of optical absorption and scattering from the two species are compared as a function of structure height. Measurements were performed using ASI’s model Rainbow hyperspectral camera, demonstrating the utility of hyperspectral microscopy for plasmonic imaging applications. Both the scattered and absorbed radiation display the broad peak …
Show moreNov 2024 • Oxford University Press
Pietro D’Addabbo, Roni Cohen-Fultheim, Itamar Twersky, Adriano Fonzino, Domenico Alessandro Silvestris, Ananth Prakash, Pietro Luca Mazzacuva, Juan Antonio Vizcaino, Andrew Green, Blake Sweeney, Andy Yates, Yvonne Lussi, Jie Luo, Maria-Jesus Martin, Eli Eisenberg, Erez Y Levanon, Graziano Pesole, Ernesto Picardi
A-to-I RNA editing is the most common non-transient epitranscriptome modification. It plays several roles in human physiology and has been linked to several disorders. Large-scale deep transcriptome sequencing has fostered the characterization of A-to-I editing at the single nucleotide level and the development of dedicated computational resources. REDIportal is a unique and specialized database collecting ∼16 million of putative A-to-I editing sites designed to face the current challenges of epitranscriptomics. Its running version has been enriched with sites from the TCGA project (using data from 31 studies). REDIportal provides an accurate, sustainable and accessible tool enriched with interconnections with widespread ELIXIR core resources such as Ensembl, RNAcentral, UniProt and PRIDE. Additionally, REDIportal now includes information regarding RNA editing in putative double-stranded RNAs …
Show moreNov 2024 • bioRxiv
Yaron Trink, Achia Urbach, Benjamin Dekel, Peter Hohenstein, Jacob Goldberger, Tomer Kalisky
The significant heterogeneity of Wilms’ tumors between different patients is thought to arise from genetic and epigenetic distortions that occur during various stages of fetal kidney development in a way that is poorly understood. To address this, we characterized the heterogeneity of alternative mRNA splicing in Wilms’ tumors using a publicly available RNAseq dataset of high-risk Wilms’ tumors and normal kidney samples. Through Pareto task inference and cell deconvolution, we found that the tumors and normal kidney samples are organized according to progressive stages of kidney development within a triangle-shaped region in latent space, whose vertices, or “archetypes,” resemble the cap mesenchyme, the nephrogenic stroma, and epithelial tubular structures of the fetal kidney. We identified a set of genes that are alternatively spliced between tumors located in different regions of latent space and found that many of these genes are associated with the Epithelial to Mesenchymal Transition (EMT) and muscle development. Using motif enrichment analysis, we identified putative splicing regulators, some of which are associated with kidney development. Our findings provide new insights into the etiology of Wilms’ tumors and suggest that specific splicing mechanisms in early stages of development may contribute to tumor development in different patients.
Show more