BINA

4707 articles

79 publishers

Join mailing list

Dec 2022 • Advanced Functional Materials

Bioengineering 3D neural networks using magnetic manipulations

Reut Plen, Alejandra Smith, Ofir Blum, Or Aloni, Uri Locker, Zehavit Shapira, Shlomo Margel, Orit Shefi

Controlling nerve cells to form pre‐designed 3D neural networks that recapitulate the intricate neural interconnectivity in the brain is essential for developing neuronal interfaces and new regeneration approaches. Here, nerve cells within 3D biomaterials are dynamically localized using nano‐based magnetic manipulations. Nerve cells are transformed into magnetic units and their organizational layout is manipulated using external magnetic field gradients. Iron oxide nanoparticles are incorporated into both Pheochromocytoma cell‐line 12 (PC12) cells and primary mice cortical neurons and the magnetized cells are subjected to multiple magnetic fields using pre‐designed magnetic arrays. Their movement is controlled inside multi‐layered 3D collagen scaffolds, which simulate the innate properties of in‐vivo tissue structures. Via these magnetic manipulations, functional 3D microarchitectures of neural networks are …

Show more

Dec 2022 • Protein Science

Copper coordination states affect the flexibility of copper Metallochaperone Atox1: Insights from molecular dynamics simulations

Renana Schwartz, Sharon Ruthstein, Dan Thomas Major

Copper is an essential element in nature but in excess, it is toxic to the living cell. The human metallochaperone Atox1 participates in copper homeostasis and is responsible for copper transmission. In a previous multiscale simulation study, we noticed a change in the coordination state of the Cu(I) ion, from 4 bound cysteine residues to 3, in agreement with earlier studies. Here, we perform and analyze classical molecular dynamic simulations of various coordination states: 2, 3, and 4. The main observation is an increase in protein flexibility as a result of a decrease in the coordination state. In addition, we identified several populated conformations that correlate well with double electron–electron resonance distance distributions or an X‐ray structure of Cu(I)‐bound Atox1. We suggest that the increased flexibility might benefit the process of ion transmission between interacting proteins. Further experiments can …

Show more

Dec 2022 • arXiv preprint arXiv:1812.11450

Spin‐Spacetime Censorship

Jonathan Nemirovsky, Eliahu Cohen, Ido Kaminer

Quantum entanglement and relativistic causality are key concepts in theoretical works seeking to unify quantum mechanics and gravity. In this article, we show that the interplay between relativity theory and quantum entanglement has intriguing consequences for the spacetime surrounding elementary particles with spin. Classical and quantum gravity theories predict that a spin-generated magnetic dipole field causes a (slight) bending to the spacetime around particles, breaking its spherical symmetry. Motivated by the apparent break of spherical symmetry, we propose a very general gedanken experiment that does not rely on any specific theory of classical or quantum gravity, and analyze this gedanken experiment in the context of quantum information. We show that any spin-related deviation from spherical symmetry would violate relativistic causality. To avoid the violation of causality, the measurable spacetime around the particle's rest frame must remain spherically symmetric, potentially as a back-action by the act of measurement. This way, our gedanken experiment proves that there must be a censorship mechanism preventing the possibility of spacetime-based spin detection, which sheds new light on the interface between quantum mechanics and gravity. We emphasize that our proposed gedanken experiment is independent of any theory and by allowing spacetime to be quantized its purpose is to be used for testing present and future candidate theories of quantum gravity.

Show more

Dec 2022 • Biosensors

Highly Sensitive and Specific SARS-CoV-2 Serological Assay Using a Magnetic Modulation Biosensing System

Shira Avivi-Mintz, Yaniv Lustig, Victoria Indenbaum, Eli Schwartz, Amos Danielli

Sensitive serological assays are needed to provide valuable information about acute and past viral infections. For example, detection of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG antibodies could serve as the basis for an “immunity passport” that would enable individuals to travel internationally. Here, utilizing a novel Magnetic Modulation Biosensing (MMB) system and the receptor-binding domain of the SARS-CoV-2 spike protein, we demonstrate a highly sensitive and specific anti-SARS-CoV-2 IgG serological assay. Using anti-SARS-CoV-2 IgG antibodies, RT-qPCR SARS-CoV-2-positive and healthy patients’ samples, and vaccinees’ samples, we compare the MMB-based SARS-CoV-2 IgG assay’s analytical and clinical sensitivities to those of the enzyme-linked immunosorbent assay (ELISA). Compared with ELISA, the MMB-based assay has an ~6-fold lower limit of detection (129 ng/L vs. 817 ng/L), and it detects an increase in the IgG concentration much earlier after vaccination. Using 85 RT-qPCR SARS-CoV-2-positive samples and 79 -negative samples, the MMB-based assay demonstrated similar clinical specificity (98% vs. 99%) and sensitivity (93% vs. 92%) to the ELISA test, but with a much faster turnaround time (45 min vs. 245 min). The high analytical and clinical sensitivity, short turnaround time, and simplicity of the MMB-based assay makes it a preferred method for antibody detection.

Show more

Dec 2022 • HUMAN GENE THERAPY 33 (23-24), A144-A144, 2022

Multiplex HDR for Modeling and Correction of RAG2 Severe Combined Immunodeficiency by CRISPR-Genome Editing in Human CD34+ HSPCs

A Hendel, O Iancu Cohen, D Allen, O Knop, Y Zehavi, A Lev, YN Lee, K Beider, A Nagler, R Somech


Dec 2022 • Optica

Distributed chemical detection outside standard coated fibers using Brillouin optical time-domain analysis of cladding mode spectra

Elad Zehavi, Alon Bernstein, Gil Bashan, Hilel Hagai Diamandi, Kavita Sharma, Yosef London, Mirit Hen, Keren Shemer, Andrei A Stolov, Jie Li, Avi Zadok

Propagation in the cladding modes of standard optical fibers enables the sensing of chemicals outside the fiber boundary, where light in the single core mode cannot reach. Coupling to the cladding modes typically relies on the inscription of permanent gratings, which restricts the operation of the sensors to point measurements only. In addition, most applications rely on bare, uncoated fibers, which are difficult to deploy outside the research laboratory. In this work, we report the spatially distributed analysis of cladding mode spectra in a standard, off-the-shelf coated fiber. The inscription of the gratings, removal of the coating, or other structural modifications are not required. Coupling is based on Brillouin dynamic gratings: Two optical pump fields stimulate an acoustic wave, which couples a probe field to a counter-propagating cladding mode. Spatial mapping is obtained through time-of-flight analysis: pulsed modulation of one pump wave and the monitoring of the output probe power as a function of time. All fields are launched and detected only in the core mode. The coupling spectrum is sensitive to local changes in the refractive index of the coating layer, to the third decimal point. The spatial resolution is one meter. The demonstrated range is a few meters, and is scalable to hundreds of meters. The technique is used to detect and monitor the local immersion of a fiber section in acetone. The results establish a practical method for spatially distributed fiber optic chemical sensors.

Show more

Dec 2022 • The Journal of Physical Chemistry B

Origin of Catalysis by Nitroalkane Oxidase

Dan Thomas Major, Prashant Kumar Gupta, Jiali Gao

The rate of proton abstraction of the carbon acid nitroethane by Asp402 is accelerated by a factor of 108 in the enzyme nitroalkane oxidase (NAO) relative to that by the organic base acetate ion in water. The Cα proton of nitroalkanes is known to exhibit an abnormal correlation between its acidity strength and the rate of deprotonation, with an unusually slow rate of deprotonation in water. This work examines the origin of NAO catalysis, revealing that the rate enhancement by the enzyme is due to transition-state stabilization, restoring the normal behavior of the linear free energy relationship of Bronsted acids. Interestingly, NAO employs the ubiquitous cofactor flavin adenosine diphosphate (FAD) to perform the subsequent oxidation. Does the FAD cofactor also affect the catalytic rate of the initial proton transfer process of the overall nitroalkane oxidation? Classical molecular dynamics and path-integral simulations …

Show more

Dec 2022 • Cell Reports Physical Science

A cost-effective water-in-salt electrolyte enables highly stable operation of a 2.15-V aqueous lithium-ion battery

Meital Turgeman, Vered Wineman-Fisher, Fyodor Malchik, Arka Saha, Gil Bergman, Bar Gavriel, Tirupathi Rao Penki, Amey Nimkar, Valeriia Baranauskaite, Hagit Aviv, Mikhael D Levi, Malachi Noked, Dan Thomas Major, Netanel Shpigel, Doron Aurbach

Extensive efforts are currently underway to develop safe and cost-effective electrolytes for large-scale energy storage. In this regard, water-based electrolytes may be an attractive option, but their narrow electrochemical stability window hinders their realization. Although highly concentrated fluorinated electrolytes have been shown to be highly effective in suppression of water splitting, enabling significant widening of the applied potential range, they utilize expensive salts (e.g., lithium bis(trifluoromethane sulfonyl) imide [LiTFSI] or lithium trifluoromethane sulfonate [LiOTf]); hence, they cannot be considered for practical applications. Here, we demonstrate a cost-effective aqueous electrolyte solution combining 14 M LiCl and 4 M CsCl that allows stable operation of a 2.15-V battery comprising a TiO2 anode and LiMn2O4 cathode. Addition of CsCl to the electrolyte plays a double role in system stabilization: the added …

Show more

Dec 2022 • ACS Applied Energy Materials

Garnet-type lithium metal fluorides: a potential solid electrolyte for solid-state batteries

Ediga Umeshbabu, Satyanarayana Maddukuri, Doron Aurbach, Maximilian Fichtner, Anji Reddy Munnangi

In this work, we introduced a garnet-type lithium metal fluoride, Li3Na3M2F12 (M = Al, Sc, In), as solid-state lithium-ion conductors for the first time. The mechanically milled Li3Na3M2F12 compounds crystallized in a cubic garnet-like structure (Ia3̅d, No. 230). The ionic conductivities of Li3Na3Al2F12, Li3Na3Sc2F12, and Li3Na3In2F12 are 1.7 × 10–6, 8.2 × 10–6, and 2.4 × 10–6 S/cm at 300 °C and 1.2 × 10–10, 2.6 × 10–9, and 1.8 × 10–10 S/cm at 100 °C, respectively. Even though these fluoride garnets’ conductivity is less, it is still better than those of the oxide analogues Li3Ln3Te2O12 (Ln = Er, Gd, Tb, Nd). Moreover, we explored why garnet-type Li3Na3M2F12 has low ionic conductivity and presented strategies for further improving conductivities.

Show more

Dec 2022 • JOURNAL OF PHYSICS-CONDENSED MATTER

Novel in situ multi-harmonic EQCM-D approach to characterize complex carbon pore architectures for capacitive deionization of brackish water (vol 28, 114001, 2016)

Netanel Shpigel, Mikhael D Levi, Sergey Sigalov, Doron Aurbach, Leonid Daikhin, Volker Presser


Dec 2022 • Physical Review B

Giant response to spin-orbit torques in heavy-metal/ferromagnetic bilayers associated with magnetic reversal

Ariel Zaig, Shubhankar Das, Moty Shultz, Lior Klein

Using bilayer films of β-Ta (5 nm)/Ni 0.8 Fe 0.2 (2 nm), we fabricate elliptical structures which exhibit uniaxial magnetic anisotropy, resulting in single magnetic domain behavior. We study induced spin-orbit torques (SOTs) in these devices with first-and second-order harmonic Hall measurements for current flowing along the long axis of the ellipses and external magnetic field applied in the film plane. We observe a giant response to the SOTs associated with magnetization reversal of the NiFe layer, and we correlate it quantitatively with a d φ m/d φ H term, where φ m and φ H are the in-plane angles of the magnetization and the magnetic field, respectively. We discuss theoretical and applicative implications of this intriguing behavior.

Show more

Dec 2022 • ACS Applied Bio Materials

Naturally Derived Carbon Dots In Situ Confined Self-Healing and Breathable Hydrogel Monolith for Anomalous Diffusion-Driven Phytomedicine Release

Poushali Das, Sayan Ganguly, Arumugam Saravanan, Shlomo Margel, Aharon Gedanken, Seshasai Srinivasan, Amin Reza Rajabzadeh

Fluorescent nanocarbons are well-proficient nanomaterials because of their optical properties and surface engineering. Herein, Apium graveolens-derived carbon dots (ACDs) have been synthesized by a one-step hydrothermal process without using any surplus vigorous chemicals or ligands. ACDs were captured via an in situ gelation reaction to form a semi-interpenetrating polymer network system showing mechanical robustness, fluorescent behavior, and natural adhesivity. ACDs-reinforced hydrogels were tested against robust uniaxial stress, repeated mechanical stretching, thixotropy, low creep, and fast strain recovery, confirming their elastomeric sustainability. Moreover, the room-temperature self-healing behavior was observed for the ACDs-reinforced hydrogels, with a healing efficacy of more than 45%. Water imbibition through hydrogel surfaces was digitally monitored via “breathing” and “accelerated …

Show more

Dec 2022 • Journal of Electroanalytical Chemistry

Ultra-low palladium engineered nickel sulfide heterostructure supported on 3D nickel foam as a highly efficient and stable electrocatalyst for water oxidation

Hari Krishna Sadhanala, Akanksha Gupta, Aharon Gedanken

Electrochemical water splitting (EWS) has been a crucial process in the production of green fuels (oxygen and hydrogen) for a sustainable energy economy. One of the key processes in the EWS is water oxidation or the oxygen evolution reaction (OER). It is highly desirable to create cost-effective, efficient, and robust electrocatalysts for OER. Here, we present ultra-low Pd doped NiS-NiS2 heterostructure on NF (0.1PdNiS/NF) grown in-situ by acid etching followed by a simple hydrothermal sulfurization method for excellent OER electrocatalytic activity in alkaline media. Interestingly, low overpotential of 275 mV is required for the 0.1PdNiS/NF to achieve a current density of 10 mAcm−2, which is less than both NiS/NF (385 mV) and commercial RuO2/NF (370 mV). Because of the strong electronic interaction between Pd and NiS, 0.1PdNiS/NF has a small Tafel slope of 65 mV/dec and has shown excellent durability for …

Show more

Dec 2022 • Annual Review of Condensed Matter Physics 13, 385-405, 2022

Studying Quantum Materials with Scanning SQUID Microscopy

Eylon Persky, Ilya Sochnikov, Beena Kalisky

Electronic correlations give rise to fascinating macroscopic phenomena such as superconductivity, magnetism, and topological phases of matter. Although these phenomena manifest themselves macroscopically, fully understanding the underlying microscopic mechanisms often requires probing on multiple length scales. Spatial modulations on the mesoscopic scale are especially challenging to probe, owing to the limited range of suitable experimental techniques. Here, we review recent progress in scanning superconducting quantum interference device (SQUID) microscopy. We demonstrate how scanning SQUID combines unmatched magnetic field sensitivity and highly versatile designs, by surveying discoveries in unconventional superconductivity, exotic magnetism, topological states, and more. Finally, we discuss how SQUID microscopy can be further developed to answer the increasing demand for imaging …

Show more

Dec 2022 • Journal of Power Sources

The effect of porosity of activated carbon cloth cathodes on the cyclic performance of Li–S cells

Elena Markevich, Gregory Salitra, Sharon Bretler, Hideki Yoshida, Shunsuke Sawada, Doron Aurbach

Binder-free carbon cloth (CC) cathodes with tunable porosity prepared from Kynol 1500 by CO2 activation at 900 °C with the specific surface area up to 3170 m2g-1 and pore volume up to 2.05 cc g−1 have been tested in Li–S battery prototypes with catholyte solutions containing Li2S8. The capacity of CCs normalized to carbon mass is linearly proportional to the surface area and pore volume values. Capacities of CC cathodes were compared to the capacity of a composite mesoporous carbon (MPC) cathode prepared from MPC powder with PVdF binder and tested in identical conditions as sulfur host. The results indicate that pore volume of the carbon hosts is a key factor which determines the capacity of Li–S cells with lithium polysulfide catholyte solution. The effect of the surface area and pore volume of carbon cathodes on capacity and cycling performance is discussed. The possibility of attaining of a practical …

Show more

Dec 2022 • Advanced Functional Materials

Bioengineering 3D Neural Networks Using Magnetic Manipulations (Adv. Funct. Mater. 50/2022)

Reut Plen, Alejandra Smith, Ofir Blum, Or Aloni, Uri Locker, Zehavit Shapira, Shlomo Margel, Orit Shefi

In article number 2204925, Orit Shefi and co-workers depict that neurons are transformed into magnetic units and dynamically localized within 3D biomaterials using magnetic manipulations. Iron-oxide nanoparticles are synthesized and incorporated into neurons, which are then subjected to various magnetic fields. The neurons' movement is controlled inside multi-layered 3D collagen scaffolds simulating in-vivo tissue structures, thus constructing pre-designed, viable and functional 3D microarchitectures of neural networks.

Show more

Dec 2022 • Polymers

Fabrication and Characterization of Hydrogen Peroxide and Thymol-Loaded PVA/PVP Hydrogel Coatings as a Novel Anti-Mold Surface for Hay Protection

Eyal Malka, Ayelet Caspi, Reut Cohen, Shlomo Margel

Animal food source production is increasing due to the growing world population. Many sources (e.g., hay) are prone to mold development, resulting in food degradation. This study proposes an environmentally friendly anti-mold fungicide comprising hydrogen peroxide (HP) and thymol entrapped in a polyvinyl alcohol/pyrrolidone (PVA/PVP) hydrogel (PVA is biodegradable and PVP is water soluble and non-toxic) coated on a polyethylene (PE) films for preservative hay packaging. The hydrogels improved the thermal stability of the entrapped HP and thymol, resulting in a prolonged release into the hay and thereby increasing anti-mold activity. The hydrogel composition and morphology, thymol and HP thermal stability, and release rates through indirect (gas phase) contact were investigated. Fungicidal capabilities were tested, indicating wide-range efficiency against mold growth on hay with a clear advantage for the thymol-loaded hydrogels. No visual side effects were observed on hay exposed to the released fumes of HP and/or thymol. These results demonstrate the potential of thymol-loaded hydrogels as effective and safe post-harvest preservatives.

Show more

Dec 2022 • ACS Applied Bio Materials

Naturally derived carbon dots in situ confined self-healing and breathable hydrogel monolith for anomalous diffusion-driven phytomedicine release

Poushali Das, Sayan Ganguly, Arumugam Saravanan, Shlomo Margel, Aharon Gedanken, Seshasai Srinivasan, Amin Reza Rajabzadeh

Fluorescent nanocarbons are well-proficient nanomaterials because of their optical properties and surface engineering. Herein, Apium graveolens-derived carbon dots (ACDs) have been synthesized by a one-step hydrothermal process without using any surplus vigorous chemicals or ligands. ACDs were captured via an in situ gelation reaction to form a semi-interpenetrating polymer network system showing mechanical robustness, fluorescent behavior, and natural adhesivity. ACDs-reinforced hydrogels were tested against robust uniaxial stress, repeated mechanical stretching, thixotropy, low creep, and fast strain recovery, confirming their elastomeric sustainability. Moreover, the room-temperature self-healing behavior was observed for the ACDs-reinforced hydrogels, with a healing efficacy of more than 45%. Water imbibition through hydrogel surfaces was digitally monitored via “breathing” and “accelerated …

Show more

Dec 2022 • Materials Today Energy

Ionically selective carbon nanotubes for hydrogen electrocatalysis in the hydrogen–bromine redox flow battery

Samuel S Hardisty, Kobby Saadi, Samala Nagaprasad Reddy, Ilya Grinberg, David Zitoun

Catalyst poisoning and leaching is a problem faced in almost all catalyst applications. A specific technology where catalyst poisoning and leaching are a major concern is the hydrogen bromine redox flow battery (H 2-B r 2 RFB), one of the most promising energy storage technologies. However, it is currently hindered through degradation of the hydrogen oxidation/evolution catalyst, caused by B r-/B r 3-which have crossed the membrane. To prevent this degradation, Pt nanoparticles were synthesized inside 2 nm single-walled carbon nanotubes (SWCNTs). Electrochemical and spectroscopic techniques show that the Pt@ SWCNT has a vastly improved stability and higher mass activity over a commercial 50% Pt/C catalyst. Density functional theory (DFT) calculations show that the stability results from the selective diffusion of H 2 and H+ over the B r-and B r 3-species through the SWCNT to the Pt catalyst, effectively …

Show more

Dec 2022 • Biophysics Reviews 3 (4), 2022

The actin cytoskeleton: Morphological changes in pre-and fully developed lung cancer

Arkaprabha Basu, Manash K Paul, Shimon Weiss

Actin, a primary component of the cell cytoskeleton can have multiple isoforms, each of which can have specific properties uniquely suited for their purpose. These monomers are then bound together to form polymeric filaments utilizing adenosine triphosphate hydrolysis as a source of energy. Proteins, such as Arp2/3, VASP, formin, profilin, and cofilin, serve important roles in the polymerization process. These filaments can further be linked to form stress fibers by proteins called actin-binding proteins, such as α-actinin, myosin, fascin, filamin, zyxin, and epsin. These stress fibers are responsible for mechanotransduction, maintaining cell shape, cell motility, and intracellular cargo transport. Cancer metastasis, specifically epithelial mesenchymal transition (EMT), which is one of the key steps of the process, is accompanied by the formation of thick stress fibers through the Rho-associated protein kinase, MAPK/ERK …

Show more

Dec 2022 • ACS Applied Energy Materials

Garnet-Type Lithium Metal Fluorides: A Potential Solid Electrolyte for Solid-State Batteries

Ediga Umeshbabu, Satyanarayana Maddukuri, Doron Aurbach, Maximilian Fichtner, Anji Reddy Munnangi

In this work, we introduced a garnet-type lithium metal fluoride, Li3Na3M2F12 (M = Al, Sc, In), as solid-state lithium-ion conductors for the first time. The mechanically milled Li3Na3M2F12 compounds crystallized in a cubic garnet-like structure (Ia3̅d, No. 230). The ionic conductivities of Li3Na3Al2F12, Li3Na3Sc2F12, and Li3Na3In2F12 are 1.7 × 10–6, 8.2 × 10–6, and 2.4 × 10–6 S/cm at 300 °C and 1.2 × 10–10, 2.6 × 10–9, and 1.8 × 10–10 S/cm at 100 °C, respectively. Even though these fluoride garnets’ conductivity is less, it is still better than those of the oxide analogues Li3Ln3Te2O12 (Ln = Er, Gd, Tb, Nd). Moreover, we explored why garnet-type Li3Na3M2F12 has low ionic conductivity and presented strategies for further improving conductivities.

Show more

logo
Articali

Powered by Articali

TermsPrivacy