BINA

3583 articles

75 publishers

Join mailing list

2022 • RSC Advances

Prospect of making XPS a high-throughput analytical method illustrated for a Cu x Ni 1− x O y combinatorial material library

Lucas CW Bodenstein-Dresler, Adi Kama, Johannes Frisch, Claudia Hartmann, Anat Itzhak, Regan G Wilks, David Cahen, Marcus Bär

Show more

2022 • Micro-and Nano-containers for Smart Applications, 127-153, 2022

Containers for Drug Delivery

Sayan Ganguly, Poushali Das, Shlomo Margel

Precise delivery of therapeutic cargos to the destined location is a medical demand for desirable physiological responses. In this discussion the synthetic approaches to prepare cargos and their mode of delivery have been addressed. The versatile synthesis and materialistic approaches have revealed by various scientists that besides carrying drugs/biomolecules the protection is also needed. The merits and demerits of those various architectural units also have been discussed in brief to assess their acceptability and mode of usages.

Show more

2022 • Frontiers in Endocrinology

ADAR1-dependent editing regulates human β cell transcriptome diversity during inflammation

Florian Szymczak, Roni Cohen-Fultheim, Sofia Thomaidou, Alexandra Coomans de Brachène, Angela Castela, Maikel Colli, Piero Marchetti, Erez Levanon, Decio Eizirik, Arnaud Zaldumbide

Methods: Using high-throughput RNA sequencing data from human islets and EndoC-βH1 cells exposed to IFNα or IFNγ/IL1β, we evaluated the role of ADAR1 in human pancreatic β cells and determined the impact of the type 1 diabetes pathophysiological environment on ADAR1-dependent RNA editing.Results: We show that both IFNα and IFNγ/IL1β stimulation promote ADAR1 expression and increase the A-to-I RNA editing of Alu-Containing mRNAs in EndoC-βH1 cells as well as in primary human islets.Discussion: We demonstrate that ADAR1 overexpression inhibits type I interferon response signaling, while ADAR1 silencing potentiates IFNα effects. In addition, ADAR1 overexpression triggers the generation of alternatively spliced mRNAs, highlighting a novel role for ADAR1 as a regulator of the β cell transcriptome under inflammatory conditions.

Show more

2022 • Frontiers in Endocrinology

ADAR1-dependent editing regulates human β cell transcriptome diversity during inflammation

Florian Szymczak, Roni Cohen-Fultheim, Sofia Thomaidou, Alexandra Coomans de Brachène, Angela Castela, Maikel Colli, Piero Marchetti, Erez Levanon, Decio Eizirik, Arnaud Zaldumbide

Methods: Using high-throughput RNA sequencing data from human islets and EndoC-βH1 cells exposed to IFNα or IFNγ/IL1β, we evaluated the role of ADAR1 in human pancreatic β cells and determined the impact of the type 1 diabetes pathophysiological environment on ADAR1-dependent RNA editing.Results: We show that both IFNα and IFNγ/IL1β stimulation promote ADAR1 expression and increase the A-to-I RNA editing of Alu-Containing mRNAs in EndoC-βH1 cells as well as in primary human islets.Discussion: We demonstrate that ADAR1 overexpression inhibits type I interferon response signaling, while ADAR1 silencing potentiates IFNα effects. In addition, ADAR1 overexpression triggers the generation of alternatively spliced mRNAs, highlighting a novel role for ADAR1 as a regulator of the β cell transcriptome under inflammatory conditions.

Show more

2022 • Proc. of SPIE Vol

A user-friendly tool to convert photon counting data to the open-source Photon-HDF5 file format

Donald Ferschweiler, Maya Segal, Shimon Weiss, Xavier Michalet

Photon-HDF5 is an open-source and open file format for storing photon-counting data from single molecule microscopy experiments, introduced to simplify data exchange and increase the reproducibility of data analysis. Part of the Photon-HDF5 ecosystem, is phconvert, an extensible python library that allows converting proprietary formats into Photon-HDF5 files. However, its use requires some proficiency with command line instructions, the python programming language, and the YAML markup format. This creates a significant barrier for potential users without that expertise, but who want to benefit from the advantages of releasing their files in an open format. In this work, we present a GUI that lowers this barrier, thus simplifying the use of Photon-HDF5. This tool uses the phconvert python library to convert data files originally saved in proprietary data formats to Photon-HDF5 files, without users having to write a …

Show more

2022 • Battery Energy

Li/graphene oxide primary battery system and mechanism

Denis Kornilov, Tirupathi Rao Penki, Andrey Cheglakov, Doron Aurbach

A novel type of Li/graphene oxide (Li/GO) battery based on a spontaneous redox reaction between Li metal and GO cathode is introduced as an alternative viable primary battery system. Here, we present an efficient synthesis of GO by the modified Hummers method and focus on a comprehensive study of the reduction mechanism. The Li/GO battery was thoroughly analyzed by various physical and electrochemical methods. GO rich in oxygen‐bearing functional groups on graphene layers provided lithium storage sites and delivered a high discharge capacity of around 720 mAh/g at 12 mA/g. Products formed on the surface during reduction were analyzed, and a mechanism was proposed. The results uncovered the reasons underlying the improved electrochemical properties and the contribution of the irreversible capacity of reduced GO in graphene‐based composite electrode materials for metal‐ion batteries …

Show more

2022 • Proc. of SPIE Vol

Quantum hard x-ray microscopy with undetected photons

Haim Aknin, Sharon Shwartz

We explore the possibility for implementing nanoscale quantum imaging based on the concept of undetected photons with a pumping beam at x-ray wavelengths. Our proposed scheme exploits the nearly four order of magnitude angular magnification that is a result of the process of the effect of extreme non-degenerate spontaneous down conversion from xrays into optical radiation, which is used for the generation of entangled photon pairs with one x-ray photon and one visible photon. In our scheme the x-ray photons interact with the object and the visible do not interact with the object, but in contrast to other schemes like ghost imaging, only the visible photons are detected. The scheme is sensitive to both the amplitude and the phase variations and can provide resolutions down to a few nanometers, hence can be used as a powerful tool for nanoscale imaging. In the present configuration, the scheme requires very …

Show more

2022 • Advanced Functional Materials

Bioengineering 3D Neural Networks Using Magnetic Manipulations

Reut Plen, Alejandra Smith, Ofir Blum, Or Aloni, Uri Locker, Zehavit Shapira, Shlomo Margel, Orit Shefi

Controlling nerve cells to form pre‐designed 3D neural networks that recapitulate the intricate neural interconnectivity in the brain is essential for developing neuronal interfaces and new regeneration approaches. Here, nerve cells within 3D biomaterials are dynamically localized using nano‐based magnetic manipulations. Nerve cells are transformed into magnetic units and their organizational layout is manipulated using external magnetic field gradients. Iron oxide nanoparticles are incorporated into both Pheochromocytoma cell‐line 12 (PC12) cells and primary mice cortical neurons and the magnetized cells are subjected to multiple magnetic fields using pre‐designed magnetic arrays. Their movement is controlled inside multi‐layered 3D collagen scaffolds, which simulate the innate properties of in‐vivo tissue structures. Via these magnetic manipulations, functional 3D microarchitectures of neural networks are …

Show more

2022 • CHEMICAL BULLETIN

GA Seilkhanova1, 2*, AB Rakhym1, 2, AV Kan1, AK Kenessova1, 2

Yitzhak Mastai

In this work, sorbents based on natural zeolite (Z) and chamotte clay (ChC) treated with NaCl and HNO3 solutions were obtained to extract Na+ and K+ ions from saline water. The physicochemical characteristics of the obtained sorbents were studied by SEM, EDAX, and BET methods. It was found that successive treatment with NaCl and HNO3 solutions has a positive effect on the sorption properties of the studied materials. The maximum increase in the specific surface area from 4.5 m2/g to 39.3 m2/g is observed for acid-treated Z, and the specific surface area of ChC also increases almost 2-fold from 8.4 m2/g to 15.3 m2/g. Na+ and K+ ions are extracted from water due to ion exchange with Z and ChC cations. As a result of determining the cation exchange capacity (CEC) of the studied sorbents, it was found that treatment with a NaCl solution improves the ion exchange properties of the sorbent and leads to the formation of a “homoionic” form of aluminosilicates. Due to that the sorbents more easily enter ion exchange reactions. The authors established the sorption activity of the obtained materials based on natural Z and ChC with respect to Na+ and K+ cations. The maximum recovery rate is 28.45% for Na+ ions with the ChC-Na-H sorbent and 76.28% for K+ ions with the ChC-Na sorbent. Among Z-based sorbents, the most effective forms are Z-Na-H (15.44% Na+ recovery) and Z-Na (60.47% K+ recovery).

Show more

2022 • Advanced Materials Interfaces

Surface Interactions of Oxygen Suffice to P‐Dope the Halide Perovskites

Ansuman Halder, Anat Itzhak, Eli Rosh Hodesh, Shay Tirosh, David Cahen

Attempts to dope halide perovskites (HaPs) extrinsically have been mostly unsuccessful. Still, oxygen (O2) is an efficient p‐dopant for polycrystalline HaP films. To an extent, this doping is reversible, i.e., the films can be de‐doped by decreasing the O2 partial pressure. Here results are reported, aimed at understanding the mechanism of such reversible doping, as it has been argued that doping involves interaction of oxygen with defects inside bulk HaP. These experimental results clearly point out that O2‐surface interactions suffice to dope the bulk of the films. Such behavior fits what is known for other polycrystalline semiconductors, where surface charge transfer‐adducts can form and be removed. Thus, controlling the O2 partial pressure to which the HaP film is exposed, can, after proper encapsulation, achieve the desired bulk doping of the film.

Show more

2022 • Advanced Functional Materials

2D Pb‐Halide Perovskites Can Self‐Heal Photodamage Better than 3D Ones

Sigalit Aharon, Davide Raffaele Ceratti, Naga Prathibha Jasti, Llorenç Cremonesi, Yishay Feldman, Marco Alberto Carlo Potenza, Gary Hodes, David Cahen

Adding a 2D character to halide perovskite (HaP) active layers in ambient‐protected cells can improve their stability drastically, which is not obvious from the hydrophobicity of the large cations that force the HaP into a 2D structure. Results of two‐photon confocal microscopy are reported to study inherent photo‐stability of 2D Pb iodide HaPs in the interior of single crystals. Compared to 3D HaP crystals, 2D ones have higher photo‐stability and, under a few sun‐equivalent conditions, self‐heal efficiently after photo‐damage. Using both photoluminescence (PL) intensities (as function of time after photo‐damage) and spectra, self‐healing dynamics of 2D HaP (C4H9NH3)2PbI4, 2D/3D (C4H9NH3)2(CH3NH3)2Pb3I10 and 3D MAPbI3 are compared. Differences in response to photo‐damage and self‐healing ability from different degrees of photo‐damage are found between these HaPs. Based on the findings, a …

Show more

2022 • Evolution, Biodiversity and a Reassessment of the Hygiene Hypothesis, 105-140, 2022

Regulation of host immunity by the gut microbiota

Hannah Partney, Nissan Yissachar

Constant exposure to diverse microorganisms has accompanied human evolution and continues to shape immunological development throughout life. In mucosal tissues, both innate and adaptive arms of the immune system are required to support healthy mutualistic interactions with the resident microbiota, while aggressively fighting pathogenic infections. Technological breakthroughs over the past decade facilitated groundbreaking discoveries that transformed our understanding of intestinal immunology and established the gut microbiota as a critical factor that shapes immunological development and function. Indeed, alterations to microbiota composition (dysbiosis) are associated with a wide array of human diseases, including autoimmune diseases, chronic inflammation, the metabolic syndrome, and cancer. In this chapter, we discuss fundamental concepts that underlie microbiota-immune system crosstalks …

Show more

2022 • s Note: MDPI stays neutral with regard to jurisdictional claims in published …, 2022

Nitrogen Structure Determination in Treated Fancy Diamonds via EPR Spectroscopy. Crystals 2022, 12, 1775

I Litvak, A Cahana, Y Anker, S Ruthstein, H Cohen

Color induction in nitrogen-contaminated diamonds was carried out via various procedures that involve irradiation, thermal treatments (annealing), and more. These treatments affect vacancy defect production and atom orientation centers in the diamond lattice. Natural diamonds underwent color enhancement treatments in order to produce green, blue, and yellow fancy diamonds. The aim of this study was to follow the changes occurring during the treatment, mainly by EPR spectroscopy, which is the main source for the determination of the effect of paramagnetic centers (carbon-centered radicals) on the color centers produced via the treatments, but also via visual assessment, fluorescence, UV-vis, and FTIR spectroscopy. The results indicate that diamonds containing high levels of nitrogen contamination are associated with high carbon-centered radical concentrations. Four paramagnetic center structures (N1, N4, and P2/W21) were generated by the treatment. It is suggested that the N4 structure correlates with the formation of blue color centers, whereas yellow color centers are attributed to the presence of N1 species. While to produce blue and yellow colors, a thermal treatment is needed after irradiation, for treated green diamonds, no thermal treatment is needed (only irradiation).

Show more

2022 • s Note: MDPI stays neutral with regard to jurisdictional claims in published …, 2022

Phosphate-Trapping Liposomes for Long-Term Management of Hyperphosphatemia. Materials 2022, 15, 7779

C Tzror-Azankot, A Anaki, T Sadan, M Motiei, R Popovtzer

Hyperphosphatemia is a typical complication of end-stage renal disease, characterized by elevated and life-threatening serum phosphate levels. Hemodialysis does not enable sufficient clearance of phosphate, due to slow cell-to-plasma kinetics of phosphate ions; moreover, dietary restrictions and conventional treatment with oral phosphate binders have low success rates, together with adverse effects. Here, we developed a new concept of phosphate-trapping liposomes, to improve and prolong the control over serum phosphate levels. We designed liposomes modified with polyethylene glycol and encapsulated with the phosphate binder ferric citrate (FC liposomes). These liposomes were found to trap phosphate ions in their inner core, and thereby lower free phosphate ion concentrations in solution and in serum. The FC liposomes showed higher phosphate binding ability as phosphate concentrations increased. Moreover, these liposomes showed a time-dependent increase in uptake of phosphate, up to 25 h in serum. Thus, our findings demonstrate effective long-term phosphate trapping by FC liposomes, indicating their potential to reduce serum phosphate toxicity and improve current management of hyperphosphatemia.

Show more

2022 • s Note: MDPI stays neutral with regard to jurisdictional claims in published …, 2022

Placenta-Derived Mesenchymal-like Adherent Stromal Cells as an Effective Cell Therapy for Cocaine Addiction in a Rat Model. Pharmaceutics 2022, 14, 1311

H Pe’er-Nissan, H Ahdoot-Levi, O Betzer, PS Itzhak, N Shraga-Heled, I Gispan, M Motiei, A Doroshev, Y Anker, R Popovtzer

Recent research points to mesenchymal stem cells’ potential for treating neurological disorders, especially drug addiction. We examined the longitudinal effect of placenta-derived mesenchymal stromal-like cells (PLX-PAD) in a rat model for cocaine addiction. Sprague–Dawley male rats were trained to self-administer cocaine or saline daily until stable maintenance. Before the extinction phase, PLX-PAD cells were administered by intracerebroventricular or intranasal routes. Neurogenesis was evaluated, as was behavioral monitoring for craving. We labeled the PLX-PAD cells with gold nanoparticles and followed their longitudinal migration in the brain parallel to their infiltration of essential peripheral organs both by micro-CT and by inductively coupled plasmaoptical emission spectrometry. Cell locations in the brain were confirmed by immunohistochemistry. We found that PLX-PAD cells attenuated cocaine-seeking behavior through their capacity to migrate to specific mesolimbic regions, homed on the parenchyma in the dentate gyrus of the hippocampus, and restored neurogenesis. We believe that intranasal cell therapy is a safe and effective approach to treating addiction and may offer a novel and efficient approach to rehabilitation.

Show more

2022 • Physical Chemistry Chemical Physics

The effects of thermal treatment and irradiation on the chemical properties of natural diamonds

Ira Litvak, Haim Cohen, Sharon Ruthstein, Yaakov Anker, Avner Cahana

The modification of nitrogen-contaminated diamonds into color-enhanced diamonds is usually achieved by irradiation and thermal treatment (annealing). These treatments affect nitrogen contamination chemical bonding, vacancy concentration, and atom orientation centers in the diamond lattice. In this study, natural diamonds were subjected to irradiation and thermal annealing color enhancement treatments to produce green, blue, and yellow fancy diamonds. The study followed the changes that occur during treatment relying on visual assessment, fluorescence, UV-vis, FTIR, and EPR spectroscopy to characterize paramagnetic centers. The results indicated that diamonds containing high levels of nitrogen contamination presented a relatively high carbon-centered radical concentration. Two paramagnetic groups with different g-values were found, namely, low g-value centers of 2.0017-2.0027 and high g-value …

Show more

2022 • Physical Chemistry Chemical Physics

Electron transport via tyrosine-doped oligo-alanine peptide junctions: role of charges and hydrogen bonding

Cunlan Guo, Yulian Gavrilov, Satyajit Gupta, Tatyana Bendikov, Yaakov Levy, Ayelet Vilan, Israel Pecht, Mordechai Sheves, David Cahen

A way of modulating the solid-state electron transport (ETp) properties of oligopeptide junctions is presented by charges and internal hydrogen bonding, which affect this process markedly. The ETp properties of a series of tyrosine (Tyr)-containing hexa-alanine peptides, self-assembled in monolayers and sandwiched between gold electrodes, are investigated in response to their protonation state. Inserting a Tyr residue into these peptides enhances the ETp carried via their junctions. Deprotonation of the Tyr-containing peptides causes a further increase of ETp efficiency that depends on this residue’s position. Combined results of molecular dynamics simulations and spectroscopic experiments suggest that the increased conductance upon deprotonation is mainly a result of enhanced coupling between the charged C-terminus carboxylate group and the adjacent Au electrode. Moreover, intra-peptide hydrogen …

Show more

2022 • Chemical Communications

Redox-and metal-directed structural diversification in designed metalloprotein assemblies

Albert Kakkis, Eyal Golub, Tae Su Choi, F Akif Tezcan

Herein we describe a designed protein building block whose self-assembly behaviour is dually gated by the redox state of disulphide bonds and the identity of exogenous metal ions. This protein construct is shown – through extensive structural and biophysical characterization – to access five distinct oligomeric states, exemplifying how the complex interplay between hydrophobic, metal–ligand, and reversible covalent interactions could be harnessed to obtain multiple, responsive protein architectures from a single building block.

Show more

2022 • Small

Improved Cycling Stability of LiNi0.8Co0.1Mn0.1O2 Cathode Material via Variable Temperature Atomic Surface Reduction with Diethyl Zinc

Arka Saha, Sarah Taragin, Sandipan Maiti, Tatyana Kravchuk, Nicole Leifer, Maria Tkachev, Malachi Noked

High‐Ni‐rich layered oxides [e.g., LiNixCoyMnzO2; x > 0.5, x + y + z = 1] are considered one of the most promising cathodes for high‐energy‐density lithium‐ion batteries (LIB). However, extreme electrode–electrolyte reactions, several interfacial issues, and structural instability restrict their practical applicability. Here, a shortened unconventional atomic surface reduction (ASR) technique is demonstrated on the cathode surface as a derivative of the conventional atomic layer deposition (ALD) process, which brings superior cell performances. The atomic surface reaction (reduction process) between diethyl‐zinc (as a single precursor) and Ni‐rich NMC cathode [LiNi0.8Co0.1Mn0.1O2; NCM811] material is carried out using the ALD reactor at different temperatures. The temperature dependency of the process through advanced spectroscopy and microscopy studies is demonstrated and it is shown that thin surface …

Show more

2022 • Chemical Communications

Photoacoustic measurement of localized optical dichroism in chiral crystals

Gil Otis, Matan Benyamin, Yitzhak Mastai, Zeev Zalevsky

In this communication, we present a novel method to measure local optical dichroism (OD) in opaque crystal powder suspensions using photoacoustic (PA) effect. Our method is based upon the novel laser speckle contrast technique, in combination with a simple statistical approach, we were able to measure the OD of chiral crystals suspensions under completely random orientation.

Show more

2022 • Magnetochemistry 8 (1), 3, 2022

The Advantages of EPR Spectroscopy in Exploring Diamagnetic Metal Ion Binding and Transfer Mechanisms in Biological Systems

Shelly Meron, Yulia Shenberger, Sharon Ruthstein

Electron paramagnetic resonance (EPR) spectroscopy has emerged as an ideal biophysical tool to study complex biological processes. EPR spectroscopy can follow minor conformational changes in various proteins as a function of ligand or protein binding or interactions with high resolution and sensitivity. Resolving cellular mechanisms, involving small ligand binding or metal ion transfer, is not trivial and cannot be studied using conventional biophysical tools. In recent years, our group has been using EPR spectroscopy to study the mechanism underlying copper ion transfer in eukaryotic and prokaryotic systems. This mini-review focuses on our achievements following copper metal coordination in the diamagnetic oxidation state, Cu(I), between biomolecules. We discuss the conformational changes induced in proteins upon Cu(I) binding, as well as the conformational changes induced in two proteins involved in Cu(I) transfer. We also consider how EPR spectroscopy, together with other biophysical and computational tools, can identify the Cu(I)-binding sites. This work describes the advantages of EPR spectroscopy for studying biological processes that involve small ligand binding and transfer between intracellular proteins.

Show more

logo
Articali

Powered by Articali

TermsPrivacy