Feb 2023 • Results in Surfaces and Interfaces
Naftali Kanovsky, Taly Iline-Vul, Shlomo Margel
Superhydrophobic surfaces are receiving increasing attention due to their real-world applications. However, these surfaces suffer from a lack of durability and complicated synthetic processes. This research uses a combination of a simple in-situ coating process between oxygen-activated polypropylene films and unreacted silane monomers. The in-situ process uses a modified Stöber method with the addition of the surfactant cetyltrimethylammonium bromide (CTAB) which aggregates silica (SiO 2) particles in a basic aqueous solution. This resulted in a layer of covalently bonded hierarchical coating of individual and aggregated SiO 2 “flakes” and particles. These coatings were found to have at least double the surface roughness than samples prepared without CTAB with superhydrophilic properties due to their high surface roughness and hydrophilic surface chemical groups. A second layer of fluorocarbon silane …
Show moreFeb 2023 • The Journal of Physical Chemistry C
Shmuel Gonen, Oran Lori, Noam Zion, Lior Elbaz
Extensive research work has been invested in the past decade in finding replacements for platinum-based electrocatalysts for the oxygen reduction reaction in fuel cells. The majority of these alternative electrocatalysts are based on transition-metal ions coordinated by organic ligands. Different from previously reported approaches for electrocatalysts, we describe here the synthesis, characterization, and oxygen reduction reaction activity of lanthanide complex electrocatalyst with ytterbium as the metal center. A metal–organic framework of Yb and benzene tricarboxylic acid as a ligand was synthesized on activated carbon (Yb(III)BTC@AC) to achieve electrical conductivity in a procedure similar to M-BTC@AC electrocatalysts with transition-metal centers. The Yb complex in activated carbon presents oxygen reduction reaction activity in alkaline solution with high onset potential relative to other nonpyrolyzed …
Show moreFeb 2023 • Journal of Power Sources
Mohsin Muhyuddin, Ariel Friedman, Federico Poli, Elisabetta Petri, Hilah Honig, Francesco Basile, Andrea Fasolini, Roberto Lorenzi, Enrico Berretti, Marco Bellini, Alessandro Lavacchi, Lior Elbaz, Carlo Santoro, Francesca Soavi
Metal-nitrogen-carbons (M-N-Cs) as a reliable substitution for platinum-group-metals (PGMs) for oxygen reduction reaction (ORR) are emerging candidates to rationalize the technology of fuel cells. The development of M-N-Cs can further be economized by consuming waste biomass as an inexpensive carbon source for the electrocatalyst support. Herein, we report the simple fabrication and in-depth characterization of electrocatalysts using lignin-derived activated char. The activated char (LAC) was functionalized with metal phthalocyanine (FePc and MnPc) via atmosphere-controlled pyrolysis to produce monometallic M-N-Cs (L_Mn and L_Fe) and bimetallic M1-M2-N-Cs (L_FeMn) electrocatalysts. Raman spectroscopy and transmission electron microscopy (TEM) revealed a defect-rich architecture. XPS confirmed the coexistence of various nitrogen-containing active moieties. L_Fe and L_FeMn demonstrated …
Show moreFeb 2023
Daniel Allen, Orli Knop, Bryan Itkowitz, Ortal Iancu, Katia Beider, Yu Nee Lee, Arnon Nagler, Raz Somech, Ayal Hendel
RAG2-SCID is a primary immunode ciency caused by mutations in Recombination-activating gene 2 (RAG2), a gene intimately involved in the process of lymphocyte maturation and function. ex-vivo manipulation of a patient’s own hematopoietic stem and progenitor cells (HSPCs) using CRISPR-Cas9/rAAV6 gene editing could provide a therapeutic alternative to the only current treatment, allogeneic hematopoietic stem cell transplantation (HSCT). Here we show a rst-of-its-kind RAG2 correction strategy that replaces the entire endogenous coding sequence (CDS) to preserve the critical endogenous spatiotemporal gene regulation and locus architecture. Expression of the corrective transgene led to successful development into CD3+TCRαβ+ and CD3+TCRγδ+ T cells and promoted the establishment of highly diverse TRB and TRG repertoires in an in-vitro T-cell differentiation platform. We believe that a CDS replacement technique to correct tightly regulated genes, like RAG2, while maintaining critical regulatory elements and conserving the locus structure could bring safer gene therapy techniques closer to the clinic.
Show moreJan 2023 • Materials Reports: Energy, 100178, 2023
Shuxia Liu, Tanyuan Wang, Lior Elbaz, Qing Li
The electrocatalytic CO2 reduction in aqueous solution mainly involves bond cleavage and formation between C, H and O, and it is highly desirable to expand the bond formation reaction of C with other atoms to obtain novel and valuable chemicals. The electrochemical synthesis of N-containing organic chemicals in electrocatalytic CO2 reduction via introducing N sources is an effective strategy to expand the product scope, since chemicals containing C–N bonds (e.g. amides and amines) are important reactants/products for medicine, agriculture and industry. This article focuses on the research progress of C–N coupling from CO2 and inorganic nitrogenous species in aqueous solution. Firstly, the reaction pathways related to the reaction intermediates for urea, formamide, acetamide, methylamine and ethylamine are highlighted. Then, the electrocatalytic performance of different catalysts for these several N …
Show moreJan 2023 • bioRxiv
Ortal Iancu, Daniel Allen, Orli Knop, Yonathan Zehavi, Dor Breier, Adaya Arbiv, Atar Lev, Yu Nee Lee, Katia Beider, Arnon Nagler, Raz Somech, Ayal Hendel
Severe combined immunodeficiency (SCID) is a group of monogenic primary immunodeficiencies caused by mutations in genes involved in the process of lymphocyte maturation and function. CRISPR-Cas9 gene editing of the patient9s own hematopoietic stem and progenitor cells (HSPCs) ex vivo could provide a therapeutic alternative to allogeneic hematopoietic stem cell transplantation (HSCT), the current gold standard for treatment of SCID. Using CRISPR-Cas9/rAAV6 gene-editing, we engineered genotypes in healthy donor (HD)-derived CD34+ HSPCs, thus eliminating the need for rare patient samples, to model both SCID and the therapeutic outcomes of gene-editing therapies for SCID via multiplexed homology directed repair (HDR). Firstly, we developed a SCID disease model via knock-out of both alleles of genes critical to the development of lymphocytes; and secondly, we established a knock-in/knock-out (KI-KO) strategy to develop a proof-of-concept single-allelic gene correction. Since SCID is a recessive disorder, correction of only one allele is enough to cure the patient. Based on these results, we performed gene correction of RAG2-SCID patient-derived CD34+ HSPCs that successfully developed into CD3+ T cells with diverse TCR repertoires in an in vitro T-cell differentiation (IVTD) platform. By using CRISPR-Cas9, multiplexed HDR, HD-derived CD34+ HSPCs, and an IVTD system we outline an approach for the study of human lymphopoiesis. We present both a way for researchers to determine the optimal configuration for CRISPR-Cas9 gene correction of SCID and other recessive blood disorders, and the feasibility of …
Show moreJan 2023 • Optics Express
Maayan Priel, Saawan Kumar Bag, Matan Slook, Leroy Dokhanian, Inbar Shafir, Mirit Hen, Moshe Katzman, Etai Grunwald, Dvir Munk, Moshe Feldberg, Tali Sharabani, Naor Inbar, Gil Bashan, Avi Zadok
Opto-electronic oscillators are sources of microwave-frequency tones that may reach very low noise levels. Much effort is being dedicated to the realization of oscillators based on photonic integrated devices. In this work, we propose and demonstrate a thermo-elastic opto-electronic oscillator at 2.213 GHz frequency based on a standard silicon-photonic integrated circuit. A microwave-frequency electrical signal modulates an optical pump wave carrier. The modulated waveform launches surface acoustic waves in a silicon-on-insulator substrate, through absorption in a metallic grating and thermo-elastic actuation. The waveform is reconverted to the optical domain through photoelastic modulation of an optical probe wave carrier in a standard racetrack resonator waveguide. Both the thermo-elastic actuation and the photoelastic modulation are radio-frequency selective. The output probe wave is detected, and the receiver voltage is amplified and fed back to modulate the optical pump input. Sufficient gain drives the loop into oscillations. The oscillator does not involve piezoelectricity and can be realized on any substrate. Long acoustic delays may be implemented in compact devices. The frequency of operation is scalable to tens of GHz. The principle may be useful in integrated microwave-photonic signal processing and in the elastic analysis of surfaces and thin layers.
Show moreJan 2023 • Journal of the American Chemical Society
Yan Yurko, Lior Elbaz
The increasing interest and need to shift to sustainable energy give rise to the utilization of fuel cell technologies in various applications. The challenging task of hydrogen storage and transport led to the development of liquid hydrogen carriers (LHCs) as fuels for direct LHC fuel cells, such as methanol in direct methanol fuel cells (DMFCs). Although simpler to handle, most direct LHC fuel cells suffer from durability and price issues derived from high catalysts’ loadings and byproducts of the oxidation reaction of the fuel. Herein, we report on the development of direct hydroquinone fuel cells (DQFCs) based on anthraquinone-2,7-disulfonic acid (AQDS) as an LHC. We have shown that DQFC can operate with a continuous flow of quinone as a hydrogen carrier, outperforming the incumbent state-of-the-art DMFC by a factor of 3 in peak power density while completely removing the need for any catalyst at the anode. In …
Show moreJan 2023 • Biochemistry
Melanie Hirsch, Lukas Hofmann, Yulia Shenberger, Lada Gevorkyan-Airapetov, Sharon Ruthstein
Metal transcription factors regulate metal concentrations in eukaryotic and prokaryotic cells. Copper is a metal ion that is being tightly regulated, owing to its dual nature. Whereas copper is an essential nutrient for bacteria, it is also toxic at high concentrations. CopY is a metal-sensitive transcription factor belonging to the copper-responsive repressor family found in Gram-positive bacteria. CopY represses transcription in the presence of Zn(II) ions and initiates transcription in the presence of Cu(I) ions. The complete crystal structure of CopY has not been reported yet, therefore most of the structural information on this protein is based on its similarity to the well-studied MecI protein. In this study, electron paramagnetic resonance (EPR) spectroscopy was used to characterize structural and local dynamical changes in Streptococcus pneumoniae CopY as a function of Zn(II), Cu(I), and DNA binding. We detected different …
Show moreJan 2023 • Analysis & Sensing
Kevin Singewald, Hannah Hunter, Timothy F Cunningham, Sharon Ruthstein, Sunil Saxena
The cover feature image illustrates two sites of a protein with different site specific reorientational dynamics (purple). Such differences can be measured by newly developed site-directed Cu (II) labeling methodology. The resultant EPR lineshape at physiological temperatures is sensitive to the timescale of backbone motion. Importantly, this methodology enables site-specific detection on both α-helices and β-sheets via EPR. Thus, the role of protein dynamics to protein function can be elucidated. More information can be found in the Review by Sunil Saxena and co-workers.
Show moreJan 2023 • arXiv preprint arXiv:2301.08097
Yaakov Yudkin, Paul S Julienne, Lev Khaykovich
A distinguishing feature of ultracold collisions of bosonic lithium atoms is the presence of two near-degenerate two-body continua. The influence of such a near-degeneracy on the few-body physics in the vicinity of a narrow Feshbach resonance is investigated within the framework of a minimal model with two atomic continua and one closed molecular channel. The model allows analysis of the spin composition of loosely bound dimers and trimers. In the two-body sector the well-established coupled-channels calculations phenomenology of lithium is qualitatively reproduced, and its particularities are emphasized and clarified. In the three-body sector we find that the Efimov trimer energy levels follow a different functional form as compared to a single continuum scenario while the thresholds remain untouched. This three-channel model with two atomic continua complements our earlier developed three-channel model with two molecular channels [Y. Yudkin and L. Khaykovich, Phys. Rev. A 103, 063303 (2021)] and suggests that the experimentally observed exotic behavior of the first excited Efimov energy level [Y. Yudkin, R. Elbaz and L. Khaykovich, arXiv:2004.02723] is most probably caused by the short-range details of the interaction potential.
Show moreJan 2023 • Proc. of SPIE Vol
Dror Fixler, Ewa M Goldys, Sebastian Wachsmann-Hogiu
PROCEEDINGS OF SPIE Page 1 PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Front Matter: Volume 12394 , "Front Matter: Volume 12394," Proc. SPIE 12394, Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XX, 1239401 (2 May 2023); doi: 10.1117/12.2678752 Event: SPIE BiOS, 2023, San Francisco, California, United States Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 03 May 2023 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Page 2 PROGRESS IN BIOMEDICAL OPTICS AND IMAGING Vol. 24 No. 43 Volume 12394 Proceedings of SPIE, 1605-7422, V. 12394 SPIE is an international society advancing an interdisciplinary approach to the science and application of light. Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XX Dror Fixler Ewa M. Goldys Sebastian Wachsmann-…
Show moreJan 2023 • International Journal of Molecular Sciences
Yaron Trink, Achia Urbach, Benjamin Dekel, Peter Hohenstein, Jacob Goldberger, Tomer Kalisky
Wilms’ tumors are pediatric malignancies that are thought to arise from faulty kidney development. They contain a wide range of poorly differentiated cell states resembling various distorted developmental stages of the fetal kidney, and as a result, differ between patients in a continuous manner that is not well understood. Here, we used three computational approaches to characterize this continuous heterogeneity in high-risk blastemal-type Wilms’ tumors. Using Pareto task inference, we show that the tumors form a triangle-shaped continuum in latent space that is bounded by three tumor archetypes with “stromal”,“blastemal”, and “epithelial” characteristics, which resemble the un-induced mesenchyme, the cap mesenchyme, and early epithelial structures of the fetal kidney. By fitting a generative probabilistic “grade of membership” model, we show that each tumor can be represented as a unique mixture of three hidden “topics” with blastemal, stromal, and epithelial characteristics. Likewise, cellular deconvolution allows us to represent each tumor in the continuum as a unique combination of fetal kidney-like cell states. These results highlight the relationship between Wilms’ tumors and kidney development, and we anticipate that they will pave the way for more quantitative strategies for tumor stratification and classification.
Show moreJan 2023 • bioRxiv
Hadar Bootz-Maoz, Ariel Simon, Sara Del Mare-Roumani, Yifat Bennet, Danping Zheng, Sivan Amidror, Eran Elinav, Nissan Yissachar
The intestinal epithelial barrier facilitates homeostatic host-microbiota interactions and immunological tolerance. However, mechanistic dissections of barrier dynamics following luminal stimulation pose a substantial challenge. Here, we describe an ex-vivo intestinal permeability assay, X-IPA, for quantitative analysis of gut permeability dynamics at the whole-tissue level. We demonstrate that specific gut microbes and metabolites induce rapid, dose-dependent increases to gut permeability, thus providing a powerful approach for precise investigation of barrier functions.
Show moreJan 2023 • Analysis & Sensing 3 (1), e202200053, 2023
Kevin Singewald, Hannah Hunter, Timothy F Cunningham, Sharon Ruthstein, Sunil Saxena
This review describes the use of Electron Paramagnetic Resonance (EPR) to measure residue specific dynamics in proteins with a specific focus on Cu(II)‐based spin labels. First, we outline approaches used to measure protein motion by nitroxide‐based spin labels. Here, we describe conceptual details and outline challenges that limit the use of nitroxide spin labels to solvent‐exposed α‐helical sites. The bulk of this review showcases the use of newly developed Cu(II)‐based protein labels. In this approach, the strategic mutation of native residues on a protein to generate two neighboring Histidine residues (i.e., the dHis motif) is exploited to enable a rigid site‐selective binding of a Cu(II) complex. The chelation of the Cu(II) complex to dHis directly anchors the Cu(II) spin label to the protein backbone. The improvement in rigidity expands both the spin‐labeling toolkit as well as the resolution of many EPR …
Show moreJan 2023 • Nanomaterials 13 (3), 598, 2023
Shweta Pawar, Hamootal Duadi, Dror Fixler
The term “carbon-based spintronics” mostly refers to the spin applications in carbon materials such as graphene, fullerene, carbon nitride, and carbon nanotubes. Carbon-based spintronics and their devices have undergone extraordinary development recently. The causes of spin relaxation and the characteristics of spin transport in carbon materials, namely for graphene and carbon nanotubes, have been the subject of several theoretical and experimental studies. This article gives a summary of the present state of research and technological advancements for spintronic applications in carbon-based materials. We discuss the benefits and challenges of several spin-enabled, carbon-based applications. The advantages include the fact that they are significantly less volatile than charge-based electronics. The challenge is in being able to scale up to mass production.
Show moreJan 2023 • Materials Today Energy
Arka Saha, Ortal Shalev, Sandipan Maiti, Longlong Wang, Sri Harsha Akella, Bruria Schmerling, Sarah Targin, Maria Tkachev, Xiulin Fan, Malachi Noked
[(LiNi0·8Co0·1Mn0.1)O2], or NCM811, a member of the LixNi1−y−zCoyMnzO2 (NCM) family of cathode active materials (CAMs), is gaining recognition in the battery community as the CAM of choice for future high energy density lithium-ion batteries, given its high nickel content of c. 80%. Yet, its commercialization is impeded by its mechanochemical instability at a high state of charge (SOC), which results in severe capacity fading and active lithium loss during cycling. In this contribution, we report conformal nanometer-thick (c. 4–7 nm) lithiated tin-oxide ternary coatings (LixSnyOz) deposited on NCM811 cathode powder using the atomic layer deposition (ALD) technique. The first-of-its-kind ALD coating, where Li is being accompanied by a second metal ion (Sn); provides a combination of benefits: (i) it stabilizes the crystal structure, (ii) suppresses electrode polarization, (iii) lowers the voltage hysteresis, and (iv …
Show moreJan 2023 • Plos one
Amit Te’eni, Bar Y Peled, Eliahu Cohen, Avishy Carmi
At both conceptual and applied levels, quantum physics provides new opportunities as well as fundamental limitations. We hypothetically ask whether quantum games inspired by population dynamics can benefit from unique features of quantum mechanics such as entanglement and nonlocality. For doing so, we extend quantum game theory and demonstrate that in certain models inspired by ecological systems where several predators feed on the same prey, the strength of quantum entanglement between the various species has a profound effect on the asymptotic behavior of the system. For example, if there are sufficiently many predator species who are all equally correlated with their prey, they are all driven to extinction. Our results are derived in two ways: by analyzing the asymptotic dynamics of the system, and also by modeling the system as a quantum correlation network. The latter approach enables us to apply various tools from classical network theory in the above quantum scenarios. Several generalizations and applications are discussed.
Show moreJan 2023 • arXiv preprint arXiv:2301.00833
Kun Tang, Yuqi Wang, Shaobo Wang, Da Gao, Haojie Li, Xindong Liang, Patrick Sebbah, Jin Zhang, Junhui Shi
Jan 2023 • Langmuir
Sudipta Bera, Sharada Govinda, Jerry A Fereiro, Israel Pecht, Mordechai Sheves, David Cahen
The electron transport (ETp) efficiency of solid-state protein-mediated junctions is highly influenced by the presence of electron-rich organic cofactors or transition metal ions. Hence, we chose to investigate an interesting cofactor-free non-redox protein, streptavidin (STV), which has unmatched strong binding affinity for an organic small-molecule ligand, biotin, which lacks any electron-rich features. We describe for the first time meso-scale ETp via electrical junctions of STV monolayers and focus on the question of whether the rate of ETp across both native and thiolated STV monolayers is influenced by ligand binding, a process that we show to cause some structural conformation changes in the STV monolayers. Au nanowire-electrode–protein monolayer–microelectrode junctions, fabricated by modifying an earlier procedure to improve the yields of usable junctions, were employed for ETp measurements. Our …
Show moreJan 2023 • Nano Letters
Le-Wei Shen, Yong Wang, Jiang-Bo Chen, Ge Tian, Kang-Yi Xiong, Christoph Janiak, David Cahen, Xiao-Yu Yang
Efficient and stable electrocatalysts are critically needed for the development of practical overall seawater splitting. The nanocomposite of RuCoBO has been rationally engineered to be an electrocatalyst that fits these criteria. The study has shown that a calcinated RuCoBO-based nanocomposite (Ru2Co1BO-350) exhibits an extremely high catalytic activity for H2 and O2 production in alkaline seawater (overpotentials of 14 mV for H2 evolution and 219 mV for O2 evolution) as well as a record low cell voltage (1.466 V@10 mA cm–2) and long-term stability (230 h @50 mA cm–2 and @100 mA cm–2) for seawater splitting. The results show that surface reconstruction of Ru2Co1BO-350 occurs during hydrogen evolution reaction and oxygen evolution reaction, which leads to the high activity and stability of the catalyst. The reconstructed surface is highly resistant to Cl– corrosion. The investigation suggests that a new …
Show more