BINA

3964 articles

77 publishers

Join mailing list

May 2022 • Aquaculture

On genome editing in embryos and cells of the freshwater prawn Macrobrachium rosenbergii

Jonathan Molcho, Rivka Manor, Maayan Shamsian, Gurucharan Sudarshan, Rivka Ofir, Danit Parker, Simy Weil, Hanin Wattad, Emily Hayun, Tom Levy, Eliahu D Aflalo, Ayal Hendel, Amir Sagi

The clustered regularly interspaced short palindromic repeats (CRISPR) technology provides the means for accurate genomic editing. It has been applied in many kinds of cells and animals for functional genomic studies and for precise selective breeding. Nonetheless, this method has not yet been applied in one of the most important – and well studied – decapod crustacean aquaculture species, the giant freshwater prawn Macrobrachium rosenbergii. We thus established two CRISPR platforms for M. rosenbergii—the first through direct injection into early-stage embryos (entire organism genome editing) and the second by electroporation of a primary embryonic cell culture. The systems were calibrated by optimizing Cas9 concentrations, delivery methods and editing efficiencies. Editing patterns utilizing multiple guides were examined through next generation sequencing. Our results showed a wide range of …

Show more

May 2022 • Science advances

Anomalous transport in high-mobility superconducting SrTiO3 thin films

Jin Yue, Yilikal Ayino, Tristan K Truttmann, Maria N Gastiasoro, Eylon Persky, Alex Khanukov, Dooyong Lee, Laxman R Thoutam, Beena Kalisky, Rafael M Fernandes, Vlad S Pribiag, Bharat Jalan

The study of subtle effects on transport in semiconductors requires high-quality epitaxial structures with low defect density. Using hybrid molecular beam epitaxy (MBE), SrTiO3 films with a low-temperature mobility exceeding 42,000 cm2 V−1 s−1 at a low carrier density of 3 × 1017 cm−3 were achieved. A sudden and sharp decrease in residual resistivity accompanied by an enhancement in the superconducting transition temperature were observed across the second Lifshitz transition where the third band becomes occupied, revealing dominant intraband scattering. These films further revealed an anomalous behavior in the Hall carrier density as a consequence of the antiferrodistortive (AFD) transition and the temperature dependence of the Hall scattering factor. Using hybrid MBE growth, phenomenological modeling, temperature-dependent transport measurements, and scanning superconducting quantum …

Show more

May 2022 • Nature communications

Different hotspot p53 mutants exert distinct phenotypes and predict outcome of colorectal cancer patients

Ori Hassin, Nishanth Belugali Nataraj, Michal Shreberk-Shaked, Yael Aylon, Rona Yaeger, Giulia Fontemaggi, Saptaparna Mukherjee, Martino Maddalena, Adi Avioz, Ortal Iancu, Giuseppe Mallel, Anat Gershoni, Inna Grosheva, Ester Feldmesser, Shifra Ben-Dor, Ofra Golani, Ayal Hendel, Giovanni Blandino, David Kelsen, Yosef Yarden, Moshe Oren

The TP53 gene is mutated in approximately 60% of all colorectal cancer (CRC) cases. Over 20% of all TP53-mutated CRC tumors carry missense mutations at position R175 or R273. Here we report that CRC tumors harboring R273 mutations are more prone to progress to metastatic disease, with decreased survival, than those with R175 mutations. We identify a distinct transcriptional signature orchestrated by p53R273H, implicating activation of oncogenic signaling pathways and predicting worse outcome. These features are shared also with the hotspot mutants p53R248Q and p53R248W. p53R273H selectively promotes rapid CRC cell spreading, migration, invasion and metastasis. The transcriptional output of p53R273H is associated with preferential binding to regulatory elements of R273 signature genes. Thus, different TP53 missense mutations contribute differently to cancer progression. Elucidation of the …

Show more

May 2022 • ACS nano

Observation of an orientational glass in a superlattice of elliptically-faceted CdSe nanocrystals

Abdullah S Abbas, Emma Vargo, Vida Jamali, Peter Ercius, Priscilla F Pieters, Rafaela M Brinn, Assaf Ben-Moshe, Min Gee Cho, Ting Xu, A Paul Alivisatos

Extensive prior work has shown that colloidal inorganic nanocrystals coated with organic ligand shells can behave as artificial atoms and, as such, form superlattices with different crystal structures and packing densities. Although ordered superlattices present a high degree of long-range positional order, the relative crystallographic orientation of the inorganic nanocrystals with respect to each other tends to be random. Recent works have shown that superlattices can achieve orientational alignment through combinations of nanocrystal faceting and ligand modification, as well as selective metal particle attachment to particular facets. These studies have focused on the assembly of high-symmetry nanocrystals, such as cubes and cuboctahedra. Here, we study the assembly of elliptically faceted CdSe/CdS core/shell nanocrystals with one distinctive crystallographic orientation along the major elliptical axis. We show …

Show more

May 2022 • Microbiology Spectrum

PrrT/A, a Pseudomonas aeruginosa bacterial encoded toxin-antitoxin system involved in prophage regulation and biofilm formation

Esther Shmidov, Ilana Lebenthal-Loinger, Shira Roth, Sarit Karako-Lampert, Itzhak Zander, Sivan Shoshani, Amos Danielli, Ehud Banin

Toxin-antitoxin (TA) systems are genetic modules that consist of a stable protein-toxin and an unstable antitoxin that neutralizes the toxic effect. In type II TA systems, the antitoxin is a protein that inhibits the toxin by direct binding. Type II TA systems, whose roles and functions are under intensive study, are highly distributed among bacterial chromosomes. Here, we identified and characterized a novel type II TA system PrrT/A encoded in the chromosome of the clinical isolate 39016 of the opportunistic pathogen Pseudomonas aeruginosa. We have shown that the PrrT/A system exhibits classical type II TA characteristics and novel regulatory properties. Following deletion of the prrA antitoxin, we discovered that the system is involved in a range of processes including (i) biofilm and motility, (ii) reduced prophage induction and bacteriophage production, and (iii) increased fitness for aminoglycosides. Taken together …

Show more

May 2022 • Carbohydrate Polymers

Non-radical synthesis of chitosan-quercetin polysaccharide: Properties, bioactivity and applications

Yevgenia Shebis, Alexander Laskavy, Anat Molad-Filossof, Hadar Arnon-Rips, Michal Natan-Warhaftig, Gila Jacobi, Elazar Fallik, Ehud Banin, Elena Poverenov

Quercetin-chitosan (QCS) polysaccharide was synthesized via non-radical reaction using L-valine-quercetin as the precursor. QCS was systematically characterized and demonstrated amphiphilic properties with self-assembling ability. In-vitro activity studies confirmed that quercetin grafting does not diminish but rather increases antimicrobial activity of the original chitosan (CS) and provided the modified polysaccharide with antioxidative properties. QCS applied as a coating on fresh-cut fruit reduced microbial spoilage and oxidative browning of coated melon and apple, respectively. Notably, QCS-based coatings prevented moisture loss, a major problem with fresh produce (2%, 12% and 18% moisture loss for the QCS-coated, CS-coated and uncoated fruit, respectively).The prepared QCS polysaccharide provides advanced bioactivity and does not involve radical reactions during its synthesis, therefore, it has …

Show more

May 2022 • CLEO: Science and Innovations, STu5P. 3, 2022

Fiber Based Generic Photonic Computing Unit

Maya Yevnin, Eyal Cohen, Tomer Yanir, Zeev Zalevsky

We present a fiber-based photonic computing concept and system which rely on incoherent data encoding and scalable architecture. Our results suggest projected performance of >1,000,000 Tera operations per second (TOPs) and efficiency of >1000 TOPs/Watt.

Show more

May 2022 • Journal of The Electrochemical Society

Development of electroactive and stable current collectors for aqueous batteries

Gil Bergman, Amey Nimkar, Arka Saha, Bar Gavriel, Meital Turgeman, Fyodor Malchik, Tianju Fan, Merav Nadav Tsubery, Malachi Noked, Daniel Sharon, Netanel Shpigel

The need for low-cost, high-safety batteries for large-scale energy storage applications has sparked a surge in research of rechargeable aqueous batteries. While most research efforts are focused on the development of electrolyte formulations and electrode materials, it appears that the current collector impact on the battery performance is frequently overlooked. Even though the current collector is traditionally thought of as an inactive battery component, it is included in the battery energy density calculations, making its activation desirable. Furthermore, poor current collector selection can cause irreversible side reactions, resulting in rapid cell efficiency decay. Herein we propose a new approach to design current collectors that makes use of anodized Ti. The redox-active anodized Ti significantly improves the overall anode capacity and provides effective inhibition of hydrogen formation on the electrified interface …

Show more

May 2022 • ACS Applied Materials & Interfaces

CuO-Coated Antibacterial and Antiviral Car Air-Conditioning Filters

Ilana Perelshtein, Itsik Levi, Nina Perkas, Avi Pollak, Aharon Gedanken

The demand for improved indoor air quality, especially during the pandemic of Covid-19, has led to renewed interest in antiviral and antibacterial air-conditioning systems. Here, air filters of vehicles made of nonwoven polyester filter media were sonochemically coated with CuO nanoparticles by a roll-to-roll coating method. The product, aimed at providing commuters with high air quality, showed good stability and mechanical properties and potent activity against Escherichia coli and Staphylococcus aureus bacteria, H1N1 influenza, and two SARS-CoV-2 variants. The filtering properties of a coated filter were tested, and they were similar to those of the uncoated filter. Leaching tests as a function of airflow were conducted, and the main outcome was that the coating was stable and particles were not detached from the coated media. Extension to other air-conditioning systems was straightforward.

Show more

May 2022 • Acta Biomaterialia

Molecular differences in collagen organization and in organic-inorganic interfacial structure of bones with and without osteocytes

Raju Nanda, Shani Hazan, Katrein Sauer, Victoria Aladin, Keren Keinan-Adamsky, Björn Corzilius, Ron Shahar, Paul Zaslansky, Gil Goobes

Bone is a fascinating biomaterial composed mostly of type-I collagen fibers as an organic phase, apatite as an inorganic phase, and water molecules residing at the interfaces between these phases. They are hierarchically organized with minor constituents such as non-collagenous proteins, citrate ions and glycosaminoglycans into a composite structure that is mechanically durable yet contains enough porosity to accommodate cells and blood vessels. The nanometer scale organization of the collagen fibrous structure and the mineral constituents in bone were recently extensively scrutinized. However, molecular details at the lowest hierarchical level still need to be unraveled to better understand the exact atomic-level arrangement of all these important components in the context of the integral structure of the bone. In this report, we unfold some of the molecular characteristics differentiating between two load …

Show more

May 2022 • Frontiers in Physics

High spatio-temporal resolution condenser-free quantitative phase contrast microscopy

Ying Ma, Lin Ma, Juanjuan Zheng, Min Liu, Zeev Zalevsky, Peng Gao

Quantitative phase-contrast microscopy (QPCM) provides an effective approach for label-free detection of transparent samples. In this study, we propose a condenser-free quantitative phase-contrast microscopy (CF-QPCM), in which several light-emitting diodes (LEDs) distributed on a ring are used for direct ultra-oblique illumination. Such condenser-free design greatly simplifies the system’s structure and releases the space for installing samples. Quantitative phase maps are reconstructed by retarding the unscattered components of the object waves for a series of phases 0, /2, , and 3/2 through a high-speed spatial light modulator (SLM). With this system, quantitative phase imaging of live cells has been achieved at a spatial resolution of 231 nm (lateral) and a frame rate of 250 Hz. We believe that the proposed CF-QPCM can contribute to biomedical, industrial, chemistry fields, etc.

Show more

May 2022 • Optics Express

Coalescence of Anderson-localized modes at an exceptional point in 2D random media

N Bachelard, A Schumer, B Kumar, C Garay, J Arlandis, R Touzani, P Sebbah

In non-Hermitian settings, the particular position at which two eigenstates coalesce in the complex plane under a variation of a physical parameter is called an exceptional point. An open disordered system is a special class of non-Hermitian system, where the degree of scattering directly controls the confinement of the modes. Herein a non-perturbative theory is proposed which describes the evolution of modes when the permittivity distribution of a 2D open dielectric system is modified, thereby facilitating to steer individual eigenstates to such a non-Hermitian degeneracy. The method is used to predict the position of such an exceptional point between two Anderson-localized states in a disordered scattering medium. We observe that the accuracy of the prediction depends on the number of localized states accounted for. Such an exceptional point is experimentally accessible in practically relevant disordered photonic systems.

Show more

May 2022 • Nanomaterials 12 (11), 1828, 2022

Cellulose Nanocrystals (CNC)-Based Functional Materials for Supercapacitor Applications

Arulppan Durairaj, Moorthy Maruthapandi, Arumugam Saravanan, John HT Luong, Aharon Gedanken

The growth of industrialization and the population has increased the usage of fossil fuels, resulting in the emission of large amounts of CO2. This serious environmental issue can be abated by using sustainable and environmentally friendly materials with promising novel and superior performance as an alternative to petroleum-based plastics. Emerging nanomaterials derived from abundant natural resources have received considerable attention as candidates to replace petroleum-based synthetic polymers. As renewable materials from biomass, cellulose nanocrystals (CNCs) nanomaterials exhibit unique physicochemical properties, low cost, biocompatibility and biodegradability. Among a plethora of applications, CNCs have become proven nanomaterials for energy applications encompassing energy storage devices and supercapacitors. This review highlights the recent research contribution on novel CNC-conductive materials and CNCs-based nanocomposites, focusing on their synthesis, surface functionalization and potential applications as supercapacitors (SCs). The synthesis of CNCs encompasses various pretreatment steps including acid hydrolysis, mechanical exfoliation and enzymatic and combination processes from renewable carbon sources. For the widespread applications of CNCs, their derivatives such as carboxylated CNCs, aldehyde-CNCs, hydride-CNCs and sulfonated CNC-based materials are more pertinent. The potential applications of CNCs-conductive hybrid composites as SCs, critical technical issues and the future feasibility of this endeavor are highlighted. Discussion is also extended to the transformation of …

Show more

May 2022 • European Journal of Inorganic Chemistry

Cover Feature: Formation of Iron (III) Trimesate Xerogel by Ultrasonic Irradiation (Eur. J. Inorg. Chem. 15/2022)

Guido Ennas, Aharon Gedanken, Giada Mannias, Vijay B Kumar, Alessandra Scano, Ze'ev Porat, Martina Pilloni

The Cover Feature shows the ultrasound-assisted formation of Fe-BTC gels, iron carboxylate metal-organic frameworks (MOFs) constructed from iron ions and 1, 3, 5 benzenetricarboxylic acid linkers. The gels were obtained by two different procedures: ultrasonic irradiation (US) of different water solutions containing the linker and iron nitrate, with or without the additive tetramethylammonium hydroxide. Gelation was observed regardless of the duration of the irradiation, the precursor concentration, the additive, or the US apparatus used. While drying, the wet gels underwent shrinking and cracked into tiny fractions of transparent solid xerogels consisting of interconnected spherical, thermally stable nanoparticles with a permanent microporous structure. The authors acknowledge Prof. Christoph Hartl for gently assisting with the cover′ s graphic layout. More information can be found in the Research Article by G …

Show more

May 2022 • Scientific Reports

Sourcing Herod the Great's calcite-alabaster bathtubs by a multi-analytic approach (vol 12, 7524, 2022)

Ayala Amir, Amos Frumkin, Boaz Zissu, Aren M Maeir, Gil Goobes, Amnon Albeck


May 2022 • Journal of Clinical and Aesthetical Dermatology

A novel facial cream based on skin-penetrable fibrillar collagen microparticles

Rachel Lubart, Inbar Yariv, Dror Fixler, Anat Lipovsky

Background. Collagen protein plays a notable role maintaining firm skin. Topical creams containing collagen fibers are widely available, but their usefulness is questionable due to limited skin penetration. When applied in a cream, collagen does not penetrate the skin leaving the skin structure unaffected.Objective. We formulated micronized collagen in a cream base. Using human skin samples, we sought to investigate the ability of the micronized collagen cream to penetrate human skin. Methods. Particle sizes of micronized marine collagen were evaluated using electron microscopy. Optical profilometry was conducted to evaluate skin topography and roughness. The antioxidant activity of the collagen was evaluated using the electron paramagnetic resonance technique by measuring the changes in free radical production. Collagen penetration depth in human skin samples was monitored using a non-invasive optical technique known as iterative multiplane optical property extraction, which works based on the detection of laser light phase changes following the presence of collagen particles in deep skin layers.Results. According to the electron microscopy, collagen particles were found to be of various sizes, the smallest being about 120nm in diameter. Skin topography measurements revealed that the treated collagen cream increased skin smoothness of the samples. Our results derived from the iterative multiplane optical property extraction indicated that micronized collagen in a cream base penetrates both the stratum corneum and the deep epidermal layers toward the dermis.Conclusion. Our investigation suggests that the collagen in the …

Show more

May 2022 • Journal of Lightwave Technology

Robust directional couplers for state manipulation in silicon photonic-integrated circuits

Moshe Katzman, Yonatan Piasetzky, Evyatar Rubin, Ben Barenboim, Maayan Priel, Muhammad Erew, Avi Zadok, Haim Suchowski

Photonic integrated circuits play a central role in current and future applications such as communications, sensing, ranging, and information processing. Photonic quantum computing will also likely require an integrated optics architecture for improved stability, scalability, and performance. Fault-tolerant quantum computing mandates very accurate and robust quantum gates. In this work, we demonstrate high-fidelity directional couplers for single-qubit gates in photonic integrated waveguides, utilizing a novel scheme of detuning-modulated composite segments. Specific designs for reduced sensitivity to wavelength variations and real-world geometrical fabrication errors in waveguides width and depth are presented. Enhanced wavelength tolerance is demonstrated experimentally. The concept shows great promise for scaling high fidelity gates as part of integrated quantum optics architectures.

Show more

May 2022 • ACS Applied Materials & Interfaces

CuO-coated antibacterial and antiviral car air-conditioning filters

Ilana Perelshtein, Itsik Levi, Nina Perkas, Avi Pollak, Aharon Gedanken

The demand for improved indoor air quality, especially during the pandemic of Covid-19, has led to renewed interest in antiviral and antibacterial air-conditioning systems. Here, air filters of vehicles made of nonwoven polyester filter media were sonochemically coated with CuO nanoparticles by a roll-to-roll coating method. The product, aimed at providing commuters with high air quality, showed good stability and mechanical properties and potent activity against Escherichia coli and Staphylococcus aureus bacteria, H1N1 influenza, and two SARS-CoV-2 variants. The filtering properties of a coated filter were tested, and they were similar to those of the uncoated filter. Leaching tests as a function of airflow were conducted, and the main outcome was that the coating was stable and particles were not detached from the coated media. Extension to other air-conditioning systems was straightforward.

Show more

Apr 2022 • ACS nano 16 (5), 6960-7079, 2022

The magnetic genome of two-dimensional van der Waals materials

Qing Hua Wang, Amilcar Bedoya-Pinto, Mark Blei, Avalon H Dismukes, Assaf Hamo, Sarah Jenkins, Maciej Koperski, Yu Liu, Qi-Chao Sun, Evan J Telford, Hyun Ho Kim, Mathias Augustin, Uri Vool, Jia-Xin Yin, Lu Hua Li, Alexey Falin, Cory R Dean, Fèlix Casanova, Richard FL Evans, Mairbek Chshiev, Artem Mishchenko, Cedomir Petrovic, Rui He, Liuyan Zhao, Adam W Tsen, Brian D Gerardot, Mauro Brotons-Gisbert, Zurab Guguchia, Xavier Roy, Sefaattin Tongay, Ziwei Wang, M Zahid Hasan, Joerg Wrachtrup, Amir Yacoby, Albert Fert, Stuart Parkin, Kostya S Novoselov, Pengcheng Dai, Luis Balicas, Elton JG Santos

Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D magnets have blossomed into a rich area for investigation, where fundamental concepts in magnetism are challenged by the behavior of spins that can develop at the single layer limit. However, much effort is still needed in multiple fronts before 2D magnets can be routinely used for practical implementations. In this comprehensive review, prominent authors with expertise in complementary fields of 2D magnetism (i.e., synthesis, device engineering, magneto-optics, imaging, transport, mechanics, spin excitations, and theory and …

Show more

Apr 2022 • ACS Applied Materials & Interfaces

Rhenium Sulfide Incorporated in Molybdenum Sulfide Nanosheets for High-Performance Symmetric Supercapacitors with Enhanced Capacitance

Shanmugasundaram Manoj, Hari Krishna Sadhanala, Ilana Perelshtein, Aharon Gedanken

Supercapacitors are considered potential energy storage devices and have drawn significant attention due to their superior intrinsic advantages. Herein, we report the synthesis of ReS2 embedded in MoS2 nanosheets (RMS-31) by a hydrothermal technique. The prepared RMS-31 electrode material demonstrated superior pseudocapacitive behavior in 1 M KOH electrolyte solution, which is confirmed by the heterostructure of RMS-31 nanosheet architectures. RMS-31 has a specific capacitance of 244 F g–1 at a current density of 1 A g–1 and a greater areal capacitance of 540 mF cm–2 at a current density of 5 mA cm–2. The symmetric supercapacitor device with the RMS-31 electrode delivers an energy density of 28 W h cm–2 with a power density of 1 W cm–2 and reveals long-term stability at a constant current density of 5 mA cm–2 for 10,000 cycles while accomplishing a retention of 66.5%. The high performance …

Show more

Apr 2022 • ACS Agricultural Science & Technology

Preparation and characterization of a novel PVA/PVP hydrogel containing entrapped hydrogen peroxide for agricultural applications

Eyal Malka, Aviv Dombrovsky, Shlomo Margel

Damage and loss of crops and plants caused by pathogens are global problems that have major effects on the food supply of many countries. Environmentally friendly viricide approaches are gaining in popularity to combat these problems. This study proposes the use of environmentally friendly hydrogen peroxide (HP) as a pesticide entrapped in a poly(vinyl alcohol) (PVA)/polyvinylpyrrolidone (PVP) hydrogel for controlled release in agricultural applications. The hydrogel was prepared as a matrix of PVA and PVP containing HP. Freeze–thaw cycles of the PVA/PVP/HP hydrogel improve the mechanical properties and thereby decrease the HP release rate. The hydrogel chemical composition, morphology, and HP release rate through direct and indirect (gas phase) contact were investigated. Viricide capabilities were tested, indicating a high efficiency against ToBRFV on tobacco and tomato plants. Additionally, low …

Show more

logo
Articali

Powered by Articali

TermsPrivacy