BINA

4721 articles

79 publishers

Join mailing list

Mar 2023 • Journal of Energy Storage

Ultralow platinum loading for redox-flow battery by electrospinning the electrocatalyst and the ionomer in core-shell fibers

Kobby Saadi, Xiaozong Fan, Samuel S Hardisty, Peter Pintauro, David Zitoun

Hydrogen Bromine Redox Flow Batteries (HBRFB) are promising candidates for large scale energy storage, having an excellent balance of system, inexpensive and abundant electrolytes, high power density and near zero kinetic limitations. However, they suffer from corrosion of the hydrogen electrode due to bromine species crossover, which requires a high loading of precious group metal (PGM) electrocatalyst. Herein, a standard catalyst has been used in an electrospun (ES) fiber mat electrode, allowing for a significant (six-fold) reduction in platinum loading from 0.3 mgPt/cm2 down to 0.05 mgPt/cm2. At this very low loading, the electrospun electrode attained an impressive specific power of 11.5 W/mgPt, and exhibited excellent durability, with constant power output for 140 charge/discharge cycles. The excellent performance of the electrospun hydrogen electrode is attribute to its unique core-shell nanofiber …

Show more

Mar 2023 • The Journal of Physical Chemistry A

Cascade infrared thermal photon emission

Klavs Hansen, Ori Licht, Adeliya Kurbanov, Yoni Toker

The later stages of cooling of molecules and clusters in the interstellar medium are dominated by emission of vibrational infrared radiation. With the development of cryogenic storage it has become possible to experimentally study these processes. Recent storage ring results demonstrate that intramolecular vibrational redistribution takes place within the cooling process, and an harmonic cascade model has been used to interpret the data. Here we analyze this model and show that the energy distributions and the photon emission rates develop into near-universal functions that can be characterized with only a few parameters, irrespective of the precise vibrational spectra and oscillator strengths of the systems. We show that the photon emission rate and emitted power vary linearly with total excitation energy with a small offset. The time developments of ensemble internal energy distributions are calculated with …

Show more

Mar 2023 • Science 379 (6637), eade1220, 2023

Geometric deep optical sensing

Shaofan Yuan, Chao Ma, Ethan Fetaya, Thomas Mueller, Doron Naveh, Fan Zhang, Fengnian Xia

Geometry, an ancient yet vibrant branch of mathematics, has important and far-reaching impacts on various disciplines such as art, science, and engineering. Here, we introduce an emerging concept dubbed “geometric deep optical sensing” that is based on a number of recent demonstrations in advanced optical sensing and imaging, in which a reconfigurable sensor (or an array thereof) can directly decipher the rich information of an unknown incident light beam, including its intensity, spectrum, polarization, spatial features, and possibly angular momentum. We present the physical, mathematical, and engineering foundations of this concept, with particular emphases on the roles of classical and quantum geometry and deep neural networks. Furthermore, we discuss the new opportunities that this emerging scheme can enable and the challenges associated with future developments.

Show more

Mar 2023 • Nature

RBFOX2 modulates a metastatic signature of alternative splicing in pancreatic cancer

Amina Jbara, Kuan-Ting Lin, Chani Stossel, Zahava Siegfried, Haya Shqerat, Adi Amar-Schwartz, Ela Elyada, Maxim Mogilevsky, Maria Raitses-Gurevich, Jared L Johnson, Tomer M Yaron, Ofek Ovadia, Gun Ho Jang, Miri Danan-Gotthold, Lewis C Cantley, Erez Y Levanon, Steven Gallinger, Adrian R Krainer, Talia Golan, Rotem Karni

Pancreatic ductal adenocarcinoma (PDA) is characterized by aggressive local invasion and metastatic spread, leading to high lethality. Although driver gene mutations during PDA progression are conserved, no specific mutation is correlated with the dissemination of metastases–. Here we analysed RNA splicing data of a large cohort of primary and metastatic PDA tumours to identify differentially spliced events that correlate with PDA progression. De novo motif analysis of these events detected enrichment of motifs with high similarity to the RBFOX2 motif. Overexpression of RBFOX2 in a patient-derived xenograft (PDX) metastatic PDA cell line drastically reduced the metastatic potential of these cells in vitro and in vivo, whereas depletion of RBFOX2 in primary pancreatic tumour cell lines increased the metastatic potential of these cells. These findings support the role of RBFOX2 as a potent metastatic suppressor in …

Show more

Mar 2023 • Cellular and Molecular Gastroenterology and Hepatology

High-Resolution Genomic Profiling of Liver Cancer Links Etiology With Mutation and Epigenetic Signatures

Shira Perez, Anat Lavi-Itzkovitz, Moriah Gidoni, Tom Domovitz, Roba Dabour, Ishant Khurana, Ateret Davidovich, Ana Tobar, Alejandro Livoff, Evgeny Solomonov, Yaakov Maman, Assam El-Osta, Yishan Tsai, Ming-Lung Yu, Salomon M Stemmer, Izhak Haviv, Gur Yaari, Meital Gal-Tanamy

BackgroundHepatocellular carcinoma (HCC) is a model of diverse spectrum of cancers, since it is induced by well-known etiologies, mainly Hepatitis C virus (HCV) and Hepatitis B virus (HBV). Here we aimed to identify HCV-specific mutational signature and explored the link between the HCV-related regional variation in mutations rates and HCV-induced alterations in genome-wide chromatin organization.MethodsTo identify an HCV-specific mutational signature in HCC, we performed high-resolution targeted sequencing to detect passenger mutations on 64 HCC samples from three etiology groups – HBV, HCV, or other. To explore the link between genomic signature and genome-wide chromatin organization we performed ChIP-seq for the transcriptionally permissive H3K4me3, H3K9ac and suppressive H3K9me3 modifications following HCV infection.ResultsRegional variation in mutations rates analysis …

Show more

Mar 2023 • Ultrasonics Sonochemistry 95, 106364, 2023

Sonochemistry of molten gallium

Vijay Bhooshan Kumar, Aharon Gedanken, Ze'ev Porat

This review article summarizes the comprehensive work that was done in our laboratory in recent years, as-well-as other reports, on the various aspects of sonochemistry of molten gallium. The low mp (29.8 °C) of gallium enables its melting in warm water, aqueous solutions and organic liquids. This opened a new research direction that focused on the chemical and physical properties of gallium particles that were formed in such media. It includes their interactions with water and with organic and inorganic solutes in aqueous solutions and with carbon nanoparticles. Formation of nanoparticles of liquid gallium alloys was also reported.

Show more

Mar 2023 • Proceedings Volume PC12432, High Contrast Metastructures XII

Temperature Invariant Metasurfaces

Tomer Lewi Shany Cohen, Sukanta Nandi, Danveer Singh


Mar 2023 • Multiphoton Microscopy in the Biomedical Sciences XXIII 12384, 52-59, 2023

NIR fluorescence lifetime macroscopic imaging with a novel time-gated SPAD camera

Xavier Michalet, Arin C Ulku, Michael A Wayne, Shimon Weiss, Claudio Bruschini, Edoardo Charbon

SwissSPAD3 is the latest of a family of widefield time-gated SPAD imagers developed for fluorescence lifetime imaging (FLI) applications. Its distinctive features are (i) the ability to define shorter gates than its predecessors (width W < 1 ns), (ii) support for laser repetition rates up to at least 80 MHz and (iii) a dual-gate architecture providing an effective duty cycle of 100%. We present widefield macroscopic FLI measurements of short lifetime NIR dyes, analyzed using the phasor approach. The results are compared with those previously obtained with SwissSPAD2 and to theoretical predictions.

Show more

Mar 2023 • Microsystems & Nanoengineering

Femtosecond laser-assisted fabrication of piezoelectrically actuated crystalline quartz-based MEMS resonators

John Linden, Neta Melech, Igor Sakaev, Ofer Fogel, Slava Krylov, David Nuttman, Zeev Zalevsky, Marina Sirota

A novel technology for the precise fabrication of quartz resonators for MEMS applications is introduced. This approach is based on the laser-induced chemical etching of quartz. The main processing steps include femtosecond UV laser treatment of a Cr-Au-coated Z-cut alpha quartz wafer, followed by wet etching. The laser-patterned Cr-Au coating serves as an etch mask and is used to form electrodes for piezoelectric actuation. This fabrication approach does not alter the quartz’s crystalline structure or its piezo-electric properties. The formation of defects, which is common in laser micromachined quartz, is prevented by optimized process parameters and by controlling the temporal behavior of the laser-matter interactions. The process does not involve any lithography and allows for high geometric design flexibility. Several configurations of piezoelectrically actuated beam-type resonators were fabricated using …

Show more

Mar 2023 • Advanced Materials Interfaces

Scanning SQUID imaging of reduced superconductivity due to the effect of chiral molecule islands adsorbed on Nb

Meital Ozeri, TR Devidas, Hen Alpern, Eylon Persky, Anders V Bjorlig, Nir Sukenik, Shira Yochelis, Angelo Di Bernardo, Beena Kalisky, Oded Millo, Yossi Paltiel

Unconventional superconductivity was realized in systems comprising a monolayer of magnetic adatoms adsorbed on conventional superconductors, forming Shiba‐bands. Another approach to induce unconventional superconductivity and 2D Shiba‐bands was recently introduced, namely, by adsorbing chiral molecules (ChMs) on conventional superconductors, which act in a similar way to magnetic impurities as verified by conductance spectroscopy. However, the fundamental effect ChMs have on the strength of superconductivity has not yet been directly observed and mapped. In this work, local magnetic susceptometry is applied on heterostructures comprising islands of ChMs (α‐helix L‐polyalanine) monolayers adsorbed on Nb. It is found that the ChMs alter the superconducting landscape, resulting in spatially‐modulated weaker superconductivity. Surprisingly, the reduced diamagnetic response is located …

Show more

Mar 2023 • arXiv preprint arXiv:2303.04787

Single-pair measurement of the Bell parameter

Salvatore Virzì, Enrico Rebufello, Francesco Atzori, Alessio Avella, Fabrizio Piacentini, Rudi Lussana, Iris Cusini, Francesca Madonini, Federica Villa, Marco Gramegna, Eliahu Cohen, Ivo Pietro Degiovanni, Marco Genovese

Bell inequalities are one of the cornerstones of quantum foundations, and fundamental tools for quantum technologies. Recently, the scientific community worldwide has put a lot of effort towards them, which culminated with loophole-free experiments. Nonetheless, none of the experimental tests so far was able to extract information on the full inequality from each entangled pair, since the wave function collapse forbids performing, on the same quantum state, all the measurements needed for evaluating the entire Bell parameter. We present here the first single-pair Bell inequality test, able to obtain a Bell parameter value for every entangled pair detected. This is made possible by exploiting sequential weak measurements, allowing to measure non-commuting observables in sequence on the same state, on each entangled particle. Such an approach not only grants unprecedented measurement capability, but also removes the need to choose between different measurement bases, intrinsically eliminating the freedom-of-choice loophole and stretching the concept of counterfactual-definiteness (since it allows measuring in the otherwise not-chosen bases). We also demonstrate how, after the Bell parameter measurement, the pair under test still presents a noteworthy amount of entanglement, providing evidence of the absence of (complete) wave function collapse and allowing to exploit this quantum resource for further protocols.

Show more

Mar 2023 • Nanoscale and Quantum Materials: From Synthesis and Laser Processing to …, 2023

Laser induced transfer of 2D materials for optoelectronic applications

I Cheliotis, A Logotheti, F Zacharatos, A Pesquera, A Zurutuza, D Naveh, L Tsetseris, I Zergioti

The advent of functional devices based on two-dimensional (2D) materials has further intensified the interest in the latter. However, the fabrication of structures using layered materials remains a key challenge. Recently, we proposed the so-called “Laser-Induced Transfer” method (LIT), as a digital and solvent-free approach for the high-resolution and intact transfer of 2D materials’ pixels. Here, we will further highlight the versatility of LIT by reporting results on the high-quality digital transfer of graphene and MoS2. These materials have emerged in the field of nanoelectronics, sensors and photonics due to their unique optoelectronic properties, but their high-quality transfer remains a hurdle. The quality of the transferred films has been confirmed with systematic characterization based on Scanning Electron Microscopy and Raman spectroscopy, as well as mobility’s extraction. Then we will present how the laser …

Show more

Mar 2023 • The Journal of Physical Chemistry Letters

Protein orientation defines rectification of electronic current via solid-state junction of entire photosystem-1 complex

Jerry A Fereiro, Tatyana Bendikov, Andreas Herrmann, Israel Pecht, Mordechai Sheves, David Cahen

We demonstrate that the direction of current rectification via one of nature’s most efficient light-harvesting systems, the photosystem 1 complex (PS1), can be controlled by its orientation on Au substrates. Molecular self-assembly of the PS1 complex using four different linkers with distinct functional head groups that interact by electrostatic and hydrogen bonds with different surface parts of the entire protein PS1 complex was used to tailor the PS1 orientation. We observe an orientation-dependent rectification in the current–voltage characteristics for linker/PS1 molecule junctions. Results of an earlier study using a surface two-site PS1 mutant complex having its orientation set by covalent binding to the Au substrate supports our conclusion. Current–voltage–temperature measurements on the linker/PS1 complex indicate off-resonant tunneling as the main electron transport mechanism. Our ultraviolet photoemission …

Show more

Mar 2023 • Helvetica chimica acta 106 (3), e202200173, 2023

On the Helical Crystals of Cholesterol Monohydrate

Lia Addadi, Neta Varsano, Assaf Ben Moshe

We review in this short perspective the history of cholesterol crystals and crystal structures. We address in particular the helical crystals that form in vitro and in pathology from environments rich in bile acids or from phospholipid membranes. We review the known mechanisms leading to crystals with chiral morphology, from screw‐dislocation mediated growth to mechanisms involving asymmetric mechanical strain. We propose a mechanism for cholesterol helical crystal development based on the monoclinic cholesterol monohydrate crystal structure. We suggest that curvature arises in few layers thick crystals due to the tension induced between the hydrophobic layer and the ice‐like H‐bonded lattice of the water molecules with the cholesterol hydroxy groups. Helicity would ensue through a combination of the curvature and the fast growth of a thin ribbon in one crystal direction.

Show more

Mar 2023 • Nature

RBFOX2 modulates a metastatic signature of alternative splicing in pancreatic cancer

Amina Jbara, Kuan-Ting Lin, Chani Stossel, Zahava Siegfried, Haya Shqerat, Adi Amar-Schwartz, Ela Elyada, Maxim Mogilevsky, Maria Raitses-Gurevich, Jared L Johnson, Tomer M Yaron, Ofek Ovadia, Gun Ho Jang, Miri Danan-Gotthold, Lewis C Cantley, Erez Y Levanon, Steven Gallinger, Adrian R Krainer, Talia Golan, Rotem Karni

Pancreatic ductal adenocarcinoma (PDA) is characterized by aggressive local invasion and metastatic spread, leading to high lethality. Although driver gene mutations during PDA progression are conserved, no specific mutation is correlated with the dissemination of metastases–. Here we analysed RNA splicing data of a large cohort of primary and metastatic PDA tumours to identify differentially spliced events that correlate with PDA progression. De novo motif analysis of these events detected enrichment of motifs with high similarity to the RBFOX2 motif. Overexpression of RBFOX2 in a patient-derived xenograft (PDX) metastatic PDA cell line drastically reduced the metastatic potential of these cells in vitro and in vivo, whereas depletion of RBFOX2 in primary pancreatic tumour cell lines increased the metastatic potential of these cells. These findings support the role of RBFOX2 as a potent metastatic suppressor in …

Show more

Mar 2023 • Cancer Nanotechnology 14 (1), 72, 2023

A ‘golden’alternative for prevention of cisplatin nephrotoxicity in bladder cancer

Yoray Sharon, Menachem Motiei, Chen Tzror-Azankot, Tamar Sadan, Rachela Popovtzer, Eli Rosenbaum

Cisplatin (CP) is the first-line standard of care for bladder cancer. However, a significant percentage of advanced bladder cancer patients are ineligible to receive standard CP treatment, due to the drug’s toxicity, and in particular its nephrotoxicity. These patients currently face suboptimal therapeutic options with lower efficacy. To overcome this limitation, here we designed CP-conjugated gold nanoparticles (GNPs) with specific properties that prevent renal toxicity, and concurrently preserve the therapeutic efficacy of CP. Safety and efficacy of the particles were studied in bladder tumor-bearing mice, using clinically-relevant fractionated or non-fractionated dosing regimens. A non-fractionated high dose of CP-GNP showed long-term intratumoral accumulation, blocked tumor growth, and nullified the lethal effect of CP. Treatment with fractionated lower doses of CP-GNP was also superior to an equivalent treatment with free CP, demonstrating both anti-tumor efficacy and prolonged mouse survival. Moreover, as opposed to free drug, CP-conjugated GNPs did not cause fibrosis or necrosis in kidney. These results indicate that conjugating CP to GNPs can serve as an effective, combined anti-cancer and renoprotective approach, and thus has potential to widen the range of patients eligible for CP-based therapy.

Show more

Mar 2023 • Physical Review Applied

Three-Terminal -Based Device with Internal Read-Write Switching

Elihu Anouchi, Tony Yamin, Amos Sharoni

Memristive devices based on correlated Mott materials have great potential for memory applications, and specifically neuromorphic computations, due to their simple structure, miniaturization capabilities, power efficiency, and operation speeds. For these reasons, many efforts are made to design improved synaptic devices based on Mott materials. This work demonstrates a nonvolatile memristive three-terminal transistor based on the correlated oxide , which has a (Mott) metal-insulator transition near room temperature. An ultrathin layer is incorporated in a metal-oxide-semiconductor field-effect geometry using alumina as the gate dielectric. A field effect is demonstrated to modify the channel’s resistance in a nonvolatile and reversible fashion. However, only when the gate voltage is applied at the metallic state of the does the resistance of the insulating state change. Thus, the metallic and insulating states …

Show more

Mar 2023 • Advanced Optical Materials 11 (5), 2201475, 2023

Linear and Nonlinear Optical Properties of Well‐Defined and Disordered Plasmonic Systems: A Review

Racheli Ron, Tchiya Zar, Adi Salomon

Disordered metallic nanostructures have features that are not realized in well‐defined nanometallic counterparts, such as broadband light localization and inhomogeneous refraction index at the nanoscale. Disordered metal systems with a networked inner architecture have both particles and voids with subwavelength dimensions which are randomly 3D organized in space. These disordered structures are benefited from high surface area and damage stability, permit guest materials permeability, and can be achieved in large scales employing less costs and expertise. Their abundant nanosize gaps and sharp tips can interact with incident light over a broadband range to generate a rich pattern of hot‐spots and can therefore function as an artificial leaf, for example. Here, the linear and nonlinear optical properties of both well‐defined and disordered plasmonic structures are reviewed with a focus on largescale 3D …

Show more

Mar 2023 • arXiv preprint arXiv:2303.00701

Time-symmetry and topology of the Aharonov-Bohm effect

Yakir Aharonov, Ismael L Paiva, Zohar Schwartzman-Nowik, Avshalom C Elitzur, Eliahu Cohen

The Aharonov-Bohm (AB) effect has been highly influential in fundamental and applied physics. Its topological nature commonly implies that an electron encircling a magnetic flux source in a field-free region must close the loop in order to generate an observable effect. In this Letter, we study a variant of the AB effect that apparently challenges this concept. The significance of weak values and nonlocal equations of motion is discussed as part of the analysis, shedding light on and connecting all these fundamental concepts.

Show more

Mar 2023 • Optics Express

Persistent dynamics in coupled non-degenerate parametric oscillators: pump saturation prevents mode competition

Shai Ben-Ami, Igal Aharonovich, Avi Pe’er

The coherent dynamics in networks of coupled oscillators is of great interest in wave-physics since the coupling produces various dynamical effects, such as coherent energy exchange (beats) between the oscillators. However, it is common wisdom that these coherent dynamics are transients that quickly decay in active oscillators (e.g. lasers) since pump saturation causes mode competition that results, for homogeneous gain, in the prevalence of the single winning mode. We observe that pump saturation in coupled parametric oscillators counter-intuitively encourages the multi-mode dynamics of beating and indefinitely preserves it, despite the existence of mode competition. We explore in detail the coherent dynamics of a pair of coupled parametric oscillators with a shared pump and arbitrary coupling in a radio frequency (RF) experiment, as well as in simulation. Specifically, we realize two parametric oscillators as …

Show more

Mar 2023 • Nanomaterials

One-Step Synthesis of a Binder-Free, Stable, and High-Performance Electrode; Cu-O|Cu3P Heterostructure for the Electrocatalytic Methanol Oxidation Reaction …

Alina Yarmolenko, Bibhudatta Malik, Efrat Shawat Avraham, Gilbert Daniel Nessim

Although direct methanol fuel cells (DMFCs) have been spotlighted in the past decade, their commercialization has been hampered by the poor efficiency of the methanol oxidation reaction (MOR) due to the unsatisfactory performance of currently available electrocatalysts. Herein, we developed a binder-free, copper-based, self-supported electrode consisting of a heterostructure of Cu3P and mixed copper oxides, i.e., cuprous–cupric oxide (Cu-O), as a high-performance catalyst for the electro-oxidation of methanol. We synthesized a self-supported electrode composed of Cu-O|Cu3P using a two-furnace atmospheric pressure–chemical vapor deposition (AP-CVD) process. High-resolution transmission electron microscopy analysis revealed the formation of 3D nanocrystals with defects and pores. Cu-O|Cu3P outperformed the MOR activity of individual Cu3P and Cu-O owing to the synergistic interaction between them. Cu3P|Cu-O exhibited a highest anodic current density of 232.5 mAcm−2 at the low potential of 0.65 V vs. Hg/HgO, which is impressive and superior to the electrocatalytic activity of its individual counterparts. The formation of defects, 3D morphology, and the synergistic effect between Cu3P and Cu-O play a crucial role in facilitating the electron transport between electrode and electrolyte to obtain the optimal MOR activity. Cu-O|Cu3P shows outstanding MOR stability for about 3600 s with 100% retention of the current density, which proves its robustness alongside CO intermediate.

Show more

logo
Articali

Powered by Articali

TermsPrivacy