BINA

3964 articles

77 publishers

Join mailing list

Jun 2022 • Semiconductors and Semimetals 110, 1-52, 2022

SBS-based fiber sensors

A Zadok, X Bao, Z Yang, L Thevenaz

The spectra of Brillouin scattering processes in optical fibers are affected by temperature, axial strain, and other quantities of interest. This dependence forms the basis for optical Brillouin scattering based optical fiber sensors. Since the first proposition of such sensors in 1989, several protocols have been established for the spatially distributed analysis of Brillouin scattering spectra along fibers installed in structures of interest. Sensor systems cover hundreds of kilometers, reach sub-millimeter resolution, follow dynamic vibrations at MHz rates, and resolve sub-degree temperature changes and micro-strain elongations. Optical fiber sensors represent the most successful commercial application of Brillouin scattering physics to-date. This chapter reviews the principles, state of the art, performance trade-offs and recent breakthroughs in Brillouin scattering-based optical fiber sensors.

Show more

Jun 2022 • Biophysical Reports

PySOFI: an open source Python package for SOFI

Yuting Miao, Shimon Weiss, Xiyu Yi

Super-resolution optical fluctuation imaging (SOFI) is a highly democratizable technique that provides optical super-resolution without requirement of sophisticated imaging instruments. Easy-to-use open-source packages for SOFI are important to support the utilization and community adoption of the SOFI method, they also encourage the participation and further development of SOFI by new investigators. In this work, we developed PySOFI, an open-source Python package for SOFI analysis that offers the flexibility to inspect, test, modify, improve, and extend the algorithm. We provide complete documentation for the package and a collection of Jupyter Notebooks to demonstrate the usage of the package. We discuss the architecture of PySOFI and illustrate how to use each functional module. A demonstration on how to extend the PySOFI package with additional modules is also included in the PySOFI package. We …

Show more

Jun 2022 • ACS Applied Materials & Interfaces

Lead Sequestration from Halide Perovskite Solar Cells with a Low-Cost Thiol-Containing Encapsulant.

L RD Mendez, Barry N Breen, David Cahen

Perovskite solar cells (PSCs) are being studied and developed because of the outstanding properties of halide perovskites as photovoltaic materials and high conversion efficiencies achieved with the best PSCs. However, leaching out of lead (Pb) ions into the environment presents potential public health risks. We show that thiol-functionalized nanoparticles provide an economic way of minimizing Pb leaching in the case of PSC module damage and subsequent water exposure (at most,∼ 2.5% of today's crystal silicon solar panel production cost per square meter). Using commercial materials and methods, we retain∼ 90% of Pb without degrading the photovoltaic performance of the cells, compared with nonencapsulated devices, yielding a worst-case scenario of top-soil pollution below natural Pb levels and well below the US Environmental Protection Agency limits.

Show more

Jun 2022 • Langmuir

Lysozyme is Sterically Trapped Within the Silica Cage in Bioinspired Silica–Lysozyme Composites: A Multi-Technique Understanding of Elusive Protein–Material Interactions

Francesco Bruno, Lucia Gigli, Giovanni Ferraro, Andrea Cavallo, Vladimir K Michaelis, Gil Goobes, Emiliano Fratini, Enrico Ravera

Lysozyme is widely known to promote the formation of condensed silica networks from solutions containing silicic acid, in a reproducible and cost-effective way. However, little is known about the fate of the protein after the formation of the silica particles. Also, the relative arrangement of the different components in the resulting material is a matter of debate. In this study, we investigate the nature of the protein–silica interactions by means of solid-state nuclear magnetic resonance spectroscopy, small-angle X-ray scattering, and electron microscopy. We find that lysozyme and silica are in intimate contact and strongly interacting, but their interaction is neither covalent nor electrostatic: lysozyme is mostly trapped inside the silica by steric effects.

Show more

Jun 2022 • ACS Applied Materials & Interfaces

Lead sequestration from halide perovskite solar cells with a low-cost thiol-containing encapsulant

Rene D Mendez L, Barry N Breen, David Cahen

Perovskite solar cells (PSCs) are being studied and developed because of the outstanding properties of halide perovskites as photovoltaic materials and high conversion efficiencies achieved with the best PSCs. However, leaching out of lead (Pb) ions into the environment presents potential public health risks. We show that thiol-functionalized nanoparticles provide an economic way of minimizing Pb leaching in the case of PSC module damage and subsequent water exposure (at most, ∼2.5% of today’s crystal silicon solar panel production cost per square meter). Using commercial materials and methods, we retain ∼90% of Pb without degrading the photovoltaic performance of the cells, compared with nonencapsulated devices, yielding a worst-case scenario of top-soil pollution below natural Pb levels and well below the U.S. Environmental Protection Agency limits.

Show more

Jun 2022 • Progress in Polymer Science 131, 101574, 2022

3D printed magnetic polymer composite hydrogels for hyperthermia and magnetic field driven structural manipulation

Sayan Ganguly, Shlomo Margel

Magnetic hydrogels and soft composites have fuelled the development of next generation biomimetic soft robotics due to their precise control and non-cytotoxic nature. Bare magnetic nanoparticles are difficult to regulate via remote controlling whereas, when these nanoparticles are arrested inside polymeric matrices, the whole system become an artificial soft mussel like integrated system. Concurrently, these polymeric magnetic soft materials are also prone to response of external magnetic field (static or oscillatory). Additive manufacturing via spatial assembly of polymeric precursors followed by actuation like behaviour is quite a new manufacturing technique to fabricate magnetic soft materials. In this review, we focused on the magnetic nanoparticles and their entrapment into polymeric matrices and assessing their applicability in clinical (hyperthermia) as well as shape morphing behaviours. Both the behaviors …

Show more

Jun 2022 • Journal of the American Chemical Society

Inherent Minor Conformer of Bordetella Effector BteA Directs Chaperone-Mediated Unfolding

Adi Yahalom, Hadassa Shaked, Sharon Ruthstein, Jordan H Chill


Jun 2022 • Advanced Materials Interfaces

Surface Interactions of Oxygen Suffice to P‐Dope the Halide Perovskites

Ansuman Halder, Anat Itzhak, Eli Rosh Hodesh, Shay Tirosh, David Cahen

Attempts to dope halide perovskites (HaPs) extrinsically have been mostly unsuccessful. Still, oxygen (O2) is an efficient p‐dopant for polycrystalline HaP films. To an extent, this doping is reversible, i.e., the films can be de‐doped by decreasing the O2 partial pressure. Here results are reported, aimed at understanding the mechanism of such reversible doping, as it has been argued that doping involves interaction of oxygen with defects inside bulk HaP. These experimental results clearly point out that O2‐surface interactions suffice to dope the bulk of the films. Such behavior fits what is known for other polycrystalline semiconductors, where surface charge transfer‐adducts can form and be removed. Thus, controlling the O2 partial pressure to which the HaP film is exposed, can, after proper encapsulation, achieve the desired bulk doping of the film.

Show more

Jun 2022 • Nature communications

A forward Brillouin fibre laser

Gil Bashan, H Hagai Diamandi, Elad Zehavi, Kavita Sharma, Yosef London, Avi Zadok

Fibre lasers based on backward stimulated Brillouin scattering provide narrow linewidths and serve in signal processing and sensing applications. Stimulated Brillouin scattering in fibres takes place in the forward direction as well, with amplification bandwidths that are narrower by two orders of magnitude. However, forward Brillouin lasers have yet to be realized in any fibre platform. In this work, we report a first forward Brillouin fibre laser, using a bare off-the-shelf, panda-type polarisation maintaining fibre. Pump light in one principal axis provides Brillouin amplification for a co-propagating lasing signal of the orthogonal polarisation. Feedback is provided by Bragg gratings at both ends of the fibre cavity. Single-mode, few-modes and multi-mode regimes of operation are observed. The lasing threshold exhibits a unique environmental sensitivity: it is elevated when the fibre is partially immersed in water due to the …

Show more

Jun 2022 • Science advances

A long noncoding RNA promotes parasite differentiation in African trypanosomes

Fabien Guegan, K Shanmugha Rajan, Fábio Bento, Daniel Pinto-Neves, Mariana Sequeira, Natalia Gumińska, Seweryn Mroczek, Andrzej Dziembowski, Smadar Cohen-Chalamish, Tirza Doniger, Beathrice Galili, Antonio M Estévez, Cedric Notredame, Shulamit Michaeli, Luisa M Figueiredo

The parasite Trypanosoma brucei causes African sleeping sickness that is fatal to patients if untreated. Parasite differentiation from a replicative slender form into a quiescent stumpy form promotes host survival and parasite transmission. Long noncoding RNAs (lncRNAs) are known to regulate cell differentiation in other eukaryotes. To determine whether lncRNAs are also involved in parasite differentiation, we used RNA sequencing to survey the T. brucei genome, identifying 1428 previously uncharacterized lncRNA genes. We find that grumpy lncRNA is a key regulator that promotes parasite differentiation into the quiescent stumpy form. This function is promoted by a small nucleolar RNA encoded within the grumpy lncRNA. snoGRUMPY binds to messenger RNAs of at least two stumpy regulatory genes, promoting their expression. grumpy overexpression reduces parasitemia in infected mice. Our analyses …

Show more

Jun 2022 • bioRxiv

Characterization of the continuous transcriptional heterogeneity in Wilms’ tumors using unsupervised machine learning

Yaron Trink, Achia Urbach, Benjamin Dekel, Peter Hohenstein, Jacob Goldberger, Tomer Kalisky


Jun 2022 • Cells

The association of MEG3 lncRNA with nuclear speckles in living cells

Sarah E Hasenson, Ella Alkalay, Mohammad K Atrash, Alon Boocholez, Julianna Gershbaum, Hodaya Hochberg-Laufer, Yaron Shav-Tal

Nuclear speckles are nuclear bodies containing RNA-binding proteins as well as RNAs including long non-coding RNAs (lncRNAs). Maternally expressed gene 3 (MEG3) is a nuclear retained lncRNA found to associate with nuclear speckles. To understand the association dynamics of MEG3 lncRNA with nuclear speckles in living cells, we generated a fluorescently tagged MEG3 transcript that could be detected in real time. Under regular conditions, transient association of MEG3 with nuclear speckles was observed, including a nucleoplasmic fraction. Transcription or splicing inactivation conditions, known to affect nuclear speckle structure, showed prominent and increased association of MEG3 lncRNA with the nuclear speckles, specifically forming a ring-like structure around the nuclear speckles. This contrasted with metastasis-associated lung adenocarcinoma (MALAT1) lncRNA that is normally highly associated with nuclear speckles, which was released and dispersed in the nucleoplasm. Under normal conditions, MEG3 dynamically associated with the periphery of the nuclear speckles, but under transcription or splicing inhibition, MEG3 could also enter the center of the nuclear speckle. Altogether, using live-cell imaging approaches, we find that MEG3 lncRNA is a transient resident of nuclear speckles and that its association with this nuclear body is modulated by the levels of transcription and splicing activities in the cell.

Show more

Jun 2022 • ChemistrySelect

Boron‐doped Carbon Dots with Surface Oxygen Functional Groups as a Highly Sensitive and Label‐free Photoluminescence Probe for the Enhanced Detection of Mg2+ Ions

Hari Krishna Sadhanala, Sudhakar Pagidi, Suhas Yadav, Marianna Beiderman, Ilya Grinberg, Dror Fixler, Aharon Gedanken

Magnesium ion (Mg2+) is one of the most significant cations in living systems with involvement in many biochemical reactions and cellular processes and hence, sensitive and specific detection of Mg2+ is therefore essential for various applications. Here, we report the solvothermal synthesis of boron‐doped carbon dots (BC10) with more oxygen surface states by using salicylaldehyde and naphthalene‐1‐boronic acid. The as‐prepared BC10 showed greenish‐white luminescence under 365 nm UV illumination with quantum yield (QY) of 5.5 % at optimum dilution with dimethyl sulfur oxide (DMSO) solvent. The BC10 in DMSO (DS‐BC10) have shown high selectivity and sensitivity towards Mg2+ ion through the increased PL intensity due to chelation‐enhanced photoluminescence (CHEP). The enhanced PL intensity was further supported by the increased QY by a factor of 12 after the addition of Mg2+ ions to 65 …

Show more

Jun 2022 • ChemistrySelect

Boron‐doped Carbon Dots with Surface Oxygen Functional Groups as a Highly Sensitive and Label‐free Photoluminescence Probe for the Enhanced Detection of Mg2+ Ions

Hari Krishna Sadhanala, Sudhakar Pagidi, Suhas Yadav, Marianna Beiderman, Ilya Grinberg, Dror Fixler, Aharon Gedanken

Magnesium ion (Mg2+) is one of the most significant cations in living systems with involvement in many biochemical reactions and cellular processes and hence, sensitive and specific detection of Mg2+ is therefore essential for various applications. Here, we report the solvothermal synthesis of boron‐doped carbon dots (BC10) with more oxygen surface states by using salicylaldehyde and naphthalene‐1‐boronic acid. The as‐prepared BC10 showed greenish‐white luminescence under 365 nm UV illumination with quantum yield (QY) of 5.5 % at optimum dilution with dimethyl sulfur oxide (DMSO) solvent. The BC10 in DMSO (DS‐BC10) have shown high selectivity and sensitivity towards Mg2+ ion through the increased PL intensity due to chelation‐enhanced photoluminescence (CHEP). The enhanced PL intensity was further supported by the increased QY by a factor of 12 after the addition of Mg2+ ions to 65 …

Show more

Jun 2022 • Journal of Molecular Liquids

Binary mixtures of homologous room-temperature ionic liquids: Nanoscale structure evolution with alkyl lengths’ difference

Diego Pontoni, Marco DiMichiel, Moshe Deutsch

The nanoscale structure of equimolar binary mixtures [C 12 mim] 0.5 [C n mim] 0.5 [NTf 2] was studied by small-angle X-ray scattering for n= 1-22 and T= 293-373 K. All mixtures exhibit local layering and layer-normal thermal contraction with increasing T, as found for the pure components. The layer-parallel spacings of the polar headgroups and of the alkyl chains vary minimally with n over the full n range. The layer-normal spacing d I at high n follows closely, with a 1–1.5 Å downshift, the increasing trend of the pure longer component’s d I, indicating its dominance of the layering. At low n, d I at n= 1 greatly exceeds d I of the pure longer component, n= 12, and decreases sharply with increasing n, indicating a structure akin to lipid bilayer solutions. At intermediate n, d I is roughly constant, lying 1–1.5 Å below d I of n= 12. Our layer spacings provide a near-unique opportunity to study the evolution over a wide n-range …

Show more

Jun 2022 • arXiv preprint arXiv:2206.07730

Magnetic memory and spontaneous vortices in a van der Waals superconductor

Eylon Persky, Anders V Bjørlig, Irena Feldman, Avior Almoalem, Ehud Altman, Erez Berg, Itamar Kimchi, Jonathan Ruhman, Amit Kanigel, Beena Kalisky

Doped Mott insulators exhibit some of the most intriguing quantum phases of matter, including quantum spin-liquids, unconventional superconductors, and non-Fermi liquid metals. Such phases often arise when itinerant electrons are close to a Mott insulating state, and thus experience strong spatial correlations. Proximity between different layers of van der Waals heterostructures naturally realizes a platform for experimentally studying the relationship between localized, correlated electrons and itinerant electrons. Here, we explore this relationship by studying the magnetic landscape of 4Hb-TaS2, which realizes an alternate stack of a candidate spin liquid and a superconductor. We report on a spontaneous vortex phase whose vortex density can be trained in the normal state. We show that time reversal symmetry is broken above Tc, indicating the presence of a magnetic phase independent of the superconductor. Strikingly, this phase does not generate detectable magnetic signals. We use scanning superconducting quantum interference device (SQUID) microscopy to show that it is incompatible with ferromagnetic ordering. The discovery of this new form of hidden magnetism illustrates how combining superconductivity with a strongly correlated system can lead to new, unexpected physics.

Show more

Jun 2022 • arXiv preprint arXiv:2106.00523

Flow of time during energy measurements and the resulting time-energy uncertainty relations

Ismael L Paiva, Augusto C Lobo, Eliahu Cohen

Uncertainty relations play a crucial role in quantum mechanics. A well-defined method exists for deriving such uncertainties for pairs of observables. It does not include, however, an important family of fundamental relations: the time-energy uncertainty relations. As a result, different approaches have been used for obtaining them in diversified scenarios. The one of interest here revolves around the idea of the existence or inexistence of a minimum duration for an energy measurement with a certain precision. In our study, we use the Page and Wooters timeless framework to investigate how energy measurements modify the relative "flow of time" between internal and external clocks. This provides a unified framework for discussing the topic, recovering previous results and leading to new ones. We also show that the evolution of the external clock with respect to the internal one is non-unitary.

Show more

Jun 2022 • Laser and Particle Beams

Particles Detection System with CR-39 Based on Deep Learning

Gal Amit, Idan Mosseri, Ofir Even-Hen, Nadav Schneider, Elad Fisher, Hanan Datz, Eliahu Cohen, Noaz Nissim

We present a novel method that we call FAINE, fast artificial intelligence neutron detection system. FAINE automatically classifies tracks of fast neutrons on CR-39 detectors using a deep learning model. This method was demonstrated using a LANDAUER Neutrak® fast neutron dosimetry system, which is installed in the External Dosimetry Laboratory (EDL) at Soreq Nuclear Research Center (SNRC). In modern fast neutron dosimetry systems, after the preliminary stages of etching and imaging of the CR-39 detectors, the third stage uses various types of computer vision systems combined with a manual revision to count the CR-39 tracks and then convert them to a dose in mSv units. Our method enhances these modern systems by introducing an innovative algorithm, which uses deep learning to classify all CR-39 tracks as either real neutron tracks or any other sign such as dirt, scratches, or even cleaning remainders. This new algorithm makes the third stage of manual CR-39 tracks revision superfluous and provides a completely repeatable and accurate way of measuring either neutrons flux or dose. The experimental results show a total accuracy rate of 96.7% for the true positive tracks and true negative tracks detected by our new algorithm against the current method, which uses computer vision followed by manual revision. This algorithm is now in the process of calibration for both alpha-particles detection and fast neutron spectrometry classification and is expected to be very useful in analyzing results of proton-boron11 fusion experiments. Being fully automatic, the new algorithm will enhance the quality assurance and effectiveness of …

Show more

Jun 2022 • Sexual Development 16 (2-3), 80-91, 2022

SOX genes and their role in disorders of sex development

Rajini Sreenivasan, Nitzan Gonen, Andrew Sinclair

SOX genesare master regulatory genes controlling development and are fundamental to the establishment of sex determination in a multitude of organisms. The discovery of the master sex-determining gene SRY in 1990 was pivotal for the understanding of how testis development is initiated in mammals. With this discovery, an entire family of SOX factors were uncovered that play crucial roles in cell fate decisions during development. The importance of SOX genes in human reproductive development is evident from the various disorders of sex development (DSD) upon loss or overexpression of SOX gene function. Here, we review the roles that SOX genes play in gonad development and their involvement in DSD. We start with an overview of sex determination and differentiation, DSDs, and the SOX gene family and function. We then provide detailed information and discussion on SOX genes that have been …

Show more

Jun 2022 • Sensors 22 (12), 4497, 2022

Recent Advances in Rapid and Highly Sensitive Detection of Proteins and Specific DNA Sequences Using a Magnetic Modulation Biosensing System

Shira Roth, Michael Margulis, Amos Danielli

In early disease stages, biomolecules of interest exist in very low concentrations, presenting a significant challenge for analytical devices and methods. Here, we provide a comprehensive overview of an innovative optical biosensing technology, termed magnetic modulation biosensing (MMB), its biomedical applications, and its ongoing development. In MMB, magnetic beads are attached to fluorescently labeled target molecules. A controlled magnetic force aggregates the magnetic beads and transports them in and out of an excitation laser beam, generating a periodic fluorescent signal that is detected and demodulated. MMB applications include rapid and highly sensitive detection of specific nucleic acid sequences, antibodies, proteins, and protein interactions. Compared with other established analytical methodologies, MMB provides improved sensitivity, shorter processing time, and simpler protocols.

Show more

Jun 2022 • SCIENTIFIC REPORTS

Sourcing Herod the Great's calcite-alabaster bathtubs by a multi-analytic approach (vol 12, 7524, 2022)

Ayala Amir, Amos Frumkin, Boaz Zissu, Aren M Maeir, Gil Goobes, Amnon Albeck


logo
Articali

Powered by Articali

TermsPrivacy