BINA

4721 articles

79 publishers

Join mailing list

May 2023 • CLEO: Applications and Technology, AM4Q. 7, 2023

High-resolution Imaging with Scattered X-ray Radiation

A Ben Yehuda, O Sefi, E Cohen, S Shwartz

We demonstrate ghost imaging with scattered x-ray radiation for the first time and show that its spatial resolution is significantly higher than the resolution of standard present-day methods that rely on x-ray scattering.

Show more

May 2023 • Journal of Biomedical Optics

Imaging the rotational mobility of carbon dot-gold nanoparticle conjugates using frequency domain wide-field time-resolved fluorescence anisotropy

Gilad Yahav, Shweta Pawar, Yitzchak Weber, Bar Atuar, Hamootal Duadi, Dror Fixler

SignificanceWide-field measurements of time-resolved fluorescence anisotropy (TR-FA) provide pixel-by-pixel information about the rotational mobility of fluorophores, reflecting changes in the local microviscosity and other factors influencing the fluorophore’s diffusional motion. These features offer promising potential in many research fields, including cellular imaging and biochemical sensing, as demonstrated by previous works. Nevertheless, θ imaging is still rarely investigated in general and in carbon dots (CDs) in particular.AimTo extend existing frequency domain (FD) fluorescence lifetime (FLT) imaging microscopy (FLIM) to FD TR-FA imaging (TR-FAIM), which produces visual maps of the FLT and θ, together with the steady-state images of fluorescence intensity (FI) and FA (r).ApproachThe proof of concept of the combined FD FLIM/ FD TR-FAIM was validated on seven fluorescein solutions with increasing …

Show more

May 2023 • The Journal of Immunology

FLAIRR-Seq: a method for single-molecule resolution of near full-length antibody H chain repertoires

Easton E Ford, David Tieri, Oscar L Rodriguez, Nancy J Francoeur, Juan Soto, Justin T Kos, Ayelet Peres, William S Gibson, Catherine A Silver, Gintaras Deikus, Elizabeth Hudson, Cassandra R Woolley, Noam Beckmann, Alexander Charney, Thomas C Mitchell, Gur Yaari, Robert P Sebra, Corey T Watson, Melissa L Smith

Current Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) using short-read sequencing strategies resolve expressed Ab transcripts with limited resolution of the C region. In this article, we present the near-full-length AIRR-seq (FLAIRR-seq) method that uses targeted amplification by 5′ RACE, combined with single-molecule, real-time sequencing to generate highly accurate (99.99%) human Ab H chain transcripts. FLAIRR-seq was benchmarked by comparing H chain V (IGHV), D (IGHD), and J (IGHJ) gene usage, complementarity-determining region 3 length, and somatic hypermutation to matched datasets generated with standard 5′ RACE AIRR-seq using short-read sequencing and full-length isoform sequencing. Together, these data demonstrate robust FLAIRR-seq performance using RNA samples derived from PBMCs, purified B cells, and whole blood, which recapitulated results generated by …

Show more

May 2023 • Physical Review A

High-spectral-resolution absorption measurements with free-electron lasers using ghost spectroscopy

Yishai Klein, Alok K Tripathi, Edward Strizhevsky, Flavio Capotondi, Dario De Angelis, Luca Giannessi, Matteo Pancaldi, Emanuele Pedersoli, Kevin C Prince, Or Sefi, Young Yong Kim, Ivan A Vartanyants, Sharon Shwartz

We demonstrate a simple and robust high-resolution ghost spectroscopy approach for x-ray and extreme ultraviolet transient absorption spectroscopy at free-electron laser sources. To retrieve the sample response, our approach requires only an online spectrometer before the sample and a downstream bucket detector. We validate the method by measuring the absorption spectrum of silicon, silicon carbide, and silicon nitride membranes in the vicinity of the silicon L 2, 3 edge and by comparing the results with standard techniques for absorption measurements. Moreover, we show that ghost spectroscopy allows the high-resolution reconstruction of the sample spectral response to optical pumps using a coarse energy scan with self-amplified spontaneous emission radiation.

Show more

May 2023 • Scientific Reports

2D tunable all-solid-state random laser in the visible

Bhupesh Kumar, Ran Homri, Patrick Sebbah

A two-dimensional (2D) solid-state random laser emitting in the visible is demonstrated, in which optical feedback is provided by a controlled disordered arrangement of air-holes in a dye-doped polymer film. We find an optimal scatterer density for which threshold is minimum and scattering is the strongest. We show that the laser emission can be red-shifted by either decreasing scatterer density or increasing pump area. We show that spatial coherence is easily controlled by varying pump area. Such a 2D random laser provides with a compact on-chip tunable laser source and a unique platform to explore non-Hermitian photonics in the visible.

Show more

May 2023 • Journal of Functional Biomaterials

Engineered Cross-Linked Silane with Urea Polymer Thin Durable Coatings onto Polymeric Films for Controlled Antiviral Release of Activated Chlorine and Essential Oils

Elisheva Sasson, Omer Agazani, Eyal Malka, Meital Reches, Shlomo Margel

In March 2020, the World Health Organization announced a pandemic attributed to SARS-CoV-2, a novel beta-coronavirus, which spread widely from China. As a result, the need for antiviral surfaces has increased significantly. Here, the preparation and characterization of new antiviral coatings on polycarbonate (PC) for controlled release of activated chlorine (Cl+) and thymol separately and combined are described. Thin coatings were prepared by polymerization of 1-[3-(trimethoxysilyl)propyl] urea (TMSPU) in ethanol/water basic solution by modified Stöber polymerization, followed by spreading the formed dispersion onto surface-oxidized PC film using a Mayer rod with appropriate thickness. Activated Cl-releasing coating was prepared by chlorination of the PC/SiO2-urea film with NaOCl through the urea amide groups to form a Cl-amine derivatized coating. Thymol releasing coating was prepared by linking thymol to TMSPU or its polymer via hydrogen bonds between thymol hydroxyl and urea amide groups. The activity towards T4 bacteriophage and canine coronavirus (CCV) was measured. PC/SiO2-urea-thymol enhanced bacteriophage persistence, while PC/SiO2-urea-Cl reduced its amount by 84%. Temperature-dependent release is presented. Surprisingly, the combination of thymol and chlorine had an improved antiviral activity, reducing the amount of both viruses by four orders of magnitude, indicating synergistic activity. For CCV, coating with only thymol was inactive, while SiO2-urea-Cl reduced it below a detectable level.

Show more

May 2023 • Viral Infections of Humans: Epidemiology and Control, 1-72, 2023

Human Herpesviruses: Kaposi’s Sarcoma and Other Malignancies

Ronit Sarid, Daniela Dünn-Kittenplon, Maria Luisa Calabrò

Kaposi’s sarcoma-associated herpesvirus (KSHV), formally designated the human herpesvirus 8 (HHV-8), is the causative agent of Kaposi’s sarcoma (KS), primary effusion lymphoma (PEL), and plasmablastic variant of multicentric Castleman’s disease (MCD). KSHV also has been linked to another pathological condition with many features in common with MCD, named KSHV inflammatory cytokine syndrome (KICS) and with a number of other rare lymphoproliferative conditions. KSHV infection is highly prevalent in sub-Saharan Africa and among some Amerindian and Melanesian populations, and diffuse in the Mediterranean area and in parts of South America. KSHV is less prevalent in Northern Europe, North America, and most of Asia. KSHV is transmitted via nonsexual routes during childhood in regions with intermediate and high seroprevalence, and mainly via sexual contact during adulthood in countries …

Show more

May 2023 • ACS Applied Nano Materials

Room-Temperature NO2 Sensing of CVD-Modified WS2–WSe2 Heterojunctions

Abderrahim Moumen, Rajashree Konar, Dario Zappa, Eti Teblum, Gilbert Daniel Nessim, Elisabetta Comini

Two-dimensional (2D) semiconducting heterojunction chemical sensors are in high demand because of their enhanced response, stability, and selectivity. However, fine-tuning heterojunctions using vapor deposition growth still needs further research. Our present study focuses on the ambient pressure chemical vapor deposition (CVD) synthesis of hexagonal tungsten sulfide-tungsten selenide (WS2–WSe2) p–p heterojunctions (as a 2D–2D arrangement). We use the liquid-phase exfoliation method to disperse bulk WS2 and WSe2 and decorate large flakes of WS2 with smaller WSe2 nanosheets in CVD. Electron microscopy and related surface investigations reveal their homogeneity on drop-casting. Two drops from the exfoliated heterojunction dispersion were drop-cast on a transducer to study the NO2 response and related sensing properties. The sensor showed long-term stability (>2 months), even at high …

Show more

May 2023 • Nano Letters

Hierarchically Porous Few-Layer Carbon Nitride and Its High H+ Selectivity for Efficient Photocatalytic Seawater Splitting

Shi-Tian Xiao, Rui Yin, Lu Wu, Si-Ming Wu, Ge Tian, Menny Shalom, Li-Ying Wang, Yi-Tian Wang, Fu-Fei Pu, Hannah-Noa Barad, Fazhou Wang, Xiao-Yu Yang

Photocatalysts for seawater splitting are severely restricted because of the presence of multiple types of ions in seawater that cause corrosion and deactivation. As a result, new materials that promote adsorption of H+ and hinder competing adsorption of metal cations should enhance utilization of photogenerated electrons on the catalyst surface for efficient H2 production. One strategy to design advanced photocatalysts involves introduction of hierarchical porous structures that enable fast mass transfer and creation of defect sites that promote selective hydrogen ion adsorption. Herein, we used a facile calcination method to fabricate the macro–mesoporous C3N4 derivative, VN-HCN, that contains multiple nitrogen vacancies. We demonstrated that VN-HCN has enhanced corrosion resistance and elevated photocatalytic H2 production performance in seawater. Experimental results and theoretical calculations …

Show more

May 2023 • IEEE Transactions on Applied Superconductivity

Energy storing and fault current limiting in a unified superconducting magnetic device

Y Nikulshin, A Kafri, Y Yeshurun, S Wolfus

This work describes a novel concept for unifying Superconducting Magnetic Energy Storage (SMES) and an inductive-type Fault Current Limiter (FCL). A single superconducting coil is used both as an energy source for the operation of the SMES and as the field source for saturating the magnetic cores in the FCL. A possible geometry model for the implementation of this concept is suggested and a test case in an 11 kV, 10 MVA network is described for a fully, and 50% charged SMES states. Results show that the Saturated Cores FCL exhibits low insertion impedance and high limiting ratio in both scenarios. The unified SMES-FCL device saves major resources by making the superconducting coil a dual-purpose source, thus opening the door for an easier and efficient implementation of SMES and FCL technologies.

Show more

May 2023 • Bioengineering & Translational Medicine

Micelle encapsulation zinc‐doped copper oxide nanocomposites reverse Olaparib resistance in ovarian cancer by disrupting homologous recombination repair

Jingyan Yi, Xin Luo, Jinshan Xing, Aharon Gedanken, Xiukun Lin, Chunxiang Zhang, Gan Qiao

Micelle Encapsulation Zinc‐doped copper oxide nanocomposites (MEnZn‐CuO NPs) is a novel doped metal nanomaterial prepared by our group based on Zinc doped copper oxide nanocomposites (Zn‐CuO NPs) using non‐micellar beam. Compared with Zn‐CuO NPs, MEnZn‐CuO NPs have uniform nanoproperties and high stability. In this study, we explored the anticancer effects of MEnZn‐CuO NPs on human ovarian cancer cells. In addition to affecting cell proliferation, migration, apoptosis and autophagy, MEnZn‐CuO NPs have a greater potential for clinical application by inducing HR repair defects in ovarian cancer cells in combination with poly (ADP‐ribose) polymerase inhibitors for lethal effects.

Show more

Apr 2023 • PLOS Computational Biology

Increased A-to-I RNA editing in atherosclerosis and cardiomyopathies

Tomer D Mann, Eli Kopel, Eli Eisenberg, Erez Y Levanon

Adenosine-to-inosine RNA editing is essential to prevent undesired immune activation. This diverse process alters the genetic content of the RNA and may recode proteins, change splice sites and miRNA targets, and mimic genomic mutations. Recent studies have associated or implicated aberrant editing with pathological conditions, including cancer, autoimmune diseases, and neurological and psychiatric conditions. RNA editing patterns in cardiovascular tissues have not been investigated systematically so far, and little is known about its potential role in cardiac diseases. Some hints suggest robust editing in this system, including the fact that ADARB1 (ADAR2), the main coding-sequence editor, is most highly expressed in these tissues. Here we characterized RNA editing in the heart and arteries and examined a contributory role to the development of atherosclerosis and two structural heart diseases -Ischemic and Dilated Cardiomyopathies. Analyzing hundreds of RNA-seq samples taken from the heart and arteries of cardiac patients and controls, we find that global editing, alongside inflammatory gene expression, is increased in patients with atherosclerosis, cardiomyopathies, and heart failure. We describe a single recoding editing site and suggest it as a target for focused research. This recoding editing site in the IGFBP7 gene is one of the only evolutionary conserved sites between mammals, and we found it exhibits consistently increased levels of editing in these patients. Our findings reveal that RNA editing is abundant in arteries and is elevated in several key cardiovascular conditions. They thus provide a roadmap for basic and …

Show more

Apr 2023 • ACS omega

Enhanced Ablation of Cornea Doped with a Fluorescein Dye Using a Visible Wavelength Laser

Abhijit Sanjeev, Vismay Trivedi, Anna Sterkin, David Smadja, Zeev Zalevsky

Myopia (nearsightedness) and presbyopia (aging eye) are the most common refractive errors of the human eye. Technology has advanced toward correcting aberration using various surgical procedures, including laser surgery, as well as prescribing corrective lenses. Hence, the effect of various laser wavelengths on the eye has been extensively studied over the last few decades. Usually, excimer lasers are used for this purpose, which increases the cost of the procedure because they are unique and difficult to manufacture and require regular maintenance. Due to the absorption properties, visible wavelengths do not interact with the corneal layers and hence are currently not used for eye surgery. This study presents the first clinical evidence that a 532 nm laser in combination with an eye-safe fluorescein dye that is in wide clinical use in ophthalmology can be utilized for high-precision ablation purposes due to the …

Show more

Apr 2023 • Photonics

Quantitative phase contrast microscopy with optimized partially coherent illumination

Kequn Zhuo, Yang Wang, Ying Ma, Sha An, Zeev Zalevsky, Juanjuan Zheng, Peng Gao


Apr 2023 • Advanced Optical Materials

Characterization of Nanometric Thin Films with Far‐Field Light

Hodaya Klimovsky, Omer Shavit, Carine Julien, Ilya Olevsko, Mohamed Hamode, Yossi Abulafia, Hervé Suaudeau, Vincent Armand, Martin Oheim, Adi Salomon

The characterization of ultrathin transparent films is paramount for various optoelectronic materials, coatings, and photonics. However, characterizing such thin layers is difficult and it requires specialized clean‐room equipment and trained personnel. Here, a contact‐less, all‐optical method is introduced and validated for characterizing nanometric transparent films using far‐field optics. A series of nanometric, smooth, and homogeneous layered samples are fabricated first, alternating transparent spacer and fluorescent layers in a controlled manner. Fluorescence radiation pattern originating from the thin fluorophore layers is then recorded and analyzed and quantitative image analysis is used to perform in operando measurements of the refractive index, film homogeneity and to estimate axial fluorophore distances at a sub‐wavelength scale with a precision of a few of nanometers. The results compare favorably to …

Show more

Apr 2023 • ACS nano

Transverse hypercrystals formed by periodically modulated phonon polaritons

Hanan Herzig Sheinfux, Minwoo Jung, Lorenzo Orsini, Matteo Ceccanti, Aditya Mahalanabish, Daniel Martinez-Cercós, Iacopo Torre, David Barcons Ruiz, Eli Janzen, James H Edgar, Valerio Pruneri, Gennady Shvets, Frank HL Koppens

Photonic crystals and metamaterials are two overarching paradigms for manipulating light. By combining these approaches, hypercrystals can be created, which are hyperbolic dispersion metamaterials that undergo periodic modulation and mix photonic-crystal-like aspects with hyperbolic dispersion physics. Despite several attempts, there has been limited experimental realization of hypercrystals due to technical and design constraints. In this work, hypercrystals with nanoscale lattice constants ranging from 25 to 160 nm were created. The Bloch modes of these crystals were then measured directly using scattering near-field microscopy. The dispersion of the Bloch modes was extracted from the frequency dependence of the Bloch modes, revealing a clear switch from positive to negative group velocity. Furthermore, spectral features specific to hypercrystals were observed in the form of sharp density of states peaks …

Show more

Apr 2023 • Pharmaceutics 15 (5), 1329, 2023

Homology-directed-repair-based genome editing in HSPCs for the treatment of inborn errors of immunity and blood disorders

Daniel Allen, Nechama Kalter, Michael Rosenberg, Ayal Hendel

Genome engineering via targeted nucleases, specifically CRISPR-Cas9, has revolutionized the field of gene therapy research, providing a potential treatment for diseases of the blood and immune system. While numerous genome editing techniques have been used, CRISPR-Cas9 homology-directed repair (HDR)-mediated editing represents a promising method for the site-specific insertion of large transgenes for gene knock-in or gene correction. Alternative methods, such as lentiviral/gammaretroviral gene addition, gene knock-out via non-homologous end joining (NHEJ)-mediated editing, and base or prime editing, have shown great promise for clinical applications, yet all possess significant drawbacks when applied in the treatment of patients suffering from inborn errors of immunity or blood system disorders. This review aims to highlight the transformational benefits of HDR-mediated gene therapy and possible solutions for the existing problems holding the methodology back. Together, we aim to help bring HDR-based gene therapy in CD34+ hematopoietic stem progenitor cells (HSPCs) from the lab bench to the bedside.

Show more

Apr 2023 • ChemElectroChem

Degradation Mechanisms of Platinum Group Metal‐Free Oxygen Reduction Reaction Catalyst based on Iron Phthalocyanine

Hilah C Honig, Lior Elbaz

Platinum group metal‐free catalysts have been considered the most promising alternative for platinum‐based catalysts for the oxygen reduction reaction in fuel cells. Despite the significant advancement made in activity, their viability as fuel cell catalysts is still questionable due to their low durability. So far, deciphering the degradation mechanisms of this class of catalysts has been hampered by their undefined structure. Herein, we used a molecular model catalyst, iron‐phthalocyanine, featuring Fe−N4 active sites with resemblance to those in the more active Fe−N−C catalysts, and studied their degradation mechanisms. Based on X‐ray photoelectron spectroscopy and the electrochemical measurements, three main demetallation processes were identified: at potentials higher than 0.65 V vs. RHE, where the metal center is Fe3+, an electrochemical oxidation of the ligand ring is occurring, between 0.6 and 0.2 V …

Show more

Apr 2023 • Optics Continuum

Designing an optical phase element for field of view enhancement by using wavelength multiplexing

Vismay Trivedi, Abhijit Sanjeev, Zeev Zalevsky

Enhancing the image quality of the captured image is one of the prime objectives of modern image acquisition systems. These imaging systems can be broadly divided into two subsystems: an optical subsystem and a digital subsystem. There are various limitations associated with the optical and digital subsystems. One of the crucial parameters that are affected by the limitation of the physical extent of the recording or capturing system is the field of view (FOV). A reduced FOV can lead to loss of information thereby increasing the time for post-processing of images as well as introducing mechanical scanning to achieve a larger FOV. A simple yet efficient technique for FOV enhancement is demonstrated in this paper. An optical element is designed in such a way that it diffracts different wavelengths in the desired manner and the information from different regions of the object is carried by different wavelengths which …

Show more

Apr 2023 • Energies 16 (9), 3659, 2023

Heteroatom-Doped Carbon Supports with Enhanced Corrosion Resistance in Polymer Electrolyte Membrane Fuel Cells

Alisa Kozhushner, Qing Li, Lior Elbaz

Polymer Electrolyte Membrane Fuel Cells (PEMFC) are currently considered the most advanced fuel cell technology. However, the industrial implementation of PEMFCs is strongly hindered by deficient durability, especially that of the carbonaceous materials commonly used to support the platinum-based catalyst nanoparticles, which are prone to electrochemical corrosion at the cathode, resulting in a serious performance loss of the entire cell. In the attempt to overcome this issue, many research groups have tried to introduce heteroatoms (N, S, B, P) into the carbon lattice, thus trying to make the electrode corrosion-resistant. Newly developed heteroatom-doped carbons were subjected to corrosion tests in half-cell and single-cell systems to evaluate their stability. This paper reviews the recent studies devoted to corrosion research of heteroatom-doped carbon supports for Pt-based catalysts in PEMFCs. In particular, an overview on N, B, and S dopants and their effects on carbon corrosion is provided.

Show more

Apr 2023 • Pharmaceutics 15 (5), 1329, 2023

Homology-Directed-Repair-Based Genome Editing in HSPCs for the Treatment of Inborn Errors of Immunity and Blood Disorders

Daniel Allen, Nechama Kalter, Michael Rosenberg, Ayal Hendel

Genome engineering via targeted nucleases, specifically CRISPR-Cas9, has revolutionized the field of gene therapy research, providing a potential treatment for diseases of the blood and immune system. While numerous genome editing techniques have been used, CRISPR-Cas9 homology-directed repair (HDR)-mediated editing represents a promising method for the site-specific insertion of large transgenes for gene knock-in or gene correction. Alternative methods, such as lentiviral/gammaretroviral gene addition, gene knock-out via non-homologous end joining (NHEJ)-mediated editing, and base or prime editing, have shown great promise for clinical applications, yet all possess significant drawbacks when applied in the treatment of patients suffering from inborn errors of immunity or blood system disorders. This review aims to highlight the transformational benefits of HDR-mediated gene therapy and possible solutions for the existing problems holding the methodology back. Together, we aim to help bring HDR-based gene therapy in CD34+ hematopoietic stem progenitor cells (HSPCs) from the lab bench to the bedside.

Show more

logo
Articali

Powered by Articali

TermsPrivacy