BINA

4462 articles

77 publishers

Join mailing list

Jan 2023 • Polymer-Based Nanoscale Materials for Surface Coatings, 1-18, 2023

Introduction to coatings and surface preparation

Sayan Ganguly, Shlomo Margel

In this chapter, we would like to discuss polymer coating's know-how, which is a method of modifying surface qualities in order to satisfy operating requirements in a number of technological applications. In addition to adhesion and barrier capabilities, polymer coatings have also been used to improve scratch and abrasion resistance, solvent resistance, wettability, noncytotoxicity, and other features. For the manufacture of protective organic coatings a number of different techniques have been devised and used. A careful selection of polymer, coating process, and manufacturing conditions can result in high-performance coatings with improved attributes when applied correctly. Polymer coatings have recently been shown to be effective and widely used in a variety of applications, including solar cells, batteries, separation techniques, diodes, corrosion defense, packaging, and heathcare applications.

Show more

Jan 2023 • Journal of the American Chemical Society

Direct quinone fuel cells

Yan Yurko, Lior Elbaz

The increasing interest and need to shift to sustainable energy give rise to the utilization of fuel cell technologies in various applications. The challenging task of hydrogen storage and transport led to the development of liquid hydrogen carriers (LHCs) as fuels for direct LHC fuel cells, such as methanol in direct methanol fuel cells (DMFCs). Although simpler to handle, most direct LHC fuel cells suffer from durability and price issues derived from high catalysts’ loadings and byproducts of the oxidation reaction of the fuel. Herein, we report on the development of direct hydroquinone fuel cells (DQFCs) based on anthraquinone-2,7-disulfonic acid (AQDS) as an LHC. We have shown that DQFC can operate with a continuous flow of quinone as a hydrogen carrier, outperforming the incumbent state-of-the-art DMFC by a factor of 3 in peak power density while completely removing the need for any catalyst at the anode. In …

Show more

Jan 2023 • Polymer-Based Nanoscale Materials for Surface Coatings, 479-500, 2023

Superhydrophobic nanoscale materials for surface coatings

Sayan Ganguly, Shlomo Margel

Superhydrophobic surface preparation is developed by inspiration from nature. As it is a natural fact that lotus leaves are water repellant, thus researchers tried their best to develop superhydrophobic coatings by using several materials. The materials are categorized by inorganic, organic, and their synergistic hybrids. Polymeric coatings are more usable by scientists because of its tunable chemical features and their internal morphologies. This chapter will discuss in brief the coating materials and how polymer systems influenced the superhydrophobicity.

Show more

Jan 2023 • Cellular and Molecular Gastroenterology and Hepatology

High-resolution genomic profiling of liver cancer links etiology with mutation and epigenetic signatures

Shira Perez, Anat Lavi-Itzkovitz, Moriah Gidoni, Tom Domovitz, Roba Dabour, Ishant Khurana, Ateret Davidovich, Ana Tobar, Alejandro Livoff, Evgeny Solomonov, Yaakov Maman, Assam El-Osta, Yishan Tsai, Ming-Lung Yu, Salomon M Stemmer, Izhak Haviv, Gur Yaari, Meital Gal-Tanamy

Background & AimsHepatocellular carcinoma (HCC) is a model of a diverse spectrum of cancers because it is induced by well-known etiologies, mainly hepatitis C virus (HCV) and hepatitis B virus. Here, we aimed to identify HCV-specific mutational signatures and explored the link between the HCV-related regional variation in mutations rates and HCV-induced alterations in genome-wide chromatin organization.MethodsTo identify an HCV-specific mutational signature in HCC, we performed high-resolution targeted sequencing to detect passenger mutations on 64 HCC samples from 3 etiology groups: hepatitis B virus, HCV, or other. To explore the link between the genomic signature and genome-wide chromatin organization we performed chromatin immunoprecipitation sequencing for the transcriptionally permissive H3K4Me3, H3K9Ac, and suppressive H3K9Me3 modifications after HCV infection.Results …

Show more

Jan 2023 • Advanced Photonics Nexus

Toward augmenting tip-enhanced nanoscopy with optically resolved scanning probe tips

Jeremy Belhassen, Simcha Glass, Eti Teblum, George A Stanciu, Denis E Tranca, Zeev Zalevsky, Stefan G Stanciu, Avi Karsenty

A thorough understanding of biological species and emerging nanomaterials requires, among other efforts, their in-depth characterization through optical techniques capable of nanoresolution. Nanoscopy techniques based on tip-enhanced optical effects have gained tremendous interest over the past years, given their potential to obtain optical information with resolutions limited only by the size of a sharp probe interacting with focused light, irrespective of the illumination wavelength. Although their popularity and number of applications is rising, tip-enhanced nanoscopy (TEN) techniques still largely rely on probes that are not specifically developed for such applications, but for atomic force microscopy. This limits their potential in many regards, e.g., in terms of signal-to-noise ratio, attainable image quality, or extent of applications. We take the first steps toward next-generation TEN by demonstrating the fabrication …

Show more

Jan 2023 • The Journal of Physical Chemistry Letters

It is a trap!: The effect of self-healing of surface defects on the excited states of CdSe nanocrystals

Alexandra R McIsaac, Tamar Goldzak, Troy Van Voorhis

Colloidal semiconductor nanocrystals have attracted much interest due to their unique optical properties, with applications ranging from displays to biomedical imaging. Nanocrystal optical properties depend on the structure of the surface, where defects can lead to traps. CdSe nanocrystals undergo surface reorganization, or self-healing, to eliminate defects, removing midgap traps from the band structure. However, the effect of this process on the optical spectrum is not well studied. Here, we show that self-healing not only eliminates midgap traps from the band structure but also brightens the spectrum and causes the excitonic states to emerge as the dominant features, in agreement with experimental annealing studies. We find that self-healing can lead to new traps like bonded Se–Se or Cd–Cd dimers, and their behavior is different from that of undercoordinated atom traps. These results suggest that eliminating …

Show more

Jan 2023 • Superconductor Science Technology

Characterization of YBa2Cu3O7-δ coplanar resonator for microwave kinetic inductance detectors

Ariel Roitman, A Shaulov, Y Yeshurun

We demonstrate an improved YBa 2 Cu 3 O 7-δ-based microwave kinetic inductance detector with a quality factor and noise equivalent power, $\sim {10^{-12}}{\mkern 1mu}{\text {W}}{\mkern 1mu}{\sqrt {{\text {Hz}}}^{-1}} $ at 10 K. Zero field cooled (ZFC) and field cooled (FC) measurements of the magnetic field dependence of the resonance characteristics, show substantially different behavior, indicating that both the screening currents and vortices play a role. The ZFC measurements exhibit a sharp decrease of the resonance frequency, , and at low fields, up to the full penetration field, revealing the dominant role of the screening currents. In contrast, the FC measurements exhibit a moderate decrease of and with field, revealing the role of vortices and reflecting the field dependence of the penetration depth in a d-wave superconductor.

Show more

Jan 2023 • bioRxiv

Reliability and accuracy of single-molecule FRET studies for characterization of structural dynamics and distances in proteins

Ganesh Agam, Christian Gebhardt, Milana Popara, Rebecca Maechtel, Julian Folz, Ben Ambrose, Neharika Chamachi, Sang Yoon Chung, Timothy D Craggs, Marijn de Boer, Dina Grohmann, Taekjip Ha, Andreas Hartmann, Jelle Hendrix, Verena Hirschfeld, Christian G Huebner, Thorsten Hugel, Dominik Kammerer, Hyun Seo Kang, Achillefs Kapanidis, Georg Krainer, Kevin Kramm, Edward Lemke, Eitan Lerner, Emmanuel Margeat, Kirsten Martens, Jens Michaelis, Jaba Mitra, Gustavo G Moya Munoz, Robert Quast, Nicole Robb, Michael Sattler, Michael Schlierf, Jonathan Schneider, Tim Schroeder, Anna Sefer, Piau Siong Tan, Johann Thurn, Philip Tinnefeld, John van Noort, Shimon Weiss, Nicolas Wendler, Anders Barth, Claus AM Seidel, Don C Lamb, Thorben Cordes

Single-molecule FRET (smFRET) has become an established tool to study biomolecular structure and dynamics in vitro and in live cells. We performed a worldwide blind study involving 19 labs to assess the uncertainty of FRET experiments for proteins with respect to the measured FRET efficiency histograms, determination of distances, and the detection and quantification of structural dynamics. Using two protein systems that undergo distinct conformational changes, we obtained an uncertainty of the FRET efficiency of less than 0.06, corresponding to an interdye distance precision of less than 0.2 nm and accuracy of less than 0.5 nm. We further discuss the limits for detecting distance fluctuations with sensitivity down to less than 10% of the Foerster distance and provide guidelines on how to detect potential dye perturbations. The ability of smFRET experiments to simultaneously measure distances and avoid averaging of conformational dynamics slower than the fluorescence lifetime is unique for dynamic structural biology.

Show more

Jan 2023 • Crystals

L-Glu Hierarchical Structure Crystallization Using Inorganic Ions

Michal Ejgenberg, Yitzhak Mastai

Hierarchical organic structures have gained vast attention in the past decade owing to their great potential in chemical and medical applications in industries such as the food and pharmaceutical industries. In this paper, the crystallization of L-glu hierarchical spheres using inorganic ions, namely calcium, barium and strontium cations, is described. The anti-solvent precipitation method is used for the spherical crystallization. The L-glu microspheres are characterized using various techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photo-electron microscopy (XPS) and polarized microscopy (POM). It is shown that without additives, L-glu crystallizes as flower-like structures, very different from the hierarchical spheres crystallized with the charged additives. Based on our results, we suggest a mechanism for the hierarchical sphere formation based on the crystallization and self-assembly of L-glu in emulsion droplets using charged additives.

Show more

Jan 2023 • Analysis & Sensing 3 (1), e202200053, 2023

Measurement of protein dynamics from site directed Cu (II) labeling

Kevin Singewald, Hannah Hunter, Timothy F Cunningham, Sharon Ruthstein, Sunil Saxena

This review describes the use of Electron Paramagnetic Resonance (EPR) to measure residue specific dynamics in proteins with a specific focus on Cu(II)‐based spin labels. First, we outline approaches used to measure protein motion by nitroxide‐based spin labels. Here, we describe conceptual details and outline challenges that limit the use of nitroxide spin labels to solvent‐exposed α‐helical sites. The bulk of this review showcases the use of newly developed Cu(II)‐based protein labels. In this approach, the strategic mutation of native residues on a protein to generate two neighboring Histidine residues (i.e., the dHis motif) is exploited to enable a rigid site‐selective binding of a Cu(II) complex. The chelation of the Cu(II) complex to dHis directly anchors the Cu(II) spin label to the protein backbone. The improvement in rigidity expands both the spin‐labeling toolkit as well as the resolution of many EPR …

Show more

Jan 2023 • Power Ultrasonics, 431-454, 2023

Power ultrasound for the production of nanomaterials

A Gedanken, I Perelshtein, N Perkas

Sonochemistry in now well recognized as a technique for the fabrication of nanomaterials. This is reflected in the many review articles on sonochemistry and nanoparticles that have been published over the last few years. It is so happened that Suslick, one of the forefathers of this field, has lately written a very comprehensive review on this topic (Bang, 2010). In his review, Suslick has summarized the work published on sonochemistry and nanomaterials until 2010. The current review will try to scan the work done in this area until the end of 2012. The current review will concentrate first on explaining why nano? Namely, when, why, and what kind of nanomaterials are produced upon the collapse of the acoustic bubble?

Show more

Jan 2023 • Frontiers in Oncology

A predictive model for personalization of nanotechnology-based phototherapy in cancer treatment

Eli Varon, Gaddi Blumrosen, Orit Shefi

A major challenge in radiation oncology is predicting and optimizing a clinical response on a personalized manner. Recently, nanotechnology-based cancer treatments are being combined with photodynamic therapy (PDT) and photothermal therapy (PTT). Machine learning predictive models can be used to optimize the clinical setup configuration, such as: laser radiation intensity, treatment duration, and nanoparticles features. In this work we demonstrate a methodology to find the optimized treatment parameters for PDT and PTT by collecting data of in vitro cytotoxicity assay of PDT/PTT-induced cell death using a single nanocomplex. We examine three machine learning prediction models of regression, interpolation, and low degree analytical function to predict the laser radiation intensity and duration that maximize the treatment efficiency. To examine these prediction models accuracy, we built a dedicated dataset for PDT, PTT, and a combined treatment that is based on cell death measurements after light radiation treatment, divided to training and test sets. The preliminary results show that all models offer sufficient performance with death rate error of 0.09, 0.15, and 0.12 for the regression, interpolation, and analytical function fitting. Nevertheless, the analytical function due to its simple form has a clinical application advantage that can be used for further sensitivity analysis of the treatment parameters on the performance. In all, the results of this work form a baseline for a future machine learning base personal prediction model in combined nanotechnology-based phototherapy cancer treatment.

Show more

Jan 2023 • Ultrasonics Sonochemistry

Ultrasonic-assisted synthesis of lignin-capped Cu2O nanocomposite with antibiofilm properties

Moorthy Maruthapandi, Akanksha Gupta, Arumugam Saravanan, Gila Jacobi, Ehud Banin, John HT Luong, Aharon Gedanken

Under ultrasonication, cuprous oxide (Cu2O) microparticles (<5 µm) were fragmented into nanoparticles (NPs, ranging from 10 to 30 nm in diameter), and interacted strongly with alkali lignin (Mw = 10 kDa) to form a nanocomposite. The ultrasonic wave generates strong binding interaction between lignin and Cu2O. The L-Cu nanocomposite exhibited synergistic effects with enhanced antibiofilm activities against E. coli, multidrug-resistant (MDR) E. coli, S. aureus (SA), methicillin-resistant SA, and P. aeruginosa (PA). The lignin-Cu2O (L-Cu) nanocomposite also imparted notable eradication of such bacterial biofilms. Experimental evidence unraveled the destruction of bacterial cell walls by L-Cu, which interacted strongly with the bacterial membrane. After exposure to L-Cu, the bacterial cells lost the integrated structural morphology. The estimated MIC for biofilm inhibition for the five tested pathogens was 1 mg …

Show more

Jan 2023 • Polymer-Based Nanoscale Materials for Surface Coatings, 1-18, 2023

Introduction to coatings and surface preparation

Sayan Ganguly, Shlomo Margel

In this chapter, we would like to discuss polymer coating's know-how, which is a method of modifying surface qualities in order to satisfy operating requirements in a number of technological applications. In addition to adhesion and barrier capabilities, polymer coatings have also been used to improve scratch and abrasion resistance, solvent resistance, wettability, noncytotoxicity, and other features. For the manufacture of protective organic coatings a number of different techniques have been devised and used. A careful selection of polymer, coating process, and manufacturing conditions can result in high-performance coatings with improved attributes when applied correctly. Polymer coatings have recently been shown to be effective and widely used in a variety of applications, including solar cells, batteries, separation techniques, diodes, corrosion defense, packaging, and heathcare applications.

Show more

Jan 2023 • Analysis & Sensing 3 (1), e202200053, 2023

Measurement of protein dynamics from site directed Cu (II) labeling

Kevin Singewald, Hannah Hunter, Timothy F Cunningham, Sharon Ruthstein, Sunil Saxena

This review describes the use of Electron Paramagnetic Resonance (EPR) to measure residue specific dynamics in proteins with a specific focus on Cu(II)‐based spin labels. First, we outline approaches used to measure protein motion by nitroxide‐based spin labels. Here, we describe conceptual details and outline challenges that limit the use of nitroxide spin labels to solvent‐exposed α‐helical sites. The bulk of this review showcases the use of newly developed Cu(II)‐based protein labels. In this approach, the strategic mutation of native residues on a protein to generate two neighboring Histidine residues (i.e., the dHis motif) is exploited to enable a rigid site‐selective binding of a Cu(II) complex. The chelation of the Cu(II) complex to dHis directly anchors the Cu(II) spin label to the protein backbone. The improvement in rigidity expands both the spin‐labeling toolkit as well as the resolution of many EPR …

Show more

Jan 2023 • ACS Applied Energy Materials

Performances of Co2+-Substituted NiMoO4 Nanorods in a Solid-State Hybrid Supercapacitor

Sengodan Prabhu, Moorthy Maruthapandi, Arulappan Durairaj, Srinivasan Arun Kumar, John HT Luong, Rajendran Ramesh, Aharon Gedanken

A hydrothermal method was conducted to synthesize Ni(1−α)Co(α)MoO4 (α = 0, 0.1, 0.3, and 0.5 M) nanorods, which were proven as excellent electrode materials in a hybrid supercapacitor. Their electrochemical properties were also dependent on the Ni/Co ratio as demonstrated by different electrochemical techniques. Ni0.5Co0.5MoO4 (α = 0.5 M) offered specific capacity (Qg) = 354 Cg–1@1 Ag–1, a remarkable specific capacity with a notable retention capacity of 92% after 8000 repeated cycles at 10 Ag–1. Ni0.5Co0.5MoO4 with a high surface area outperformed the mono-metallic (NiMoO4) and bimetallic (Ni0.9Co0.1MoO4 and Ni0.7Co0.3MoO4) nanostructures. The hybrid supercapacitor (Ni0.5Co0.5MoO4//activated carbon) delivered a maximum Qcell of 53 Cg–1 at 1 Ag–1 with an energy density of 16.2 Wh kg–1 and power density of 725 W kg–1.

Show more

Jan 2023 • arXiv preprint arXiv:2201.09510

Quantum reality with negative-mass particles

Mordecai Waegell, Eliahu Cohen, Avshalom Elitzur, Jeff Tollaksen, Yakir Aharonov

Physical interpretations of the time-symmetric formulation of quantum mechanics, due to Aharonov, Bergmann, and Lebowitz are discussed in terms of weak values. The most direct, yet somewhat naive, interpretation uses the time-symmetric formulation to assign eigenvalues to unmeasured observables of a system, which results in logical paradoxes, and no clear physical picture. A top-down ontological model is introduced that treats the weak values of observables as physically real during the time between pre- and post-selection (PPS), which avoids these paradoxes. The generally delocalized rank-1 projectors of a quantum system describe its fundamental ontological elements, and the highest-rank projectors corresponding to individual localized objects describe an emergent particle model, with unusual particles whose masses and energies may be negative or imaginary. This retrocausal top-down model leads to an intuitive particle-based ontological picture, wherein weak measurements directly probe the properties of these exotic particles, which exist whether or not they are actually measured

Show more

Jan 2023 • Plos one

Study of entanglement via a multi-agent dynamical quantum game

Amit Te’eni, Bar Y Peled, Eliahu Cohen, Avishy Carmi

At both conceptual and applied levels, quantum physics provides new opportunities as well as fundamental limitations. We hypothetically ask whether quantum games inspired by population dynamics can benefit from unique features of quantum mechanics such as entanglement and nonlocality. For doing so, we extend quantum game theory and demonstrate that in certain models inspired by ecological systems where several predators feed on the same prey, the strength of quantum entanglement between the various species has a profound effect on the asymptotic behavior of the system. For example, if there are sufficiently many predator species who are all equally correlated with their prey, they are all driven to extinction. Our results are derived in two ways: by analyzing the asymptotic dynamics of the system, and also by modeling the system as a quantum correlation network. The latter approach enables us to apply various tools from classical network theory in the above quantum scenarios. Several generalizations and applications are discussed.

Show more

Jan 2023 • Physical Review B

Sachdev-Ye-Kitaev model: Non-self-averaging properties of the energy spectrum

Richard Berkovits

The short time (large energy) behavior of the Sachdev-Ye-Kitaev model (SYK) is one of the main reasons for the growing interest garnered by this model. True chaotic behavior sets in at the Thouless time, which can be extracted from the energy spectrum. In order to do so, it is necessary to unfold the spectrum, ie, to filter out global tendencies. Using a simple ensemble average for unfolding results in a parametically low estimation of the Thouless energy. By examining the behavior of the spectrum as the distribution of the matrix elements is changed into a log-normal distribution, it is shown that the sample-to-sample level spacing variance determines this estimation of the Thouless energy. Using the singular value decomposition method, which filters out these global sample-to-sample fluctuations, the Thouless energy becomes parametrically much larger, essentially of the order of the band width. It is shown that the …

Show more

Jan 2023 • Physical Review B

Sachdev-Ye-Kitaev model: Non-self-averaging properties of the energy spectrum

Richard Berkovits

The short time (large energy) behavior of the Sachdev-Ye-Kitaev model (SYK) is one of the main reasons for the growing interest garnered by this model. True chaotic behavior sets in at the Thouless time, which can be extracted from the energy spectrum. In order to do so, it is necessary to unfold the spectrum, ie, to filter out global tendencies. Using a simple ensemble average for unfolding results in a parametically low estimation of the Thouless energy. By examining the behavior of the spectrum as the distribution of the matrix elements is changed into a log-normal distribution, it is shown that the sample-to-sample level spacing variance determines this estimation of the Thouless energy. Using the singular value decomposition method, which filters out these global sample-to-sample fluctuations, the Thouless energy becomes parametrically much larger, essentially of the order of the band width. It is shown that the …

Show more

Jan 2023 • Advanced Optical Materials

Optical Properties and Ultrafast Near‐Infrared Localized Surface Plasmon Dynamics in Naturally p‐Type Digenite Films

Andrea Villa, Madina Telkhozhayeva, Fabio Marangi, Eti Teblum, Aaron M Ross, Mirko Prato, Luca Andena, Roberto Frassine, Francesco Scotognella, Gilbert Daniel Nessim

Copper chalcogenides are materials characterized by intrinsic doping properties, allowing them to display high carrier concentrations due to their defect‐heavy structures, independent of the preparation method. Such high doping enables these materials to display plasmonic resonances, tunable by varying their stoichiometry. Here, plasmonic dynamics is studied in drop‐cast Cu9S5 (digenite) nanocrystals (NCs) film using ultrafast pump–probe spectroscopy. The NCs are synthesized by thermal annealing of copper foil using chemical vapor deposition (CVD), followed by sonication and drop‐casting of the isolated few‐layered flakes on different substrates. The samples display a broad localized surface plasmon resonance (LSPR) in the near‐infrared (NIR), peaking at 2100 nm. The free carrier response is further confirmed by fitting the linear absorption with a Drude–Lorentz effective medium approximation model …

Show more

logo
Articali

Powered by Articali

TermsPrivacy