BINA

4707 articles

79 publishers

Join mailing list

May 2023 • PNAS Nexus

Experimentally probing anomalous time evolution of a single photon

Ryo Okamoto, Eliahu Cohen

In quantum mechanics, a quantum system is irreversibly collapsed by a projective measurement. Hence, delicately probing the time evolution of a quantum system holds the key to understanding curious phenomena. Here we experimentally explore an anomalous time evolution, where, illustratively, a particle disappears from a box and emerges in a different box, with a certain moment in which it can be found in neither of them. In this experiment, we directly probe this curious time evolution of a single photon by measuring up to triple-operator sequential weak values using a novel probeless scheme. The naive interpretation provided by single-operator weak values seems to imply the “disappearance” and “re-appearance” of a photon as theoretically predicted. However, double- and triple-operator sequential weak values, representing temporal correlations between the aforementioned values, show that spatial …

Show more

May 2023 • arXiv e-prints

Experimental Evidence for Defect Tolerance in Pb-Halide Perovskites

Naga Prathibha Jasti, Igal Levine, Yishay Feldman, Sigalit Aharon, David Cahen

The term defect tolerance (DT) is used often to rationalize the exceptional optoelectronic properties of Halide Perovskites, HaPs, and their devices. Even though DT lacked direct experimental evidence, it became fact in the field. DT in semiconductors implies tolerance to structural defects without the electrical and optical effects (eg, traps), associated with such defects. We present first direct experimental evidence for DT in Pb HaPs by comparing the structural quality of 2D, 2D_3D, and 3D Pb HaP crystals with their optoelectronic characteristics using high sensitivity methods. Importantly, we get information from the material bulk, because we sample at least a few 100 nm, up to several micrometer, from the sample surface, which allows assessing intrinsic bulk (and not only surface) properties of HaPs. The results point to DT in 3D, to a lesser extent in 2D_3D, but not in 2D Pb HaPs. We ascribe such dimension …

Show more

May 2023 • SCIENTIFIC REPORTS

Optical reciprocity induced wavefront shaping for axial and lateral shifting of focus through a scattering medium (vol 12, 6387, 2022)

Abhijit Sanjeev, Vismay Trivedi, Zeev Zalevsky


May 2023 • ACS Applied Materials & Interfaces

Topotactic, Vapor-Phase, In Situ Monitored Formation of Ultrathin, Phase-Pure 2D-on-3D Halide Perovskite Surfaces

Sujit Kumar, Vinayaka H Damle, Tatyana Bendikov, Anat Itzhak, Michael Elbaum, Katya Rechav, Lothar Houben, Yaakov Tischler, David Cahen

Two-dimensional (2D) halide perovskites, HaPs, can provide chemical stability to three-dimensional (3D) HaP surfaces, protecting them from exposure to ambient species and from reacting with contacting layers. Both actions occur with 2D HaPs, with the general stoichiometry R2PbI4 (R: long or bulky organic amine) covering the 3D ones. Adding such covering films can also boost power conversion efficiencies of photovoltaic cells by passivating surface/interface trap states. For maximum benefit, we need conformal ultrathin and phase-pure (n = 1) 2D layers to enable efficient tunneling of photogenerated charge carriers through the 2D film barrier. Conformal coverage of ultrathin (<10 nm) R2PbI4 layers on 3D perovskites is challenging with spin coating; even more so is its upscaling for larger-area devices. We report on vapor-phase cation exchange of the 3D surface with the R2PbI4 molecules and real-time in situ …

Show more

May 2023 • Scientific Reports

2D tunable all-solid-state random laser in the visible

Bhupesh Kumar, Ran Homri, Patrick Sebbah

A two-dimensional (2D) solid-state random laser emitting in the visible is demonstrated, in which optical feedback is provided by a controlled disordered arrangement of air-holes in a dye-doped polymer film. We find an optimal scatterer density for which threshold is minimum and scattering is the strongest. We show that the laser emission can be red-shifted by either decreasing scatterer density or increasing pump area. We show that spatial coherence is easily controlled by varying pump area. Such a 2D random laser provides with a compact on-chip tunable laser source and a unique platform to explore non-Hermitian photonics in the visible.

Show more

May 2023 • ACS Applied Materials & Interfaces

Topotactic, Vapor-Phase, In Situ Monitored Formation of Ultrathin, Phase-Pure 2D-on-3D Halide Perovskite Surfaces

Sujit Kumar, Vinayaka H Damle, Tatyana Bendikov, Anat Itzhak, Michael Elbaum, Katya Rechav, Lothar Houben, Yaakov Tischler, David Cahen

Two-dimensional (2D) halide perovskites, HaPs, can provide chemical stability to three-dimensional (3D) HaP surfaces, protecting them from exposure to ambient species and from reacting with contacting layers. Both actions occur with 2D HaPs, with the general stoichiometry R2PbI4 (R: long or bulky organic amine) covering the 3D ones. Adding such covering films can also boost power conversion efficiencies of photovoltaic cells by passivating surface/interface trap states. For maximum benefit, we need conformal ultrathin and phase-pure (n = 1) 2D layers to enable efficient tunneling of photogenerated charge carriers through the 2D film barrier. Conformal coverage of ultrathin (<10 nm) R2PbI4 layers on 3D perovskites is challenging with spin coating; even more so is its upscaling for larger-area devices. We report on vapor-phase cation exchange of the 3D surface with the R2PbI4 molecules and real-time in situ …

Show more

May 2023 • CLEO: Applications and Technology, AM4Q. 7, 2023

High-resolution Imaging with Scattered X-ray Radiation

A Ben Yehuda, O Sefi, E Cohen, S Shwartz

We demonstrate ghost imaging with scattered x-ray radiation for the first time and show that its spatial resolution is significantly higher than the resolution of standard present-day methods that rely on x-ray scattering.

Show more

May 2023 • ACS Energy Letters

A-Site Cation Dependence of Self-Healing in Polycrystalline APbI3 Perovskite Films

Pallavi Singh, Yahel Soffer, Davide Raffaele Ceratti, Michael Elbaum, Dan Oron, Gary Hodes, David Cahen

In terms of sustainable use, halide perovskite (HaP) semiconductors have a strong advantage over most other classes of materials for (opto)electronics, as they can self-heal (SH) from photodamage. While there is considerable literature on SH in devices, where it may not be clear exactly where damage and SH occur, there is much less on the HaP material itself. Here we perform “fluorescence recovery after photobleaching” (FRAP) measurements to study SH on polycrystalline thin films for which encapsulation is critical to achieving complete and fast self-healing. We compare SH in three photoactive APbI3 perovskite films by varying the A-site cation ranging from (relatively) small inorganic Cs through medium-sized MA to large FA (the last two are organic cations). While the A cation is often considered electronically relatively inactive, it significantly affects both SH kinetics and the threshold for photodamage. The …

Show more

May 2023 • Physical Review Research

Designing exceptional-point-based graphs yielding topologically guaranteed quantum search

Quancheng Liu, David A Kessler, Eli Barkai

Quantum walks underlie an important class of quantum computing algorithms, and represent promising approaches in various simulations and practical applications. Here we design stroboscopically monitored quantum walks and their subsequent graphs that can naturally boost target searches. We show how to construct walks with the property that all the eigenvalues of the non-Hermitian survival operator, describing the mixed effects of unitary dynamics and the back-action of measurement, coalesce to zero, corresponding to an exceptional point whose degree is the size of the system. Generally, the resulting search is guaranteed to succeed in a bounded time for any initial condition, which is faster than classical random walks or quantum walks on typical graphs. We then show how this efficient quantum search is related to a quantized topological winding number and further discuss the connection of the problem …

Show more

May 2023 • Viral Infections of Humans: Epidemiology and Control, 1-72, 2023

Human Herpesviruses: Kaposi’s Sarcoma and Other Malignancies

Ronit Sarid, Daniela Dünn-Kittenplon, Maria Luisa Calabrò

Kaposi’s sarcoma-associated herpesvirus (KSHV), formally designated the human herpesvirus 8 (HHV-8), is the causative agent of Kaposi’s sarcoma (KS), primary effusion lymphoma (PEL), and plasmablastic variant of multicentric Castleman’s disease (MCD). KSHV also has been linked to another pathological condition with many features in common with MCD, named KSHV inflammatory cytokine syndrome (KICS) and with a number of other rare lymphoproliferative conditions. KSHV infection is highly prevalent in sub-Saharan Africa and among some Amerindian and Melanesian populations, and diffuse in the Mediterranean area and in parts of South America. KSHV is less prevalent in Northern Europe, North America, and most of Asia. KSHV is transmitted via nonsexual routes during childhood in regions with intermediate and high seroprevalence, and mainly via sexual contact during adulthood in countries …

Show more

May 2023 • Scientific Reports

2D tunable all-solid-state random laser in the visible

Bhupesh Kumar, Ran Homri, Patrick Sebbah

A two-dimensional (2D) solid-state random laser emitting in the visible is demonstrated, in which optical feedback is provided by a controlled disordered arrangement of air-holes in a dye-doped polymer film. We find an optimal scatterer density for which threshold is minimum and scattering is the strongest. We show that the laser emission can be red-shifted by either decreasing scatterer density or increasing pump area. We show that spatial coherence is easily controlled by varying pump area. Such a 2D random laser provides with a compact on-chip tunable laser source and a unique platform to explore non-Hermitian photonics in the visible.

Show more

May 2023 • Journal of Functional Biomaterials

Engineered Cross-Linked Silane with Urea Polymer Thin Durable Coatings onto Polymeric Films for Controlled Antiviral Release of Activated Chlorine and Essential Oils

Elisheva Sasson, Omer Agazani, Eyal Malka, Meital Reches, Shlomo Margel

In March 2020, the World Health Organization announced a pandemic attributed to SARS-CoV-2, a novel beta-coronavirus, which spread widely from China. As a result, the need for antiviral surfaces has increased significantly. Here, the preparation and characterization of new antiviral coatings on polycarbonate (PC) for controlled release of activated chlorine (Cl+) and thymol separately and combined are described. Thin coatings were prepared by polymerization of 1-[3-(trimethoxysilyl)propyl] urea (TMSPU) in ethanol/water basic solution by modified Stöber polymerization, followed by spreading the formed dispersion onto surface-oxidized PC film using a Mayer rod with appropriate thickness. Activated Cl-releasing coating was prepared by chlorination of the PC/SiO2-urea film with NaOCl through the urea amide groups to form a Cl-amine derivatized coating. Thymol releasing coating was prepared by linking thymol to TMSPU or its polymer via hydrogen bonds between thymol hydroxyl and urea amide groups. The activity towards T4 bacteriophage and canine coronavirus (CCV) was measured. PC/SiO2-urea-thymol enhanced bacteriophage persistence, while PC/SiO2-urea-Cl reduced its amount by 84%. Temperature-dependent release is presented. Surprisingly, the combination of thymol and chlorine had an improved antiviral activity, reducing the amount of both viruses by four orders of magnitude, indicating synergistic activity. For CCV, coating with only thymol was inactive, while SiO2-urea-Cl reduced it below a detectable level.

Show more

May 2023 • Journal of Biomedical Optics

Imaging the rotational mobility of carbon dot-gold nanoparticle conjugates using frequency domain wide-field time-resolved fluorescence anisotropy

Gilad Yahav, Shweta Pawar, Yitzchak Weber, Bar Atuar, Hamootal Duadi, Dror Fixler

SignificanceWide-field measurements of time-resolved fluorescence anisotropy (TR-FA) provide pixel-by-pixel information about the rotational mobility of fluorophores, reflecting changes in the local microviscosity and other factors influencing the fluorophore’s diffusional motion. These features offer promising potential in many research fields, including cellular imaging and biochemical sensing, as demonstrated by previous works. Nevertheless, θ imaging is still rarely investigated in general and in carbon dots (CDs) in particular.AimTo extend existing frequency domain (FD) fluorescence lifetime (FLT) imaging microscopy (FLIM) to FD TR-FA imaging (TR-FAIM), which produces visual maps of the FLT and θ, together with the steady-state images of fluorescence intensity (FI) and FA (r).ApproachThe proof of concept of the combined FD FLIM/ FD TR-FAIM was validated on seven fluorescein solutions with increasing …

Show more

May 2023 • ACS Applied Nano Materials

Room-Temperature NO2 Sensing of CVD-Modified WS2–WSe2 Heterojunctions

Abderrahim Moumen, Rajashree Konar, Dario Zappa, Eti Teblum, Gilbert Daniel Nessim, Elisabetta Comini

Two-dimensional (2D) semiconducting heterojunction chemical sensors are in high demand because of their enhanced response, stability, and selectivity. However, fine-tuning heterojunctions using vapor deposition growth still needs further research. Our present study focuses on the ambient pressure chemical vapor deposition (CVD) synthesis of hexagonal tungsten sulfide-tungsten selenide (WS2–WSe2) p–p heterojunctions (as a 2D–2D arrangement). We use the liquid-phase exfoliation method to disperse bulk WS2 and WSe2 and decorate large flakes of WS2 with smaller WSe2 nanosheets in CVD. Electron microscopy and related surface investigations reveal their homogeneity on drop-casting. Two drops from the exfoliated heterojunction dispersion were drop-cast on a transducer to study the NO2 response and related sensing properties. The sensor showed long-term stability (>2 months), even at high …

Show more

May 2023 • Physical Review A

High-spectral-resolution absorption measurements with free-electron lasers using ghost spectroscopy

Yishai Klein, Alok K Tripathi, Edward Strizhevsky, Flavio Capotondi, Dario De Angelis, Luca Giannessi, Matteo Pancaldi, Emanuele Pedersoli, Kevin C Prince, Or Sefi, Young Yong Kim, Ivan A Vartanyants, Sharon Shwartz

We demonstrate a simple and robust high-resolution ghost spectroscopy approach for x-ray and extreme ultraviolet transient absorption spectroscopy at free-electron laser sources. To retrieve the sample response, our approach requires only an online spectrometer before the sample and a downstream bucket detector. We validate the method by measuring the absorption spectrum of silicon, silicon carbide, and silicon nitride membranes in the vicinity of the silicon L 2, 3 edge and by comparing the results with standard techniques for absorption measurements. Moreover, we show that ghost spectroscopy allows the high-resolution reconstruction of the sample spectral response to optical pumps using a coarse energy scan with self-amplified spontaneous emission radiation.

Show more

May 2023 • Bioengineering & Translational Medicine

Micelle encapsulation zinc‐doped copper oxide nanocomposites reverse Olaparib resistance in ovarian cancer by disrupting homologous recombination repair

Jingyan Yi, Xin Luo, Jinshan Xing, Aharon Gedanken, Xiukun Lin, Chunxiang Zhang, Gan Qiao

Micelle Encapsulation Zinc‐doped copper oxide nanocomposites (MEnZn‐CuO NPs) is a novel doped metal nanomaterial prepared by our group based on Zinc doped copper oxide nanocomposites (Zn‐CuO NPs) using non‐micellar beam. Compared with Zn‐CuO NPs, MEnZn‐CuO NPs have uniform nanoproperties and high stability. In this study, we explored the anticancer effects of MEnZn‐CuO NPs on human ovarian cancer cells. In addition to affecting cell proliferation, migration, apoptosis and autophagy, MEnZn‐CuO NPs have a greater potential for clinical application by inducing HR repair defects in ovarian cancer cells in combination with poly (ADP‐ribose) polymerase inhibitors for lethal effects.

Show more

May 2023 • The Journal of Immunology

FLAIRR-Seq: a method for single-molecule resolution of near full-length antibody H chain repertoires

Easton E Ford, David Tieri, Oscar L Rodriguez, Nancy J Francoeur, Juan Soto, Justin T Kos, Ayelet Peres, William S Gibson, Catherine A Silver, Gintaras Deikus, Elizabeth Hudson, Cassandra R Woolley, Noam Beckmann, Alexander Charney, Thomas C Mitchell, Gur Yaari, Robert P Sebra, Corey T Watson, Melissa L Smith

Current Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) using short-read sequencing strategies resolve expressed Ab transcripts with limited resolution of the C region. In this article, we present the near-full-length AIRR-seq (FLAIRR-seq) method that uses targeted amplification by 5′ RACE, combined with single-molecule, real-time sequencing to generate highly accurate (99.99%) human Ab H chain transcripts. FLAIRR-seq was benchmarked by comparing H chain V (IGHV), D (IGHD), and J (IGHJ) gene usage, complementarity-determining region 3 length, and somatic hypermutation to matched datasets generated with standard 5′ RACE AIRR-seq using short-read sequencing and full-length isoform sequencing. Together, these data demonstrate robust FLAIRR-seq performance using RNA samples derived from PBMCs, purified B cells, and whole blood, which recapitulated results generated by …

Show more

May 2023 • IEEE Transactions on Applied Superconductivity

Energy storing and fault current limiting in a unified superconducting magnetic device

Y Nikulshin, A Kafri, Y Yeshurun, S Wolfus

This work describes a novel concept for unifying Superconducting Magnetic Energy Storage (SMES) and an inductive-type Fault Current Limiter (FCL). A single superconducting coil is used both as an energy source for the operation of the SMES and as the field source for saturating the magnetic cores in the FCL. A possible geometry model for the implementation of this concept is suggested and a test case in an 11 kV, 10 MVA network is described for a fully, and 50% charged SMES states. Results show that the Saturated Cores FCL exhibits low insertion impedance and high limiting ratio in both scenarios. The unified SMES-FCL device saves major resources by making the superconducting coil a dual-purpose source, thus opening the door for an easier and efficient implementation of SMES and FCL technologies.

Show more

May 2023 • Nano Letters

Hierarchically Porous Few-Layer Carbon Nitride and Its High H+ Selectivity for Efficient Photocatalytic Seawater Splitting

Shi-Tian Xiao, Rui Yin, Lu Wu, Si-Ming Wu, Ge Tian, Menny Shalom, Li-Ying Wang, Yi-Tian Wang, Fu-Fei Pu, Hannah-Noa Barad, Fazhou Wang, Xiao-Yu Yang

Photocatalysts for seawater splitting are severely restricted because of the presence of multiple types of ions in seawater that cause corrosion and deactivation. As a result, new materials that promote adsorption of H+ and hinder competing adsorption of metal cations should enhance utilization of photogenerated electrons on the catalyst surface for efficient H2 production. One strategy to design advanced photocatalysts involves introduction of hierarchical porous structures that enable fast mass transfer and creation of defect sites that promote selective hydrogen ion adsorption. Herein, we used a facile calcination method to fabricate the macro–mesoporous C3N4 derivative, VN-HCN, that contains multiple nitrogen vacancies. We demonstrated that VN-HCN has enhanced corrosion resistance and elevated photocatalytic H2 production performance in seawater. Experimental results and theoretical calculations …

Show more

May 2023 • Viral Infections of Humans: Epidemiology and Control, 1-72, 2023

Human Herpesviruses: Kaposi’s Sarcoma and Other Malignancies

Ronit Sarid, Daniela Dünn-Kittenplon, Maria Luisa Calabrò

Kaposi’s sarcoma-associated herpesvirus (KSHV), formally designated the human herpesvirus 8 (HHV-8), is the causative agent of Kaposi’s sarcoma (KS), primary effusion lymphoma (PEL), and plasmablastic variant of multicentric Castleman’s disease (MCD). KSHV also has been linked to another pathological condition with many features in common with MCD, named KSHV inflammatory cytokine syndrome (KICS) and with a number of other rare lymphoproliferative conditions. KSHV infection is highly prevalent in sub-Saharan Africa and among some Amerindian and Melanesian populations, and diffuse in the Mediterranean area and in parts of South America. KSHV is less prevalent in Northern Europe, North America, and most of Asia. KSHV is transmitted via nonsexual routes during childhood in regions with intermediate and high seroprevalence, and mainly via sexual contact during adulthood in countries …

Show more

Apr 2023 • Pharmaceutics 15 (5), 1329, 2023

Homology-directed-repair-based genome editing in HSPCs for the treatment of inborn errors of immunity and blood disorders

Daniel Allen, Nechama Kalter, Michael Rosenberg, Ayal Hendel

Genome engineering via targeted nucleases, specifically CRISPR-Cas9, has revolutionized the field of gene therapy research, providing a potential treatment for diseases of the blood and immune system. While numerous genome editing techniques have been used, CRISPR-Cas9 homology-directed repair (HDR)-mediated editing represents a promising method for the site-specific insertion of large transgenes for gene knock-in or gene correction. Alternative methods, such as lentiviral/gammaretroviral gene addition, gene knock-out via non-homologous end joining (NHEJ)-mediated editing, and base or prime editing, have shown great promise for clinical applications, yet all possess significant drawbacks when applied in the treatment of patients suffering from inborn errors of immunity or blood system disorders. This review aims to highlight the transformational benefits of HDR-mediated gene therapy and possible solutions for the existing problems holding the methodology back. Together, we aim to help bring HDR-based gene therapy in CD34+ hematopoietic stem progenitor cells (HSPCs) from the lab bench to the bedside.

Show more

logo
Articali

Powered by Articali

TermsPrivacy