BINA

3583 articles

75 publishers

Join mailing list

Mar 2022 • ACS Energy Letters

Anion–Diluent Pairing for Stable High-Energy Li Metal Batteries

Chunnan Zhu, Chuangchao Sun, Ruhong Li, Suting Weng, Liwu Fan, Xuefeng Wang, Lixin Chen, Malachi Noked, Xiulin Fan

Rechargeable Li metal batteries (LMBs) have attracted wide attention as promising candidates for the next generation of energy-storage systems. However, limited Coulombic efficiency and unregulated dendrite growth restrict its application. Here, we report a kind of electrolyte by introducing fluorinated aromatic diluents into high-concentration electrolytes (HCEs). Unlike other localized HCEs, the fluorinated aromatic diluents pairing with anions promote the formation of a homogeneous and robust solid–electrolyte interphase (SEI), which endows Li metal with an ultrahigh Coulombic efficiency of ∼99.8%. The Li||LiNi0.8Co0.1Mn0.1O2 battery holds a capacity retention of >80% over 260 cycles even with a thin Li anode (20 μm) and a high cathode loading (3.5 mAh cm–2). A 1.8 Ah Li||NMC811 pouch cell with a lean electrolyte delivers an energy density of 340 Wh kg–1 and a stable cycling life over 200 cycles. The …

Show more

Mar 2022 • Frontiers in Biological Detection: From Nanosensors to Systems XIV, PC1197904, 2022

Wearable vs. contact-free photonic bio-sensors and their application to SARS-CoV-2 symptoms detection

Zeev Kalyuzhner, Yafim Beiderman, Sergey Agdarov, Zeev Zalevsky

In this presentation we will present two types of sensors for detecting SARS-CoV-2 symptoms. The first part of the presentation will address a contact-free sensor while its operation principle involves illuminating the inspected subject with a laser beam and analyzing with artificial intelligence (AI) based algorithms, the temporal-spatial changes occurring in the back scattered secondary 2D speckle patterns captured through properly defocused optics. The sensing is performed from a distance of several meters away and is applied to different regions of the subject’s body. We demonstrate measurements performed from the chest and then we extract various cardio-pulmonary bio-sign (several simultaneously) including the sounds of subject’s heart and lungs (like a remote stethoscope). We also perform measurements from the sclera and search for anomalies in the random eye movements. From those anomalies we …

Show more

Mar 2022 • Nature Communications

Landscape of adenosine-to-inosine RNA recoding across human tissues

Orshay Gabay, Yoav Shoshan, Eli Kopel, Udi Ben-Zvi, Tomer D Mann, Noam Bressler, Roni Cohen‐Fultheim, Amos A Schaffer, Shalom Hillel Roth, Ziv Tzur, Erez Y Levanon, Eli Eisenberg

RNA editing by adenosine deaminases changes the information encoded in the mRNA from its genomic blueprint. Editing of protein-coding sequences can introduce novel, functionally distinct, protein isoforms and diversify the proteome. The functional importance of a few recoding sites has been appreciated for decades. However, systematic methods to uncover these sites perform poorly, and the full repertoire of recoding in human and other mammals is unknown. Here we present a new detection approach, and analyze 9125 GTEx RNA-seq samples, to produce a highly-accurate atlas of 1517 editing sites within the coding region and their editing levels across human tissues. Single-cell RNA-seq data shows protein recoding contributes to the variability across cell subpopulations. Most highly edited sites are evolutionary conserved in non-primate mammals, attesting for adaptation. This comprehensive set can …

Show more

Mar 2022 • Bulletin of the American Physical Society

Intercalation-Enhanced Light-Matter Interactions in MoS2: Comparing Copper to Tin

Doron Naveh, Chen Stern, Saha Sabyasachi, Leonard Francis, Akash Jain, Kristie Koski, Avraham Twitto, Ashwin Ramasubramaniam

M71. 00013: Intercalation-Enhanced Light-Matter Interactions in MoS 2: Comparing Copper to Tin*

Show more

Mar 2022 • Label-free Biomedical Imaging and Sensing (LBIS) 2022, PC1197204, 2022

Structured unknown-illumination based super-resolved label free imaging

Gal Chen, Abhijit Sanjeev, Vismay Trivedi, Javier Garcia, Ricardo Rubio, Zeev Zalevsky

Time multiplexing is a super resolution technique that sacrifices time to overcome the resolution reduction obtained because of diffraction. In structured illumination super-resolved imaging, high resolution and time changing patterns are projected on top of an object and a set of low resolution images are captured with the low quality imaging system. The set of low resolution images are digitally decoded with decoding patterns that are based on the high resolution projected encoding patterns. In conventional structured-illuination approaches, the projected encoding patterns need to be a priori known in order to be used in the decoding process. In this presentation, we will describe an enhancement of structured illumination approach towards label free imaging while obtaining the super resolved result without the need of requiring the a priori knowledge on the projected encoding patterns.

Show more

Mar 2022 • ACS Applied Energy Materials

Combinatorial Synthesis and Screening of a Ternary NiFeCoOx Library for the Oxygen Evolution Reaction

A Usha Vijayakumar, N Aloni, V Thazhe Veettil, G Rahamim, SS Hardisty, M Zysler, S Tirosh, D Zitoun

The development of an efficient catalyst for the oxygen evolution reaction (OER) is critical to fulfilling the mission of hydrogen generation by water splitting. Various multicomponent systems have been investigated so far for the OER, although a systematic investigation is lacking and there are discrepancies as to which formulations make the best catalyst. Here, we perform a systematic investigation of a ternary Ni-Fe-Co oxide gradient library for the OER, using a combinatorial approach. This approach allows a much faster investigation of a vast compositional space compared to the traditional step by step approach. Also, it enables a more reliable comparison of the various catalysts as they all experience the same process and measurement conditions. We used the spray pyrolysis technique in combinatorial electrocatalyst screening for the first time for the generation of a gradient library of Ni-Fe-Co oxides …

Show more

Mar 2022 • Proc. of SPIE Vol

Nano logic gates based on gold nanoparticles-carbon dots hybrid and its FLIM imaging

Shweta Pawar, Hamootal Duadi, Yafit Fleger, Dror Fixler

In today’s research area it is extremely important to assemble nanomaterials into electric devices at the nanoscale level due to the rapid expansion of nanotechnology in various fields. Designing a nanohybrid composed of gold nanoparticles (AuNPs) and red-emitting carbon dots (CDs) can be used to develop a fluorescence lifetime imaging (FLIM) based logic gate that can respond to multiple input parameters. The AuNPs are conjugated to CDs surfaces through a strong covalent linkage between them. These fluorescence lifetimes-based logic gates could be the new way to overcome the limitation of fluorescence intensity-based logic gates. The Au-CDs nanohybrid shows significant fluorescence quenching of pristine CDs after conjugation of gold nanoparticles. This quenched fluorescence can be recovered back by using a proper recovering agent giving us a reversible logic output. This nanohybrid can be used …

Show more

Mar 2022 • High Contrast Metastructures XI, PC120110S, 2022

CVD grown selenium spherical resonators for mid-infrared meta-optics

Danveer Singh, Tomer Lewi, Doron Naveh, Michal Poplinger

Efficient light manipulation at subwavelength scales in the mid-infrared (MIR) region is essential for various applications and can be harnessed from intrinsic low-loss dielectric resonators. Here, we demonstrate the fabrication of truncated spherical selenium (Se) resonators with tunable high-quality (Q) factor Mie resonances. Large area amorphous Se subwavelength resonators of varying sizes were grown on different substrates, using a novel CVD process. We demonstrate size-tunable Mie resonances spanning the 2-16 µm range, for single isolated resonators and large area ensembles, respectively. We show strong tunable absorption resonances (90%) in ensembles of resonators in a significantly broad MIR range. Moreover, by coupling resonators to epsilon-near-zero (ENZ) substrates, we engineer high-Q resonances as high as Q=40. We also show the resonance pinning effect near the substrate ENZ value …

Show more

Mar 2022 • Scientific Reports

Analysis of swallowing in infants and adults using speckle pattern analysis

Raz Shahmoon, Yitav Tamir, Yevgeny Beiderman, Sergey Agdarov, Yafim Beiderman, Zeev Zalevsky

The ability to detect and evaluate ingestion is especially important in toddlers. The development of new methods for detecting and accurately measuring ingestion is therefore extremely important. One of the methods allowing such measurements is speckle pattern analyses, a well-known phenomenon in coherent imaging. The method allows extraction of various medical parameters, such as blood pulse pressure, temporal signature of heartbeats and breath. The current work contains further development and application of the speckle tracking technique for remote detection and quantification of swallowing and distinguishing between sucking and swallowing to identify feeding disorders in infants and elderly individuals.

Show more

Mar 2022 • arXiv preprint arXiv:2203.04669

Enhancement of superconductivity upon reduction of carrier density in proximitized graphene

Gopi Nath Daptary, Udit Khanna, Eyal Walach, Arnab Roy, Efrat Shimshoni, Aviad Frydman

The superconducting transition temperature (Tc) of a single layer graphene coupled to an Indium oxide (InO) film, a low carrier-density superconductor, is found to increase with decreasing carrier density and is largest close to the average charge neutrality point in graphene. Such an effect is very surprising in conventional BCS superconductors. We study this phenomenon both experimentally and theoretically. Our analysis suggests that the InO film induces random electron and hole-doped puddles in the graphene. The Josephson effect across these regions of opposite polarity enhances the Josephson coupling between the superconducting clusters in InO, along with the overall Tc of the bilayer heterostructure. This enhancement is most effective when the chemical potential of the system is tuned between the charge neutrality points of the electron and hole-doped regions.

Show more

Mar 2022 • arXiv e-prints

Enhancement of Superconductivity upon reduction of carrier density in proximitized graphene

Gopi Nath Daptary, Udit Khanna, Eyal Walach, Arnab Roy, Efrat Shimshoni, Aviad Frydman

The superconducting transition temperature (Tc) of a single layer graphene coupled to an Indium oxide (InO) film, a low carrier-density superconductor, is found to increase with decreasing carrier density and is largest close to the average charge neutrality point in graphene. Such an effect is very surprising in conventional BCS superconductors. We study this phenomenon both experimentally and theoretically. Our analysis suggests that the InO film induces random electron and hole-doped puddles in the graphene. The Josephson effect across these regions of opposite polarity enhances the Josephson coupling between the superconducting clusters in InO, along with the overall Tc of the bilayer heterostructure. This enhancement is most effective when the chemical potential of the system is tuned between the charge neutrality points of the electron and hole-doped regions.

Show more

Mar 2022 • Optical and Quantum Sensing and Precision Metrology II, PC120160Z, 2022

Nonlinear quantum interferometer in the time and frequency domains

Moti Fridman, Eliahu Cohen

Interferometers are highly sensitive to phase differences and are utilized in numerous schemes. Quantum interferometers are able to improve the sensitivity of classical interferometers beyond the shot-noise limit. This is done by employing squeezed states of light and destructive interference of the noise in the system. We developed a quantum SU(1,1) interferometer in the time domain. Our nonlinear quantum interferometer creates interference of the input signals at different times and frequencies. We can control the time and frequency differences for investigating the full temporal and spectral structure of the signal. This quantum interferometer can be utilized for sensing ultrafast phase changes, quantum imaging, temporal mode encoding, and studying the temporal structure of entangled photons.

Show more

Mar 2022 • Proc. of SPIE Vol

A magnetic modulation biosensing-based molecular assay for rapid and highly sensitive clinical diagnosis of COVID-19

Michael Margulis, Oran Erster, Shira Roth, Michal Mandelboim, Amos Danielli

The COVID-19 pandemic demands fast, sensitive, and specific diagnostic tools for virus surveillance and containment. Current methods for diagnosing the COVID-19 are based on direct detection of either viral antigens or viral ribonucleic acids (RNA) in swab samples. Antigen-targeting tests are simple, have fast turnaround times, and allow rapid testing. Unfortunately, compared with viral RNA-targeting tests, their sensitivity is low, especially during the initial stages of the disease, which limits their adoption and implementation. Direct detection of SARS-CoV-2 RNA using reversetranscription quantitative polymerase chain reaction (RT-qPCR) is sensitive and specific, making it a golden standard in SARS-CoV-2 detection. However, it had not seen a significant update since its introduction three decades ago. It has a long turnaround time, requires a high number of amplification cycles, and a complicated and …

Show more

Mar 2022 • Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIX …, 2022

Designing a quantifiable detection method for the optimization of gold nanoparticle based gene therapy

Jacqueline Labovitz, Menachem Motiei, Tamar Sadan, Dror Fixler, Rachela Popovtzer


Mar 2022 • High Contrast Metastructures XI, PC120110U, 2022

Chalcogenides for static and active meta-optics

Tomer Lewi, Danveer Singh, Sukanta Nandi, Shany Cohen, Pilkhaz Nanikashvili, Michal Poplinger, Doron Naveh

We present a study of various compositions of the chalcogenide family used for static and active metasurfaces. We start with large area CVD grown amorphous spherical Selenium nanoparticles on various substrates and show that their Mie-resonant response spans the entire mid-infrared (MIR) range. By coupling Se Mie-resonators to ENZ substrates we demonstrate an order of magnitude increase in quality factor. Next, we investigate topological insulators Bi2Se3 and Bi2Te3 metasurfaces. We study the optical constants of single crystal Bi2Te3 in the NIR to the MIR range, followed by fabrication and characterization of metasurface disk arrays. We show that these high permittivity metasurfaces can yield very large absorption resonances using deep subwavelength structures. Finally, we demonstrate ultra-wide dynamic tuning of PbTe meta-atoms and metasurfaces, utilizing the anomalously large thermo-optic …

Show more

Mar 2022 • Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIX …, 2022

Extraction of absorption coefficients from two-layer phantoms based on crossover point in diffuse reflectance

Pavitra Sokke Rudraiah, Hamootal Duadi, Dror Fixler

We performed a Monte Carlo simulation to detect the tattoo ink location in the dermis layer of the human skin. Tattoo ink (thickness of 0.2mm) was located between the upper dermis layer (thickness of 2mm) and the lower dermis layer (thickness of 8mm). An appreciable difference in the spatially resolved diffuse reflectance (DR) intensity was found between the skin without tattoo and the tattooed skin. The point at which the skin without tattoo and the tattooed skin DR intensity profile intersect is called the crossover point (Cp). The slopes were extracted from the DR intensity profile before and after the Cp for a wavelength range from 400-1,000nm. The slopes are extracted from each wavelength, and we plotted the calculated square slopes versus wavelength. In the shorter wavelengths region (400-500nm), two-layer (2L) behavior was observed, and in the longer wavelengths region (600-1,000nm), a single layer …

Show more

Mar 2022 • Inorganics

Improved Electrochemical Behavior and Thermal Stability of Li and Mn-Rich Cathode Materials Modified by Lithium Sulfate Surface Treatment

Hadar Sclar, Sandipan Maiti, Rosy Sharma, Evan M Erickson, Judith Grinblat, Ravikumar Raman, Michael Talianker, Malachi Noked, Aleksandr Kondrakov, Boris Markovsky, Doron Aurbach


Mar 2022 • Israel Journal of Chemistry

2D Materials

Maya Bar Sadan, Doron Naveh

Special Issue: 2D Materials — Ben-Gurion University Research Portal Skip to main navigation Skip to search Skip to main content Ben-Gurion University Research Portal Home Ben-Gurion University Research Portal Logo Help & FAQ Home Profiles Research output Research units Prizes Press/Media Student theses Activities Research Labs / Equipment Datasets Projects Search by expertise, name or affiliation Special Issue: 2D Materials Maya Bar Sadan, Doron Naveh Department of Chemistry Research output: Contribution to journal › Editorial Overview Original language English Article number e202200023 Journal Israel Journal of Chemistry Volume 62 Issue number 3-4 DOIs https://doi.org/10.1002/ijch.202200023 State Published - 1 Mar 2022 ASJC Scopus subject areas Chemistry (all) Access to Document 10.1002/ijch.202200023 Other files and links Link to publication in Scopus Cite this APA Author BIBTEX …

Show more

Mar 2022 • Bulletin of the American Physical Society

Electronic Tuning of 2D Materials with Zwitterionic and Functional Polymers

James Nicolas Pagaduan, Nicholas Hight-Huf, Yehiel Nagar, Avdhoot Datar, Doron Naveh, Michael Barnes, Ashwin Ramasubramaniam, Reika Katsumata, Todd Emrick

Functional polymers are increasingly recognized for their ability to engineer the electronic properties of 2D materials for device performance enhancement. Although dipole-rich polymer zwitterions have shown significant work function modulation of 2D materials, the contribution of zwitterion structure is not well understood. To this end, a series of zwitterionic sulfobetaine-based random copolymers with varying substituents has been prepared and applied as negative-tone resists on graphene, enabling evaluation of surface potential contrast. The influence of steric footprint on calculated dipole moment and resulting work function measured by ultraviolet photoelectron spectroscopy will be presented. To assess the nature of graphene surface doping by polymer zwitterions, a sample geometry that permits direct access to either the polymer or graphene side is employed using a zwitterionic phosphorylcholine-based …

Show more

Mar 2022 • High Contrast Metastructures XI, PC120110H, 2022

High-index topological insulator nanostructures for mid-infrared meta-optics

Sukanta Nandi, Danveer Singh, Pilkhaz Pilkhaz Nanikashvili, Shany Cohen, Doron Naveh, Tomer Lewi

Topological insulators (TIs) are a new class of condensed matter system that host topologically protected surface states, leading to dissipationless electron transport. This intrinsic characteristic makes them potential candidate for quantum computing owing to their ability to preserve quantum coherence. Recently, these systems and the concept of topology have been embraced by the photonics community as well. In this work, we study the mid-infrared optical properties of high index (n~5.2) TI bismuth selenide (Bi2Se3) nanobeams (NBs), grown by chemical vapor deposition. Using Finite-difference time-domain (FDTD) simulations and FTIR nanospectroscopy, we find that these NBs support size-tunable Mie-resonant modes across the infrared (~1-16 µm). Furthermore, polarized measurements reveal that the total optical response of these deep subwavelength NBs is composed of TE and TM resonant mode. Finally …

Show more

Mar 2022 • Bulletin of the American Physical Society

MoS2 Hybrids with Intercalated Zerovalent Metals for Optoelectronics

Ashwin Ramasubramaniam, Chen Stern, Avraham Twitto, Rafi Snitkoff, Yafit Fleger, Sabyasachi Saha, Loukya Bodipatti, Akash Jain, Mengjing Wang, Kristie Koski, Francis Deepak, Doron Naveh

The intercalation of layered compounds is a promising route for scalable synthesis of 2D heterostructures with novel emergent optoelectronic properties. Here, we investigate, via first principles calculations, the intercalation of zerovalent metals within the van der Waals gap of bulk MoS 2. Specifically, we focus on a novel Cu-MoS 2 hybrid that accommodates uniform, continuous 2D layers of metallic Cu within the vdW gap of MoS 2. We study the evolution of the Cu-MoS 2 hybrid with increasing Cu content and examine the consequences for intercalation energetics and optoelectronic properties as the intercalated Cu evolves from disordered clusters to contiguous layers. We identify an emergent plasmon resonance (~ 1eV) that is unique to the Cu-MoS 2 hybrid, arising from resonant 2D Cu states within the MoS 2 band gap. Our calculations are shown to be in good agreement with experiments and help explain the …

Show more

logo
Articali

Powered by Articali

TermsPrivacy