Feb 2023 • The Journal of Physical Chemistry C
Shmuel Gonen, Oran Lori, Noam Zion, Lior Elbaz
Extensive research work has been invested in the past decade in finding replacements for platinum-based electrocatalysts for the oxygen reduction reaction in fuel cells. The majority of these alternative electrocatalysts are based on transition-metal ions coordinated by organic ligands. Different from previously reported approaches for electrocatalysts, we describe here the synthesis, characterization, and oxygen reduction reaction activity of lanthanide complex electrocatalyst with ytterbium as the metal center. A metal–organic framework of Yb and benzene tricarboxylic acid as a ligand was synthesized on activated carbon (Yb(III)BTC@AC) to achieve electrical conductivity in a procedure similar to M-BTC@AC electrocatalysts with transition-metal centers. The Yb complex in activated carbon presents oxygen reduction reaction activity in alkaline solution with high onset potential relative to other nonpyrolyzed …
Show moreFeb 2023
Daniel Allen, Orli Knop, Bryan Itkowitz, Ortal Iancu, Katia Beider, Yu Nee Lee, Arnon Nagler, Raz Somech, Ayal Hendel
RAG2-SCID is a primary immunode ciency caused by mutations in Recombination-activating gene 2 (RAG2), a gene intimately involved in the process of lymphocyte maturation and function. ex-vivo manipulation of a patient’s own hematopoietic stem and progenitor cells (HSPCs) using CRISPR-Cas9/rAAV6 gene editing could provide a therapeutic alternative to the only current treatment, allogeneic hematopoietic stem cell transplantation (HSCT). Here we show a rst-of-its-kind RAG2 correction strategy that replaces the entire endogenous coding sequence (CDS) to preserve the critical endogenous spatiotemporal gene regulation and locus architecture. Expression of the corrective transgene led to successful development into CD3+TCRαβ+ and CD3+TCRγδ+ T cells and promoted the establishment of highly diverse TRB and TRG repertoires in an in-vitro T-cell differentiation platform. We believe that a CDS replacement technique to correct tightly regulated genes, like RAG2, while maintaining critical regulatory elements and conserving the locus structure could bring safer gene therapy techniques closer to the clinic.
Show moreJan 2023 • bioRxiv
Ortal Iancu, Daniel Allen, Orli Knop, Yonathan Zehavi, Dor Breier, Adaya Arbiv, Atar Lev, Yu Nee Lee, Katia Beider, Arnon Nagler, Raz Somech, Ayal Hendel
Severe combined immunodeficiency (SCID) is a group of monogenic primary immunodeficiencies caused by mutations in genes involved in the process of lymphocyte maturation and function. CRISPR-Cas9 gene editing of the patient9s own hematopoietic stem and progenitor cells (HSPCs) ex vivo could provide a therapeutic alternative to allogeneic hematopoietic stem cell transplantation (HSCT), the current gold standard for treatment of SCID. Using CRISPR-Cas9/rAAV6 gene-editing, we engineered genotypes in healthy donor (HD)-derived CD34+ HSPCs, thus eliminating the need for rare patient samples, to model both SCID and the therapeutic outcomes of gene-editing therapies for SCID via multiplexed homology directed repair (HDR). Firstly, we developed a SCID disease model via knock-out of both alleles of genes critical to the development of lymphocytes; and secondly, we established a knock-in/knock-out (KI-KO) strategy to develop a proof-of-concept single-allelic gene correction. Since SCID is a recessive disorder, correction of only one allele is enough to cure the patient. Based on these results, we performed gene correction of RAG2-SCID patient-derived CD34+ HSPCs that successfully developed into CD3+ T cells with diverse TCR repertoires in an in vitro T-cell differentiation (IVTD) platform. By using CRISPR-Cas9, multiplexed HDR, HD-derived CD34+ HSPCs, and an IVTD system we outline an approach for the study of human lymphopoiesis. We present both a way for researchers to determine the optimal configuration for CRISPR-Cas9 gene correction of SCID and other recessive blood disorders, and the feasibility of …
Show moreJan 2023 • JOURNAL OF PHYSICAL CHEMISTRY B
Antonino Ingargiola, Shimon Weiss, Eitan Lerner
Jan 2023 • Proc. of SPIE Vol
Amos Danielli, Benjamin L Miller, Sharon M Weiss
PROCEEDINGS OF SPIE Page 1 PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Front Matter: Volume 12397 , "Front Matter: Volume 12397," Proc. SPIE 12397, Frontiers in Biological Detection: From Nanosensors to Systems XV, 1239701 (2 May 2023); doi: 10.1117/12.2679008 Event: SPIE BiOS, 2023, San Francisco, California, United States Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 04 May 2023 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Page 2 PROGRESS IN BIOMEDICAL OPTICS AND IMAGING Vol. 24 No. 46 Volume 12397 Proceedings of SPIE, 1605-7422, V. 12397 SPIE is an international society advancing an interdisciplinary approach to the science and application of light. Frontiers in Biological Detection: From Nanosensors to Systems XV Amos Danielli Benjamin L. Miller Sharon M. Weiss Editors 29 …
Show moreJan 2023 • Polymer-Based Nanoscale Materials for Surface Coatings, 479-500, 2023
Sayan Ganguly, Shlomo Margel
Superhydrophobic surface preparation is developed by inspiration from nature. As it is a natural fact that lotus leaves are water repellant, thus researchers tried their best to develop superhydrophobic coatings by using several materials. The materials are categorized by inorganic, organic, and their synergistic hybrids. Polymeric coatings are more usable by scientists because of its tunable chemical features and their internal morphologies. This chapter will discuss in brief the coating materials and how polymer systems influenced the superhydrophobicity.
Show moreJan 2023 • arXiv e-prints
Shany Zrihan Cohen, Danveer Singh, Sukanta Nandi, Tomer Lewi
Thermal effects are well known to influence the electronic and optical properties of materials through several physical mechanisms and are the basis for various optoelectronic devices. The thermo-optic (TO) effect-the refractive index variation with temperature (dn/dT), is one of the common mechanisms used for tunable optical devices, including integrated optical components, metasurfaces and nano-antennas. However, when a static and fixed operation is required, ie, temperature invariant performance-this effect becomes a drawback and may lead to undesirable behavior through drifting of the resonance frequency, amplitude, or phase, as the operating temperature varies over time. In this work, we present a systematic approach to mitigate thermally induced optical fluctuations in nanophotonic devices. By using hybrid subwavelength resonators composed from two materials with opposite TO dispersions (dn/dT< 0 …
Show moreJan 2023 • Applied Physics Letters
Kun Tang, Eitam Luz, David Amram, Luna Kadysz, Sébastien Guenneau, Patrick Sebbah
Invisibility cloaks for flexural waves have mostly been examined in a continuous-wave regime, while invisibility is likely to deteriorate for short pulses. Here, we propose the practical realization of a unidirectional invisibility cloak for flexural waves based on an area-preserving coordinate transformation. Time-resolved experiments reveal how the invisibility cloak deviates a pulsed plane wave from its initial trajectory and how the initial wavefront perfectly recombines behind the cloak, leaving the diamond-shaped hole invisible, notwithstanding the appearance of a forerunner. Three-dimensional full-elasticity simulations support our experimental observations.
Show moreJan 2023 • bioRxiv
Hadar Bootz-Maoz, Ariel Simon, Sara Del Mare-Roumani, Yifat Bennet, Danping Zheng, Sivan Amidror, Eran Elinav, Nissan Yissachar
The intestinal epithelial barrier facilitates homeostatic host-microbiota interactions and immunological tolerance. However, mechanistic dissections of barrier dynamics following luminal stimulation pose a substantial challenge. Here, we describe an ex-vivo intestinal permeability assay, X-IPA, for quantitative analysis of gut permeability dynamics at the whole-tissue level. We demonstrate that specific gut microbes and metabolites induce rapid, dose-dependent increases to gut permeability, thus providing a powerful approach for precise investigation of barrier functions.
Show moreJan 2023 • The Journal of Physical Chemistry B
Antonino Ingargiola, Shimon Weiss, Eitan Lerner
The Supporting Information is available free of charge at https://pubs. acs. org/doi/10.1021/acs. jpcb. 2c09011. A thorough description of additional MC-DEPI simulations of different conditions that yield the same FRET histograms and a full description of the methods used in this work as well as an appendix thoroughly describing the loss function used in this work for the fitting procedure (PDF)
Show moreJan 2023 • bioRxiv
Ayelet Peres, William D Lees, Oscar L Rodriguez, Noah Y Lee, Pazit Polak, Ronen Hope, Meirav Kedmi, Andrew M Collins, Mats Ohlin, Steven H Kleinstein, Corey Watson, Gur Yaari
In adaptive immune receptor repertoire analysis, determining the germline variable (V) allele associated with each T- and B-cell receptor sequence is a crucial step. This process is highly impacted by allele annotations. Aligning sequences, assigning them to specific germline alleles, and inferring individual genotypes are challenging when the repertoire is highly mutated, or sequence reads do not cover the whole V region. Here, we propose an alternative naming scheme for the V alleles as well as a novel method to infer individual genotypes. We demonstrate the strength of the two by comparing their outcomes to other genotype inference methods and validated the genotype approach with independent genomic long read data. The naming scheme is compatible with current annotation tools and pipelines. Analysis results can be converted from the proposed naming scheme to the nomenclature determined by the International Union of Immunological Societies (IUIS). Both the naming scheme and the genotype procedure are implemented in a freely available R package (PIgLET). To allow researchers to explore further the approach on real data and to adapt it for their future uses, we also created an interactive website (https://yaarilab.github.io/IGHV_reference_book).
Show moreJan 2023 • arXiv preprint arXiv:2301.01581
RK Singh, Stanislav Burov
Particle hopping is a common feature in heterogeneous media. We explore such motion by using the widely applicable formalism of the continuous time random walk and focus on the statistics of rare events. Numerous experiments have shown that the decay of the positional probability density function P (X, t), describing the statistics of rare events, exhibits universal exponential decay. We show that such universality ceases to exist once the threshold of exponential distribution of particle hops is crossed. While the mean hop is not diverging and can attain a finite value; the transition itself is critical. The exponential universality of rare events arises due to the contribution of all the different states occupied during the process. Once the reported threshold is crossed, a single large event determines the statistics. In this realm, the big jump principle replaces the large deviation principle, and the spatial part of the decay is unaffected by the temporal properties of rare events.
Show moreJan 2023 • arXiv preprint arXiv:2301.06100
Ruoyu Yin, Eli Barkai
We study optimal restart times for the quantum first hitting time problem. Using a monitored one-dimensional lattice quantum walk with restarts, we find an instability absent in the corresponding classical problem. This instability implies that a small change in parameters can lead to a rather large change of the optimal restart time. We show that the optimal restart time versus a control parameter, exhibits sets of staircases and plunges. The plunges, are due to the mentioned instability, which in turn is related to the quantum oscillation of the first hitting time probability, in the absence of restarts. Furthermore, we prove that there are only two patterns of the staircase structures, dependent on the parity of the distance between the target and source in units of lattice constant.
Show moreJan 2023 • bioRxiv
Miriam I Rosenberg, Erez Greenstein, Martin Buchkovich, Martin Mikl, Ayelet Peres, Eric Santoni-Rugiu, Dan Reshef, Amy J Salovin, David L Gibbs, Meredith S Irwin, Arlene Naranjo, Igor Ulitsky, Pedro A de Alarcon, Victor Weigman, Gur Yaari, Jessica A Panzer, Nir Friedman, John M Maris
Neuroblastoma is a lethal childhood solid tumor of developing peripheral nerves. Two percent of children with neuroblastoma develop Opsoclonus Myoclonus Ataxia Syndrome (OMAS), a paraneoplastic disease characterized by cerebellar and brainstem-directed autoimmunity, but typically with outstanding cancer-related outcomes. We compared tumor transcriptomes and tumor infiltrating T- and B-cell repertoires from 38 OMAS subjects with neuroblastoma to 26 non-OMAS associated neuroblastomas. We found greater B- and T-cell infiltration in OMAS-associated tumors compared to controls, but unexpectedly showed that both were polyclonal expansions. Tertiary lymphoid structures (TLS) were enriched in OMAS-associated tumors. We identified significant enrichment of the MHC Class II allele HLA-DOB*01:01 in OMAS patients. OMAS severity scores were associated with the expression of several candidate autoimmune genes. We propose a model in which polyclonal autoreactive B lymphocytes act as antigen presenting cells and drive TLS formation, thereby crucially supporting both sustained polyclonal T-cell-mediated anti-tumor immunity and paraneoplastic OMAS neuropathology.
Show moreJan 2023 • ACS Sustainable Chemistry & Engineering
Amey Nimkar, Bar Gavriel, Gil Bergman, Meital Turgeman, Tianju Fan, Netanel Shpigel, Doron Aurbach
Being nearly unlimited natural resource containing mostly Na cations, the use of seawater as an electrolyte solution (aka seawater batteries) for electrochemical energy storage has received growing attention. To date, the vast majority of studies have focused on the use of seawater in Na-metal batteries protected by ion-conductive membranes hermetic to water. These systems, however, are complex and expensive, and suffer from a short cycling life. Here, we present alternative seawater batteries that utilize polyimide anodes. With its high capacity of more than 140 mAh/g, impressive rate capability, and excellent long-term stability (98% capacity retention after more than 9000 cycles), the prepared polyimide electrodes demonstrated to be promising candidate anodes for seawater electrochemical energy storage devices. Looking for a suitable cathode, we explored the use of nickel hexacyanoferrate (Ni-HCF) and …
Show moreJan 2023 • Crystals
Michal Ejgenberg, Yitzhak Mastai
Hierarchical organic structures have gained vast attention in the past decade owing to their great potential in chemical and medical applications in industries such as the food and pharmaceutical industries. In this paper, the crystallization of L-glu hierarchical spheres using inorganic ions, namely calcium, barium and strontium cations, is described. The anti-solvent precipitation method is used for the spherical crystallization. The L-glu microspheres are characterized using various techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photo-electron microscopy (XPS) and polarized microscopy (POM). It is shown that without additives, L-glu crystallizes as flower-like structures, very different from the hierarchical spheres crystallized with the charged additives. Based on our results, we suggest a mechanism for the hierarchical sphere formation based on the crystallization and self-assembly of L-glu in emulsion droplets using charged additives.
Show moreJan 2023 • arXiv preprint arXiv:2301.13086
Shany Zrihan Cohen, Danveer Singh, Sukanta Nandi, Tomer Lewi
Thermal effects are well known to influence the electronic and optical properties of materials through several physical mechanisms and are the basis for various optoelectronic devices. The thermo-optic (TO) effect - the refractive index variation with temperature (dn/dT), is one of the common mechanisms used for tunable optical devices, including integrated optical components, metasurfaces and nano-antennas. However, when a static and fixed operation is required, i.e., temperature invariant performance - this effect becomes a drawback and may lead to undesirable behavior through drifting of the resonance frequency, amplitude, or phase, as the operating temperature varies over time. In this work, we present a systematic approach to mitigate thermally induced optical fluctuations in nanophotonic devices. By using hybrid subwavelength resonators composed from two materials with opposite TO dispersions (dn/dT<0 and dn/dT>0), we are able to compensate for TO shifts and engineer meta-atoms and metasurfaces with zero effective TO coefficient (dn/dT~0). We demonstrate temperature invariant resonant frequency, amplitude, and phase response in meta-atoms and metasurfaces operating across a wide temperature range and broad spectral band. Our results highlight a path towards temperature invariant nanophotonics, which can provide constant and stable optical response across a wide range of temperatures and be applied to a plethora of optoelectronic devices. Controlling the sign and magnitude of TO dispersion extends the capabilities of light manipulation and adds another layer to the toolbox of optical engineering in nanophotonic …
Show moreJan 2023 • Energy Storage Materials
Sandipan Maiti, Hadar Sclar, Xiaohan Wu, Judith Grinblat, Michael Talianker, Aleksandr Kondrakov, Boris Markovsky, Doron Aurbach
The work reported herein discusses the improved electrochemical and thermal behavior of LiNi0.5Mn1.5O4 (LNMO) spinel cathodes via surface engineering using a series of zeolites. The limiting issues of these high voltage electrodes are phase transition during Li-ions intercalation/de-intercalation processes, weakening the active material's structure. Besides, it initiates harmful interfacial side reactions, including solution species oxidation and Ni & Mn dissolution, affecting their long-term cycling stability severely and detrimentally. Therefore, we propose a zeolite-based surface modification of LNMO involving a simple surface coating strategy that includes liquid-phase (ethanol) mixing followed by heat treatment at 200°C under nitrogen gas flow. The cathodes comprising LNMO coated with 2 wt% zeolites exhibited significantly improved cycling stability than the reference cathodes with the uncoated material …
Show moreJan 2023 • iScience
Auria Eisen-Enosh, Nairouz Farah, Uri Polat, Yossi Mandel
Integration of information over the central nervous system is an important neural process that affects our ability to perceive and react to the environment. The visual system is required to continuously integrate information arriving from two different sources (the eyes) to create a coherent percept with high spatiotemporal precision. Although this neural integration of information is assumed to be critical for visual performance, it can be impaired under some pathological or developmental conditions. Here we took advantage of a unique developmental condition, amblyopia (“lazy eye”), which is characterized by an impaired temporal synchronization between the two eyes, to meticulously study the effect of synchronization on the integration of binocular visual information. We measured the eyes’ asynchrony and compensated for it (with millisecond temporal resolution) by providing time-shifted stimuli to the eyes. We found …
Show moreJan 2023 • Power Ultrasonics, 431-454, 2023
A Gedanken, I Perelshtein, N Perkas
Sonochemistry in now well recognized as a technique for the fabrication of nanomaterials. This is reflected in the many review articles on sonochemistry and nanoparticles that have been published over the last few years. It is so happened that Suslick, one of the forefathers of this field, has lately written a very comprehensive review on this topic (Bang, 2010). In his review, Suslick has summarized the work published on sonochemistry and nanomaterials until 2010. The current review will try to scan the work done in this area until the end of 2012. The current review will concentrate first on explaining why nano? Namely, when, why, and what kind of nanomaterials are produced upon the collapse of the acoustic bubble?
Show moreJan 2023 • Polymer-Based Nanoscale Materials for Surface Coatings, 1-18, 2023
Sayan Ganguly, Shlomo Margel
In this chapter, we would like to discuss polymer coating's know-how, which is a method of modifying surface qualities in order to satisfy operating requirements in a number of technological applications. In addition to adhesion and barrier capabilities, polymer coatings have also been used to improve scratch and abrasion resistance, solvent resistance, wettability, noncytotoxicity, and other features. For the manufacture of protective organic coatings a number of different techniques have been devised and used. A careful selection of polymer, coating process, and manufacturing conditions can result in high-performance coatings with improved attributes when applied correctly. Polymer coatings have recently been shown to be effective and widely used in a variety of applications, including solar cells, batteries, separation techniques, diodes, corrosion defense, packaging, and heathcare applications.
Show more