3765 articles

75 publishers

Join mailing list

Jun 2022 • Investigative Ophthalmology & Visual Science

Investigating the survival and function of retinal ganglion cells in an organotypic culture: An in-vitro model for studying synaptogenesis

Nairouz Farah, Efrat Simon, Yossi Mandel

Purpose: Stem cells replacement therapy is becoming a promising pursued avenue for vision restoration in people with degenerative diseases of the outer retina. However, the integration and survival of the transplanted cells and the formation of fully functioning synapses remain a challenge. Our aim is to develop an in-vitro experimental paradigm which will allow us to address these issues while working under experimentally controlled conditions and avoiding immune system reactions faced in-vivoMethods: As a first step, we are utilizing organotypic retinal cultures from transgenic rats expressing the calcium indicator GCaMP6f while monitoring the survival of the retinal ganglion cells (RGCs) using both extracellular recordings (multi electrode arrays), and calcium imaging at various time points.Results: Our calcium imaging revealed robust spontaneous activity of the RGCs up to 72hrs, albeit decreasing throughout …

Show more

Jun 2022 • Progress in Polymer Science, 101574, 2022

3D printed magnetic polymer composite hydrogels for hyperthermia and magnetic field driven structural manipulation

Sayan Ganguly, Shlomo Margel

Magnetic hydrogels and soft composites have fuelled the development of next generation biomimetic soft robotics due to their precise control and non-cytotoxic nature. Bare magnetic nanoparticles are difficult to regulate via remote controlling whereas, when these nanoparticles are arrested inside polymeric matrices, the whole system become an artificial soft mussel like integrated system. Concurrently, these polymeric magnetic soft materials are also prone to response of external magnetic field (static or oscillatory). Additive manufacturing via spatial assembly of polymeric precursors followed by actuation like behaviour is quite a new manufacturing technique to fabricate magnetic soft materials. In this review, we focused on the magnetic nanoparticles and their entrapment into polymeric matrices and assessing their applicability in clinical (hyperthermia) as well as shape morphing behaviours. Both the behaviors …

Show more

Jun 2022 • Journal of Cell Science

Glucocorticoids enhance chemotherapy-driven stress granule assembly and impair granule dynamics, leading to cell death

Avital Schwed-Gross, Hila Hamiel, Gabriel P Faber, Mor Angel, Rakefet Ben-Yishay, Jennifer IC Benichou, Dana Ishay-Ronen, Yaron Shav-Tal

Stress granules (SGs) can assemble in cancer cells upon chemotoxic stress. Glucocorticoids function during stress responses and are administered with chemotherapies. The roles of glucocorticoids in SG assembly and disassembly pathways are unknown. We examined whether combining glucocorticoids such as cortisone with chemotherapies from the vinca-alkaloid family that dismantle the microtubule network, will affect SG assembly and disassembly pathways and influence cell viability in cancer cells and in human-derived organoids. Cortisone augmented SG formation when combined with Vinorelbine (VRB). Live-cell imaging showed that cortisone increased SG assembly rates but reduced SG clearance rates after stress, by increasing protein residence times within the SGs. Mechanistically, VRB and cortisone signaled through the eIF2α-mediated integrated stress response yet induced different kinases …

Show more

Jun 2022 • ACS Omega

Fabrication of Transparent Silica/PEG Smooth Thin Coatings on Polymeric Films for Antifogging Applications

Naftali Kanovsky, Shlomo Margel

Fog accumulation on surfaces typically has a negative effect by reducing their transparency and efficiency. Applications such as plastic packaging, agricultural films, and particularly many optical devices suffer from these negative effects. One way to prevent fogging is to coat the substrate with an antifogging coating having a smooth surface and hydrophilic surface chemical groups. This causes the fog water droplets that come into contact with the substrate to completely flatten across its surface, thus retaining transparency. These coatings are mostly relegated to laboratory research due to their insufficient stability and costly synthetic processes. We proposed the use of organically modified silica particles consisting of a mixture of tetraethyl orthosilicate and methacryloxypropyltriethoxysilane, which were grown in situ in the presence of a corona-activated polyethylene film, thus providing a thin siloxane coating …

Show more

Jun 2022 • ChemistrySelect

Boron‐doped Carbon Dots with Surface Oxygen Functional Groups as a Highly Sensitive and Label‐free Photoluminescence Probe for the Enhanced Detection of Mg2+ Ions

Hari Krishna Sadhanala, Sudhakar Pagidi, Suhas Yadav, Marianna Beiderman, Ilya Grinberg, Dror Fixler, Aharon Gedanken

Magnesium ion (Mg2+) is one of the most significant cations in living systems with involvement in many biochemical reactions and cellular processes and hence, sensitive and specific detection of Mg2+ is therefore essential for various applications. Here, we report the solvothermal synthesis of boron‐doped carbon dots (BC10) with more oxygen surface states by using salicylaldehyde and naphthalene‐1‐boronic acid. The as‐prepared BC10 showed greenish‐white luminescence under 365 nm UV illumination with quantum yield (QY) of 5.5 % at optimum dilution with dimethyl sulfur oxide (DMSO) solvent. The BC10 in DMSO (DS‐BC10) have shown high selectivity and sensitivity towards Mg2+ ion through the increased PL intensity due to chelation‐enhanced photoluminescence (CHEP). The enhanced PL intensity was further supported by the increased QY by a factor of 12 after the addition of Mg2+ ions to 65 …

Show more


Advanced theranostic nanocarrier-mediated delivery of NGF in a combination therapy trigger enhanced recovery after stroke

M Wacker, F Wetterling, T Feczko, K Arkelius, A Arnou, J Lellouche, S Ansar

Jun 2022 • Science Advances

A long noncoding RNA promotes parasite differentiation in African trypanosomes

Fabien Guegan, K Shanmugha Rajan, Fábio Bento, Daniel Pinto-Neves, Mariana Sequeira, Natalia Gumińska, Seweryn Mroczek, Andrzej Dziembowski, Smadar Cohen-Chalamish, Tirza Doniger, Beathrice Galili, Antonio M Estévez, Cedric Notredame, Shulamit Michaeli, Luisa M Figueiredo

The parasite Trypanosoma brucei causes African sleeping sickness that is fatal to patients if untreated. Parasite differentiation from a replicative slender form into a quiescent stumpy form promotes host survival and parasite transmission. Long noncoding RNAs (lncRNAs) are known to regulate cell differentiation in other eukaryotes. To determine whether lncRNAs are also involved in parasite differentiation, we used RNA sequencing to survey the T. brucei genome, identifying 1428 previously uncharacterized lncRNA genes. We find that grumpy lncRNA is a key regulator that promotes parasite differentiation into the quiescent stumpy form. This function is promoted by a small nucleolar RNA encoded within the grumpy lncRNA. snoGRUMPY binds to messenger RNAs of at least two stumpy regulatory genes, promoting their expression. grumpy overexpression reduces parasitemia in infected mice. Our analyses …

Show more

Jun 2022 • 241st ECS Meeting (May 29-June 2, 2022)

Vanadium Oxide Coatings for Enhanced Stability and Activity of Pt Electrocatalysts

Samuel Spencer Hardisty, David Zitoun

Jun 2022 • ACS Omega

Design and Use of a Gold Nanoparticle–Carbon Dot Hybrid for a FLIM-Based IMPLICATION Nano Logic Gate

Shweta Pawar, Hamootal Duadi, Yafit Fleger, Dror Fixler

The interest in nanomaterials resides in the fact that they can be used to create smaller, faster, and more portable systems. Nanotechnology is already transforming health care. Nanoparticles are being used by scientists to target malignancies, improve drug delivery systems, and improve medical imaging. Integration of biomolecular logic gates with nanostructures has opened new paths in illness detection and therapy that need precise control of complicated components. Most studies have used fluorescence intensity techniques to implement the logic function. Its drawbacks, mainly when working with nanoparticles in intracellular media, include fluctuations in excitation power, fluorophore concentration dependence, and interference from cell autofluorescence. We suggest using fluorescence lifetime imaging microscopy (FLIM) in order to circumvent these constraints. Designing a nanohybrid composed of gold …

Show more

Jun 2022 • Sensors 22 (12), 4497, 2022

Recent Advances in Rapid and Highly Sensitive Detection of Proteins and Specific DNA Sequences Using a Magnetic Modulation Biosensing System

Shira Roth, Michael Margulis, Amos Danielli

In early disease stages, biomolecules of interest exist in very low concentrations, presenting a significant challenge for analytical devices and methods. Here, we provide a comprehensive overview of an innovative optical biosensing technology, termed magnetic modulation biosensing (MMB), its biomedical applications, and its ongoing development. In MMB, magnetic beads are attached to fluorescently labeled target molecules. A controlled magnetic force aggregates the magnetic beads and transports them in and out of an excitation laser beam, generating a periodic fluorescent signal that is detected and demodulated. MMB applications include rapid and highly sensitive detection of specific nucleic acid sequences, antibodies, proteins, and protein interactions. Compared with other established analytical methodologies, MMB provides improved sensitivity, shorter processing time, and simpler protocols.

Show more

Jun 2022 • ACS Applied Materials & Interfaces

Lead Sequestration from Halide Perovskite Solar Cells with a Low-Cost Thiol-Containing Encapsulant

Rene D Mendez L, Barry N Breen, David Cahen

Perovskite solar cells (PSCs) are being studied and developed because of the outstanding properties of halide perovskites as photovoltaic materials and high conversion efficiencies achieved with the best PSCs. However, leaching out of lead (Pb) ions into the environment presents potential public health risks. We show that thiol-functionalized nanoparticles provide an economic way of minimizing Pb leaching in the case of PSC module damage and subsequent water exposure (at most, ∼2.5% of today’s crystal silicon solar panel production cost per square meter). Using commercial materials and methods, we retain ∼90% of Pb without degrading the photovoltaic performance of the cells, compared with nonencapsulated devices, yielding a worst-case scenario of top-soil pollution below natural Pb levels and well below the U.S. Environmental Protection Agency limits.

Show more

Jun 2022 • Annals of the Rheumatic Diseases 81 (Suppl 1), 488-488, 2022


S Kivity, H Kravitz, C Cohen, D Margoulis, M Amar, G Kazimirsky, D Ozeri, A Dori, C Brodie

Background Inflammatory myopathies (IM) are a heterogeneous group of disorders characterized by autoimmune inflammatory destruction of skeletal muscles. It is many times associated with lung, skin and joint involvement. Identifying biomarkers that can differentiate IM from other muscle disorders may elucidate the pathophysiology of IM, guide novel therapies, monitor disease activity/response to treatments and predict prognosis. Exosomes are membrane-bound nanovesicles with diameters of 30-150 nm that contain multiple proteins, nucleic acid, lipids and other molecules in a tissue- and cell-specific manner. Exosomes are secreted by a large variety of cells, play major roles in cell-cell interactions, and have recently emerged as circulating biomarkers in a variety of pathological conditions, including several autoimmune diseases.Objectives To characterize exosomes from serum of IM patients, analyze protein …

Show more

Jun 2022 • Nature Communications

A forward Brillouin fibre laser

Gil Bashan, H Hagai Diamandi, Elad Zehavi, Kavita Sharma, Yosef London, Avi Zadok

Fibre lasers based on backward stimulated Brillouin scattering provide narrow linewidths and serve in signal processing and sensing applications. Stimulated Brillouin scattering in fibres takes place in the forward direction as well, with amplification bandwidths that are narrower by two orders of magnitude. However, forward Brillouin lasers have yet to be realized in any fibre platform. In this work, we report a first forward Brillouin fibre laser, using a bare off-the-shelf, panda-type polarisation maintaining fibre. Pump light in one principal axis provides Brillouin amplification for a co-propagating lasing signal of the orthogonal polarisation. Feedback is provided by Bragg gratings at both ends of the fibre cavity. Single-mode, few-modes and multi-mode regimes of operation are observed. The lasing threshold exhibits a unique environmental sensitivity: it is elevated when the fibre is partially immersed in water due to the …

Show more

Jun 2022 • Journal of Solid State Electrochemistry, 1-19, 2022

Recent advances in solid-state beyond lithium batteries

Mary York, Karl Larson, Kailot C Harris, Eric Carmona, Paul Albertus, Rosy Sharma, Malachi Noked, Ela Strauss, Heftsi Ragones, Diana Golodnitsky

As battery technologies are in continuous development, and especially due to the rapid growth in vehicle electrification, which requires large (e.g., 100 s of kg) battery packs, there has been a growing demand for more efficient, reliable, and environmentally friendly materials. Solid-state post-lithium-ion batteries are considered a possible next-generation energy storage technology. One immediate advantage of these power sources over commercial lithium-ion batteries is the potential of solving the resource issues facing LIBs, especially as cost-effective alternatives. The second advantage is the removal of flammable liquid electrolytes. The solid electrolytes are more resistant to changes in temperature and physical damage, produce up to 80% less heat, and are able to handle more charge/discharge cycles before degradation makes them unusable. All these features point towards a longer battery life. Other …

Show more

Jun 2022 • Advanced Materials

Self‐Healing and Light‐Soaking in MAPbI3: the effect of H2O

DR Ceratti, R Tenne, A Bartezzaghi, L Cremonesi, L Segev, V Kalchenko, D Oron, MAC Potenza, G Hodes, D Cahen

The future of Halide Perovskites, HaPs, which are of enormous interest for light ⟷ electrical energy conversion, is beclouded by limited scientific understanding of their long‐term stability. While HaPs can be altered by absorbed radiation that induces multiple processes, remarkably, they can also return to their original state by “self‐healing”. Here we use 2‐photon absorption to effect light‐induced modifications within single crystals of MAPbI3, the prototypical HaP. We then follow the changes in the photo‐damaged region by measuring the photoluminescence, resulting also from 2‐photon absorption, but with 2.5 orders of magnitude lower intensity than that used for photodamaging the MAPbI3. We find, immediately after photo‐damage, two brightening and one darkening process, all of which recover but on different timescales. The first two are attributed to trap‐filling (the fastest) and to proton‐amine related …

Show more

Jun 2022 • Scientific Reports 12 (1), 14874, 2022

Passive symmetry breaking of the space–time propagation in cavity dissipative solitons

I Parshani, L Bello, M Meller, A Pe'er

Dissipative solitons are fundamental wave-pulses that preserve their form in the presence of periodic loss and gain. The canonical realization of dissipative solitons is Kerr-lens mode locking (KLM) in lasers, which delicately balance nonlinear and linear propagation in both time and space to generate ultrashort optical pulses. This linear-nonlinear balance dictates a unique pulse energy, which cannot be increased (say by elevated pumping), indicating that excess energy is expected to be radiated in the form of dispersive or diffractive waves. Here we show that KLM lasers can overcome this expectation. Specifically, by breaking the spatial symmetry between the forward and backward halves of the round-trip in a linear cavity, the laser can modify the soliton in space to incorporate the excess energy. Increasing the pump power leads therefore to a different soliton solution, rather than to dispersive/diffractive loss. We predict the symmetry breaking by a complete numerical simulation of the spatio-temporal dynamics in the cavity, and confirm it experimentally in a KLM Ti: Sapphire laser with quantitative agreement to the simulation. The simulation opens a window to directly observe the nonlinear space-time dynamics that molds the soliton pulse, and possibly to optimize it.

Show more

Jun 2022 • Elsevier, 2022

SBS-based fiber sensors

A Zadok, X Bao, Z Yang, L Thevenaz

The spectra of Brillouin scattering processes in optical fibers are affected by temperature, axial strain, and other quantities of interest. This dependence forms the basis for optical Brillouin scattering based optical fiber sensors. Since the first proposition of such sensors in 1989, several protocols have been established for the spatially distributed analysis of Brillouin scattering spectra along fibers installed in structures of interest. Sensor systems cover hundreds of kilometers, reach sub-millimeter resolution, follow dynamic vibrations at MHz rates, and resolve sub-degree temperature changes and micro-strain elongations. Optical fiber sensors represent the most successful commercial application of Brillouin scattering physics to-date. This chapter reviews the principles, state of the art, performance trade-offs and recent breakthroughs in Brillouin scattering-based optical fiber sensors.

Show more

May 2022 • Nature Communications

Different hotspot p53 mutants exert distinct phenotypes and predict outcome of colorectal cancer patients

Ori Hassin, Nishanth Belugali Nataraj, Michal Shreberk-Shaked, Yael Aylon, Rona Yaeger, Giulia Fontemaggi, Saptaparna Mukherjee, Martino Maddalena, Adi Avioz, Ortal Iancu, Giuseppe Mallel, Anat Gershoni, Inna Grosheva, Ester Feldmesser, Shifra Ben-Dor, Ofra Golani, Ayal Hendel, Giovanni Blandino, David Kelsen, Yosef Yarden, Moshe Oren

The TP53 gene is mutated in approximately 60% of all colorectal cancer (CRC) cases. Over 20% of all TP53-mutated CRC tumors carry missense mutations at position R175 or R273. Here we report that CRC tumors harboring R273 mutations are more prone to progress to metastatic disease, with decreased survival, than those with R175 mutations. We identify a distinct transcriptional signature orchestrated by p53R273H, implicating activation of oncogenic signaling pathways and predicting worse outcome. These features are shared also with the hotspot mutants p53R248Q and p53R248W. p53R273H selectively promotes rapid CRC cell spreading, migration, invasion and metastasis. The transcriptional output of p53R273H is associated with preferential binding to regulatory elements of R273 signature genes. Thus, different TP53 missense mutations contribute differently to cancer progression. Elucidation of the …

Show more

May 2022 • CLEO: QELS_Fundamental Science, JTu3B. 6, 2022

Detuning Modulated Composite Segments for High Fidelity Directional Couplers in Integrated Photonic Devices

Y Piasetzky, M Katzman, M Priel, H Suchowski, A Zadok

We demonstrate a high-fidelity directional coupler in photonic integrated waveguides, utilizing a novel scheme of detuning modulated composite segments. We reduce the wavelength dependence by almost an order of magnitude, indicating significantly increased robustness.

Show more

May 2022 • CLEO: Science and Innovations, SW4O. 4, 2022

Surface Acoustic Wave Microwave Photonic Filters in Silicon-on-Insulator with 16 and 32 Taps

Moshe Katzman, Maayan Priel, Leroy Dokhanian, Inbar Shafir, Matan Slook, Saawan Kumar Bag, Avi Zadok

Integrated, discrete time microwave filters are realized in surface acoustic wave photonic devices in standard silicon on insulator. The devices are scaled to 16 and 32 taps. A single 7 MHz-wide passband is demonstrated.

Show more

May 2022 • 241st ECS Meeting (May 29-June 2, 2022)

(Digital Presentation) Ternary Nifetiooh Catalyst for the Oxygen Evolution Reaction: Study of the Effect of the Addition of Ti at Different Loadings

Wenjamin Moschkowitsch, Lior Elbaz


Powered by Articali