BINA

4707 articles

79 publishers

Join mailing list

Aug 2023 • 3rd International Conference on Aerogels for Biomedical and Environmental Applications

Plasmonic Based Sensor for Quantification of Chemical Pollutants in Water and its Improvement by Machine Learning

MOHAMED HAMODE, MARIA SHEHADEH, OMER KASPI, BRURIA RUBIN, DAVID ZITOUN, ADI SALOMON

Chemical pollutants in drinking water can have many sources, such as pharmaceutical waste, agricultural runoff, and industrial discharges1, 2, 3. The development of a reliable, sensitive, and handheld sensor for the detection of a mixture of contaminants is important, both for human health and the environment. Herein, we show the development of a plasmonic sensor for Surface-enhanced Raman spectroscopy (SERS) and colorimetry measurements. Two types of plasmonic surfaces which enhance the electromagnetic field are presented here;(i) Well-defined cavities milled in silver substrates which are covered with 5 nm of SiO2 for stability.(ii) A scalable metallic-like aerogel network with large surface area, for increasing the sensitivity of our measurements. Three different families of analytes were studied, which can be found in drinking water: Piperidine and its derivatives (Pharmaceutical waste), Dioxins & Polychlorinated biphenyls, Per-and polyfluoroalkyl substances, each of which is toxic, both to the environment and humans health, even at a low concentration of 30 mg/Kg (3* 10-4M). Those

Show more

Aug 2023 • arXiv preprint arXiv:2308.09777

High-Index Topological Insulator Resonant Nanostructures from Bismuth Selenide

Sukanta Nandi, Shany Z Cohen, Danveer Singh, Michal Poplinger, Pilkhaz Nanikashvili, Doron Naveh, Tomer Lewi

Topological insulators (TIs) are a class of materials characterized by an insulting bulk and high mobility topologically protected surface states, making them promising candidates for future optoelectronic and quantum devices. Although their electronic and transport properties have been extensively studied, their optical properties and prospective photonic capabilities have not been fully uncovered. Here, we use a combination of far-field and near-field nanoscale imaging and spectroscopy, to study CVD grown Bi2Se3 nanobeams (NBs). We first extract the mid-infrared (MIR) optical constants of Bi2Se3, revealing refractive index values as high as n ~6.4, and demonstrate that the NBs support Mie-resonances across the MIR. Local near-field reflection phase mapping reveals domains of various phase shifts, providing information on the local optical properties of the NBs. We experimentally measure up to 2{\pi} phase-shift across the resonance, in excellent agreement with FDTD simulations. This work highlights the potential of TI Bi2Se3 for quantum circuitry, non-linear generation, high-Q metaphotonics, and IR photodetection.

Show more

Aug 2023 • Joule

Stabilized Li-S batteries with anti-solvent-tamed quasi-solid-state reaction

Yatao Liu, Linhan Xu, Yongquan Yu, MengXue He, Han Zhang, Yanqun Tang, Feng Xiong, Song Gao, Aijun Li, Jianhui Wang, Shenzhen Xu, Doron Aurbach, Ruqiang Zou, Quanquan Pang

The transition from dissolution-precipitation to quasi-solid-state sulfur reaction promises restricted polysulfide shuttle and lean electrolyte operation of Li-S batteries but incurs poor reaction kinetics. We here demonstrate that structural reorganization of sparingly solvating electrolytes (SSEs)—which is uniquely afforded by using low-density and low-cost aromatic anti-solvents—is vital for taming the quasi-solid-state sulfur reaction. Aromatic anti-solvents disrupt the interconnected structure of concentrated tetrahydrofuran (THF) electrolyte, uniquely creating subdomains that act to dissolve elemental sulfur, thus accelerating its consumption and re-formation while maintaining ultralow polysulfides solubility. The altered subdomains further result in robust solid electrolyte interphase (SEI) on lithium metal. As a result, the Li-S cell with a 3 mgsulfur cm−2 sulfur cathode can cycle steadily for ∼160 cycles with a lean …

Show more

Aug 2023 • arXiv preprint arXiv:2308.14801

Multiferroicity in plastically deformed SrTiO

Xi Wang, Anirban Kundu, Bochao Xu, Sajna Hameed, Ilya Sochnikov, Damjan Pelc, Martin Greven, Avraham Klein, Beena Kalisky

A major challenge in the development of quantum technologies is to induce additional types of ferroic orders into materials that exhibit other useful quantum properties. Various techniques have been applied to this end, such as elastically straining, doping, or interfacing a compound with other materials. Plastic deformation introduces permanent topological defects and large local strains into a material, which can give rise to qualitatively new functionality. Here we show via local magnetic imaging that plastic deformation induces robust magnetism in the quantum paraelectric SrTiO3, in both conducting and insulating samples. Our analysis indicates that the magnetic order is localized along dislocation walls and coexists with polar order along the walls. The magnetic signals can be switched on and off in a controllable manner with external stress, which demonstrates that plastically deformed SrTiO3 is a quantum multiferroic. These results establish plastic deformation as a versatile platform for quantum materials engineering.

Show more

Aug 2023 • Membranes

Permselectivity and Ionic Conductivity Study of Na+ and Br− Ions in Graphene Oxide-Based Membranes for Redox Flow Batteries

Raphael Flack, Anna Aixalà-Perelló, Alessandro Pedico, Kobby Saadi, Andrea Lamberti, David Zitoun

Permselectivity of a membrane is central for the development of electrochemical energy storage devices with two redox couples, such as redox flow batteries (RFBs). In RFBs, Br 3−/Br− couple is often used as a catholyte which can cross over to the anolyte, limiting the battery’s lifetime. Naturally, the development of permselective membranes is essential to the success of RFBs since state-of-the-art perfluorosulfonic acid (PFSA) is too costly. This study investigates membranes of graphene oxide (GO), polyvinylpyrrolidone (PVP), and imidazole (Im) as binder and linker, respectively. The GO membranes are compared to a standard PFSA membrane in terms of ionic conductivity (Na+) and permselectivity (exclusion of Br−). The ionic conduction is evaluated from electrochemical impedance spectroscopy and the permselectivity from two-compartment diffusion cells in a four-electrode system. Our findings suggest that the GO membranes reach conductivity and permselectivity comparable with standard PFSA membranes.

Show more

Aug 2023 • Neuro-Oncology Advances

SYST-24 PROPOFOL EXERTS ANTI-TUMOR EFFECTS IN GLIOMA AND THE TUMOR MICROENVIRONMENT VIA NON-CODING RNAS AND SECRETED EXOSOMES

Donald Penning, Simona Cazacu, Raphael Nizar, Cunli Xiang, Hodaya Goldstein, Matan Krasner, Efrat Barbiro-Michaely, Doron Gerber, Gila Kazimirsky, Lisa Rogers, Stephan Brown, Chaya Brodie

BACKGROUND Glioblastoma (GBM), is the most common primary brain tumor. GBM contains a small subpopulation of glioma stem cells (GSCs) that are implicated in tumor recurrence and treatment resistance and therefore represent important therapeutic targets. Recent clinical studies suggest propofol impacts subsequent tumor response to treatments and patient prognosis. The effects of propofol on patient derived GSCs alone and in combination with radiation and temozolomide, (TMZ) have not been reported. Objectives: The molecular mechanisms underlying propofol’s anti-tumor effects on GSCs and its effect on cellular communication with microglia was studied. Using GSC spheroids, differentiated glioma and tumor cells on a microfluid chip, effects of propofol alone and together with radiation and TMZ on the self-renewal and stemness of GSCs, their mesenchymal transit and the …

Show more

Aug 2023 • Angewandte Chemie 135 (50), e202306904, 2023

Polyimide Compounds For Post‐Lithium Energy Storage Applications

Amey Nimkar, Gil Bergman, Elad Ballas, Nophar Tubul, Noam Levi, Fyodor Malchik, Idan Kukurayeve, Munseok S Chae, Daniel Sharon, Mikhael Levi, Netanel Shpigel, Guoxiu Wang, Doron Aurbach

The exploration of cathode and anode materials that enable reversible storage of mono and multivalent cations has driven extensive research on organic compounds. In this regard, polyimide (PI)‐based electrodes have emerged as a promising avenue for the development of post‐lithium energy storage systems. This review article provides a comprehensive summary of the synthesis, characterization, and application of PI compounds as electrode materials capable of hosting a wide range of cations. Furthermore, the review also delves into the advancements in PI‐based separators and their effectiveness as polymeric binders. By highlighting the key findings in these areas, this review aims to contribute to the understanding and advancement of PI‐based structures paving the way for the next generation of energy storage systems.

Show more

Aug 2023 • arXiv preprint arXiv:2308.09777

High-Index Topological Insulator Resonant Nanostructures from Bismuth Selenide

Sukanta Nandi, Shany Z Cohen, Danveer Singh, Michal Poplinger, Pilkhaz Nanikashvili, Doron Naveh, Tomer Lewi

Topological insulators (TIs) are a class of materials characterized by an insulting bulk and high mobility topologically protected surface states, making them promising candidates for future optoelectronic and quantum devices. Although their electronic and transport properties have been extensively studied, their optical properties and prospective photonic capabilities have not been fully uncovered. Here, we use a combination of far-field and near-field nanoscale imaging and spectroscopy, to study CVD grown Bi2Se3 nanobeams (NBs). We first extract the mid-infrared (MIR) optical constants of Bi2Se3, revealing refractive index values as high as n ~6.4, and demonstrate that the NBs support Mie-resonances across the MIR. Local near-field reflection phase mapping reveals domains of various phase shifts, providing information on the local optical properties of the NBs. We experimentally measure up to 2{\pi} phase-shift across the resonance, in excellent agreement with FDTD simulations. This work highlights the potential of TI Bi2Se3 for quantum circuitry, non-linear generation, high-Q metaphotonics, and IR photodetection.

Show more

Aug 2023 • Journal of Biomedical Optics

Noninvasive blood glucose sensing by secondary speckle pattern artificial intelligence analyses

Deep Pal, Amitesh Kumar, Nave Avraham, Yoram Eisenbach, Yevgeny Beiderman, Sergey Agdarov, Yafim Beiderman, Zeev Zalevsky

SignificanceDiabetes is a prevalent disease worldwide that can cause severe health problems. Accurate blood glucose detection is crucial for diabetes management, and noninvasive methods can be more convenient and less painful than traditional finger-prick methods.AimWe aim to report a noncontact speckle-based blood glucose measurement system that utilizes artificial intelligence (AI) data processing to improve glucose detection accuracy. The study also explores the influence of an alternating current (AC) induced magnetic field on the sensitivity and selectivity of blood glucose detection.ApproachThe proposed blood glucose sensor consists of a digital camera, an AC-generated magnetic field source, a laser illuminating the subject’s finger, and a computer. A magnetic field is applied to the finger, and a camera records the speckle patterns generated by the laser light reflected from the finger. The acquired …

Show more

Aug 2023 • npj 2D Materials and Applications

Thiol-based defect healing of WSe2 and WS2

Aviv Schwarz, Hadas Alon-Yehezkel, Adi Levi, Rajesh Kumar Yadav, Koushik Majhi, Yael Tzuriel, Lauren Hoang, Connor S Bailey, Thomas Brumme, Andrew J Mannix, Hagai Cohen, Eilam Yalon, Thomas Heine, Eric Pop, Ori Cheshnovsky, Doron Naveh

Recent research on two-dimensional (2D) transition metal dichalcogenides (TMDCs) has led to remarkable discoveries of fundamental phenomena and to device applications with technological potential. Large-scale TMDCs grown by chemical vapor deposition (CVD) are now available at continuously improving quality, but native defects and natural degradation in these materials still present significant challenges. Spectral hysteresis in gate-biased photoluminescence (PL) measurements of WSe2 further revealed long-term trapping issues of charge carriers in intrinsic defect states. To address these issues, we apply here a two-step treatment with organic molecules, demonstrating the “healing” of native defects in CVD-grown WSe2 and WS2 by substituting atomic sulfur into chalcogen vacancies. We uncover that the adsorption of thiols provides only partial defect passivation, even for high adsorption quality, and …

Show more

Aug 2023 • Neurotrauma Reports

Inducing Mechanical Stimuli to Tissues Grown on a Magnetic Gel Allows Deconvoluting the Forces Leading to Traumatic Brain Injury

Luise Schlotterose, Megane Beldjilali-Labro, Mario Hagel, Moran Yadid, Carina Flaxer, Eli Flaxer, A Ronny Barnea, Kirsten Hattermann, Esther Shohami, Yael Leichtmann-Bardoogo, Ben M Maoz

Traumatic brain injury (TBI), which is characterized by damage to the brain resulting from a sudden traumatic event, is a major cause of death and disability worldwide. It has short- and long-term effects, including neuroinflammation, cognitive deficits, and depression. TBI consists of multiple steps that may sometimes have opposing effects or mechanisms, making it challenging to investigate and translate new knowledge into effective therapies. In order to better understand and address the underlying mechanisms of TBI, we have developed an in vitro platform that allows dynamic simulation of TBI conditions by applying external magnetic forces to induce acceleration and deceleration injury, which is often observed in human TBI. Endothelial and neuron-like cells were successfully grown on magnetic gels and applied to the platform. Both cell types showed an instant response to the TBI model, but the endothelial cells …

Show more

Aug 2023 • arXiv preprint arXiv:2208.11008

Sachdev-Ye-Kitaev model: Non-self-averaging properties of the energy spectrum

Richard Berkovits

The short time (large energy) behavior of the Sachdev-Ye-Kitaev model (SYK) is one of the main motivation to the growing interest garnered by this model. True chaotic behaviour sets in at the Thouless time, which can be extracted from the energy spectrum. In order to do so, it is necessary to unfold the spectrum, i.e., to filter out global tendencies. Using a simple ensemble average for unfolding results in a parametically low estimation of the Thouless energy. By examining the behavior of the spectrum as the distribution of the matrix elements is changed into a log-normal distribution it is shown that the sample to sample level spacing variance determines this estimation of the Thouless energy. Using the singular value decomposition method, SVD, which filters out these sample to sample fluctuations, the Thouless energy becomes parametrically much larger, essentially of order of the band width. It is shown that the SYK model in non-self-averaging even in the thermodynamic limit which must be taken into account in considering its short time properties.

Show more

Aug 2023 • 3rd International Conference on Aerogels for Biomedical and Environmental Applications

Plasmonic Based Sensor for Quantification of Chemical Pollutants in Water and its Improvement by Machine Learning

MOHAMED HAMODE, MARIA SHEHADEH, OMER KASPI, BRURIA RUBIN, DAVID ZITOUN, ADI SALOMON

Chemical pollutants in drinking water can have many sources, such as pharmaceutical waste, agricultural runoff, and industrial discharges1, 2, 3. The development of a reliable, sensitive, and handheld sensor for the detection of a mixture of contaminants is important, both for human health and the environment. Herein, we show the development of a plasmonic sensor for Surface-enhanced Raman spectroscopy (SERS) and colorimetry measurements. Two types of plasmonic surfaces which enhance the electromagnetic field are presented here;(i) Well-defined cavities milled in silver substrates which are covered with 5 nm of SiO2 for stability.(ii) A scalable metallic-like aerogel network with large surface area, for increasing the sensitivity of our measurements. Three different families of analytes were studied, which can be found in drinking water: Piperidine and its derivatives (Pharmaceutical waste), Dioxins & Polychlorinated biphenyls, Per-and polyfluoroalkyl substances, each of which is toxic, both to the environment and humans health, even at a low concentration of 30 mg/Kg (3* 10-4M). Those

Show more

Aug 2023 • Journal of The Electrochemical Society

Understanding the Positive Effect of LATP in Polymer Electrolytes in All-Solid-State Lithium Batteries

Ortal Breuer, Gayathri peta, Yuval Elias, hadas Alon-Yehezkel, Miryam Fayena-Greenstein, Nae-Lih Wu, Mikhael Levi, Doron Aurbach

Composite solid electrolytes with ceramic particles dispersed in a polymer matrix are considered a correct choice for all-solid-state batteries. These electrolytes balance the high ionic conductivity of superionic-ceramic conductors and the elasticity of polymers. Here, Li||LiFePO4 batteries with 30 wt% of Li1.3Al0.3Ti1.7(PO4)3 (LATP) embedded in PEO20:LiTFSI show superior performance at elevated temperature. After ~150 cycles, cells retained 84% of their original capacity compared to only 51% for batteries with no additive. At 5C cells demonstrate 43% higher capacity. In symmetric cells with blocking and non-blocking electrodes and all-solid-state batteries LATP lowers the impedance of the electrode-electrolyte interface ensuring cycling stability. LATP improves performance by stabilization of the cathode-electrolyte interface, apparently the major contributor to the cell impedance.

Show more

Aug 2023 • Physica C: Superconductivity and its Applications

K. Alex Müller–Memories from a great scientist

Yosi Yeshurun

This article describes the effect of Alex Muller's discoveries on my own career and memories of him during his visit to Bar-Ilan University where he received an honorary doctorate.

Show more

Aug 2023 • Angewandte Chemie International Edition

Polymeric Carbon nitride with chirality inherited from supramolecular assemblies

Adi Azoulay, Sapir Shekef Aloni, Lidan Xing, Ayelet Tashakory, Yitzhak Mastai, Menny Shalom

The facile synthesis of chiral materials is of paramount importance for various applications. Supramolecular preorganization of monomers for thermal polymerization has been proven as an effective tool to synthesize carbon and carbon nitride‐based (CN) materials with ordered morphology and controlled properties. However, the transfer of an intrinsic chemical property, such as chirality from supramolecular assemblies to the final material after thermal condensation, has never been shown. Here, we report the large‐scale synthesis of chiral CN materials capable of enantioselective recognition. To achieve this, we designed supramolecular assemblies with a chiral center that remains intact at elevated temperatures. The optimized chiral CN demonstrates an enantiomeric preference of ca. 14%; CN electrodes were also prepared and show stereoselective interactions with enantiomeric probes in electrochemical …

Show more

Aug 2023 • Journal of Energy Chemistry 87, 256-285, 2023

Molybdenum disulfide as hydrogen evolution catalyst: From atomistic to materials structure and electrocatalytic performance

Mohsin Muhyuddin, Giorgio Tseberlidis, Maurizio Acciarri, Oran Lori, Massimiliano D'Arienzo, Massimiliano Cavallini, Plamen Atanassov, Lior Elbaz, Alessandro Lavacchi, Carlo Santoro

Hydrogen production via water electrolysis defines the novel energy vector for achieving a sustainable society. However, the true progress of the given technology is hindered by the sluggish and complex hydrogen evolution reaction (HER) occurring at the cathodic side of the system where overpriced and scarce Pt-based electrocatalysts are usually employed. Therefore, efficient platinum group metals (PGMs)-free electrocatalysts to carry out HER with accelerated kinetics are urgently demanded. In this scenario, molybdenum disulfide (MoS2) owing to efficacious structural attributes and optimum hydrogen-binding free energy (ΔGH*) is emerging as a reliable alternative to PGMs. However, the performance of MoS2-based electrocatalysts is still far away from the benchmark performance. The HER activity of MoS2 can be improved by engineering the structural parameters i.e., doping, defects inducement, modulating …

Show more

Aug 2023 • Applied Physics Letters

Two-well injector direct-phonon terahertz quantum cascade lasers

Nathalie Lander Gower, Shiran Levy, Silvia Piperno, Sadhvikas J Addamane, John L Reno, Asaf Albo

We present an experimental study on a terahertz quantum cascade laser (THz QCL) design that combines both two-well injector and directphonon scattering schemes, ie, a so-called two-well injector direct-phonon design. As a result of the two-well injector direct-phonon scheme presented here, the lasers benefit from both a direct phonon scattering scheme for the lower laser level depopulation and a setback for the doping profile that reduces the overlap of the doped region with active laser states. Additionally, our design also has efficient isolation of the active laser levels from excited and continuum states as indicated by negative differential resistance behavior all the way up to room temperature. This scheme serves as a good platform for improving the temperature performance of THz QCLs as indicated by the encouraging temperature performance results of the device with a relatively high doping level of 7.56 Â …

Show more

Aug 2023 • npj 2D Materials and Applications

Thiol-based defect healing of WSe2 and WS2

Aviv Schwarz, Hadas Alon-Yehezkel, Adi Levi, Rajesh Kumar Yadav, Koushik Majhi, Yael Tzuriel, Lauren Hoang, Connor S Bailey, Thomas Brumme, Andrew J Mannix, Hagai Cohen, Eilam Yalon, Thomas Heine, Eric Pop, Ori Cheshnovsky, Doron Naveh

Recent research on two-dimensional (2D) transition metal dichalcogenides (TMDCs) has led to remarkable discoveries of fundamental phenomena and to device applications with technological potential. Large-scale TMDCs grown by chemical vapor deposition (CVD) are now available at continuously improving quality, but native defects and natural degradation in these materials still present significant challenges. Spectral hysteresis in gate-biased photoluminescence (PL) measurements of WSe2 further revealed long-term trapping issues of charge carriers in intrinsic defect states. To address these issues, we apply here a two-step treatment with organic molecules, demonstrating the “healing” of native defects in CVD-grown WSe2 and WS2 by substituting atomic sulfur into chalcogen vacancies. We uncover that the adsorption of thiols provides only partial defect passivation, even for high adsorption quality, and …

Show more

Aug 2023 • arXiv preprint arXiv:2308.06237

The reshape of three-body interactions: Observation of the survival of an Efimov state in the atom-dimer continuum

Yaakov Yudkin, Roy Elbaz, José P D'Incao, Paul S Julienne, Lev Khaykovich

Efimov states are exotic and counterintuitive three-body quantum states that emerge in the vicinity of two-atom Feshbach resonances. These states exhibit remarkable characteristics as their large spatial extent and extremely weak binding energies following an infinite geometric series, and exist even when interactions are not strong enough to bind two atoms. Efimov states are universal and produce observable effects at critical values of the interaction strength across the two-body resonance when approaching their threshold for dissociation into the different types of three-body continua. In particular, as the strength of the interaction is decreased, an Efimov state merges into the atom-dimer threshold and eventually dissociates into an unbound atom-dimer pair. Here we explore this critical point using refined coherent few-body spectroscopy in Li atoms near a narrow two-body Feshbach resonance. Contrary to the expectation set by universality, we find that the Li Efimov trimer does not immediately dissociate when passing the threshold, and survives as a metastable state embedded in the atom-dimer continuum. We identify this behavior with a novel phenomena related to the emergence of a repulsive interaction in the atom-dimer channel which reshapes the three-body interactions in systems characterized by narrow Feshbach resonances. Our results shed new light on the nature of Li Efimov states and provide a new path to understand various puzzling phenomena observed here, as well as in other previous experimental studies.

Show more

Aug 2023 • Advanced Materials

High‐entropy Co‐free O3‐type layered oxyfluoride: a promising air‐stable cathode for sodium‐ion batteries

Akanksha Joshi, Sankalpita Chakraborty, Sri Harsha Akella, Arka Saha, Ayan Mukherjee, Bruria Schmerling, Michal Ejgenberg, Rosy Sharma, Malachi Noked

Na‐ion batteries have recently emerged as a promising alternative to Li‐based batteries, driven by an ever‐growing demand for electricity storage systems. In the present work, we propose a cobalt‐free high‐capacity cathode for Na‐ion batteries, synthesized using a high‐entropy approach. The high‐entropy approach entails mixing more than five elements in a single phase; hence, obtaining the desired properties is a challenge since this involves the interplay between different elements. Here, instead of oxide, oxyfluoride is chosen to suppress oxygen loss during long‐term cycling. Supplement to this, Li was introduced in the composition to obtain high configurational entropy and Na vacant sites, thus stabilizing the crystal structure, accelerating the kinetics of intercalation/deintercalation, and improving the air stability of the material. With the optimization of the cathode composition, a reversible capacity of 109 …

Show more

logo
Articali

Powered by Articali

TermsPrivacy