BINA

3964 articles

77 publishers

Join mailing list

Oct 2022 • Physical Review B

Mixed superconducting state without applied magnetic field

Alex Khanukov, Itay Mangel, Shai Wissberg, Amit Keren, Beena Kalisky

A superconducting (SC) mixed state occurs in type-II superconductors where the upper critical field H c 2 is higher than the thermodynamic critical field H c. When an applied field is in between these fields, the free energy depends weakly on the order parameter which therefore can be small (SC state) or zero (normal state) at different parts of the sample. In this paper we demonstrate how a normal state along a line traversing a superconductor can be turned on and off externally in zero field. The concept is based on a long, current-carrying excitation coil, piercing a ring-shaped superconductor. The ring experiences zero field, but the vector potential produced by the coil generates a circular current that destroys superconductivity along a radial line starting at preexisting nucleation points in the sample. Unlike the destruction of superconductivity with magnetic field, the vector potential method is reversible and …

Show more

Oct 2022 • Nature Physics

Topology-driven surface patterning of liquid spheres

Subhomoy Das, Alexander V Butenko, Yitzhak Mastai, Moshe Deutsch, Eli Sloutskin

Surfaces of classical spherical liquid droplets are isotropic, promoting the random distribution of surface-adsorbed molecules. Here we demonstrate a counterintuitive temperature-controlled self-assembly of well-defined and highly ordered patterns of surface-adsorbed fluorescent molecules on the surfaces of water-suspended spherical oil droplets. These patterns are induced by precisely self-positioned, topology-dictated structural defects in a crystalline monolayer covering these droplets’ surfaces over a wide temperature range. We elucidate the pattern formation mechanism, visualize the defects’ positions and map the stress fields within the surface crystal. The observed phenomena provide insights into the interfacial freezing effect on curved surfaces, enable precise positioning of functional ligands on droplets for their self-assembly into higher-hierarchy structures– and may also play an important role in vital …

Show more

Oct 2022 • ACS nano

Optoelectronics of Atomic Metal–Semiconductor Interfaces in Tin-Intercalated MoS2

Avraham Twitto, Chen Stern, Michal Poplinger, Ilana Perelshtein, Sabyasachi Saha, Akash Jain, Kristie J Koski, Francis Leonard Deepak, Ashwin Ramasubramaniam, Doron Naveh

Metal–semiconductor interfaces are ubiquitous in modern electronics. These quantum-confined interfaces allow for the formation of atomically thin polarizable metals and feature rich optical and optoelectronic phenomena, including plasmon-induced hot-electron transfer from metal to semiconductors. Here, we report on the metal–semiconductor interface formed during the intercalation of zero-valent atomic layers of tin (Sn) between layers of MoS2, a van der Waals layered material. We demonstrate that Sn interaction leads to the emergence of gap states within the MoS2 band gap and to corresponding plasmonic features between 1 and 2 eV (0.6–1.2 μm). The observed stimulation of the photoconductivity, as well as the extension of the spectral response from the visible regime toward the mid-infrared suggests that hot-carrier generation and internal photoemission take place.

Show more

Oct 2022 • Forward Brillouin Scattering in Standard Optical Fibers: Single-Mode …, 2022

Photoelastic perturbations to the dielectric tensor due to guided acoustic modes

Avi Zadok, Hilel Hagai Diamandi, Yosef London, Gil Bashan

The photoelastic perturbations to the dielectric tensor in standard single-mode fibers, due to the oscillations of guided acoustic modes, are studied and formulated. Material displacement of acoustic modes is associated with local strain in every point within the fiber cross section. Strain, in turn, gives rise to dielectric perturbations, which scale with the magnitude of the acoustic modal displacement. The photoelastic perturbations propagate along the fiber axis with the frequency and wavenumber of the acoustic wave and may scatter and modulate optical fields. The effect of the photoelastic perturbations on guided light depends on the spatial overlap between their transverse profile and that of the optical mode. The position-averaged perturbations associated with radial modes are scalar, and their effect on guided light is independent of polarization. Torsional-radial acoustic modes, on the other hand, induce …

Show more

Oct 2022 • Scientific Reports

Non-contact optical in-vivo sensing of cilia motion by analyzing speckle patterns

Doron Duadi, Nadav Shabairou, Adi Primov-Fever, Zeev Zalevsky

Cilia motion is an indicator of pathological-ciliary function, however current diagnosis relies on biopsies. In this paper, we propose an innovative approach for sensing cilia motility. We present an endoscopic configuration for measuring the motion frequency of cilia in the nasal cavity. The technique is based on temporal tracking of the reflected spatial distribution of defocused speckle patterns while illuminating the cilia with a laser. The setup splits the optical signal into two channels; One imaging channel is for the visualization of the physician and another is, defocusing channel, to capture the speckles. We present in-vivo measurements from healthy subjects undergoing endoscopic examination. We found an average motion frequency of around 7.3 Hz and 9.8 Hz in the antero-posterior nasal mucus (an area rich in cilia), which matches the normal cilia range of 7–16 Hz. Quantitative and precise measurements of …

Show more

Oct 2022 • ACS Applied Materials & Interfaces

Unique mechanisms of ion storage in polyaniline electrodes for pseudocapacitive energy storage devices unraveled by EQCM-D analysis

Meital Turgeman, Gil Bergman, Amey Nimkar, Bar Gavriel, Elad Ballas, Fyodor Malchik, Mikhael D Levi, Daniel Sharon, Netanel Shpigel, Doron Aurbach

The optimal performance of organic electrodes for aqueous batteries requires their full compatibility with selected electrolyte solutions. Electrode materials having 1–3-dimensional structures of variable rigidity possess a confined space in their structure filled with water and electrolyte solutions. Depending on the rigidity and confined space geometry, insertion and extraction of ions into electrode structures are often coupled with incorporation/withdrawal of water molecules. Aside from the scientific interest in understanding the charging mechanism of such systems, co-insertion of solvent molecules affects strongly the charge storage capability of the electrodes for energy storage devices. We present herein in situ electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D) investigations of polyaniline (PANI) electrodes operating in various aqueous Na+-containing electrolytes, namely, Na2SO4 …

Show more

Oct 2022 • 2022 IEEE International Topical Meeting on Microwave Photonics (MWP), 1-4, 2022

Electro-Opto-Mechanical Microwave-Frequency Oscillator in a Surface Acoustic Wave Silicon-Photonic Circuit

Maayan Priel, Saawan Kumar Bag, Matan Slook, Leroy Dokhanian, Inbar Shafir, Etai Grunwald, Moshe Katzman, Mirit Hen, Avi Zadok

An electro-opto-mechanical microwave frequency oscillator is demonstrated through a silicon photonic circuit. An electrical signal modulates an optical pump wave input. Modulation is converted to a surface acoustic wave on the silicon circuit through absorption in a metallic grating and thermoelastic expansion. The acoustic wave is delayed and converted back to optics through photoelastic modulation of a continuous optical input probe wave in a racetrack resonator waveguide. The output probe is detected, and the obtained voltage is amplified and fed back to modulate the input optical pump wave. With sufficient feedback gain, the electro-opto-mechanical loop is driven to oscillations at 2.21 GHz frequency. The oscillator can be useful for integrated microwave photonics signal processing.

Show more

Oct 2022 • Optics Express

Optical fiber point sensors based on forward Brillouin scattering

Keren Shemer, Gil Bashan, Elad Zehavi, Hilel Hagai Diamandi, Alon Bernstein, Kavita Sharma, Yosef London, David Barrera, Salvador Sales, Arik Bergman, Avi Zadok

Forward Brillouin scattering interactions support the sensing and analysis of media outside the cladding boundaries of standard fibers, where light cannot reach. Quantitative point-sensing based on this principle has yet to be reported. In this work, we report a forward Brillouin scattering point-sensor in a commercially available, off-the-shelf multi-core fiber. Pump light at the inner, on-axis core of the fiber is used to stimulate a guided acoustic mode of the entire fiber cross-section. The acoustic wave, in turn, induces photoelastic perturbations to the reflectivity of a Bragg grating inscribed in an outer, off-axis core of the same fiber. The measurements successfully analyze refractive index perturbations on the tenth decimal point and distinguish between ethanol and water outside the centimeter-long grating. The measured forward Brillouin scattering linewidths agree with predictions. The acquired spectra are unaffected by forward Brillouin scattering outside the grating region. The results add point-analysis to the portfolio of forward Brillouin scattering optical fiber sensors.

Show more

Oct 2022 • Frontiers in molecular biosciences

Disrupting Cu trafficking as a potential therapy for cancer

Zena Qasem, Matic Pavlin, Ida Ritacco, Matan Y Avivi, Shelly Meron, Melanie Hirsch, Yulia Shenberger, Lada Gevorkyan-Airapetov, Alessandra Magistrato, Sharon Ruthstein

Copper ions play a crucial role in various cellular biological processes. However, these copper ions can also lead to toxicity when their concentration is not controlled by a sophisticated copper-trafficking system. Copper dys-homeostasis has been linked to a variety of diseases, including neurodegeneration and cancer. Therefore, manipulating Cu-trafficking to trigger selective cancer cell death may be a viable strategy with therapeutic benefit. By exploiting combined in silico and experimental strategies, we identified small peptides able to bind Atox1 and metal-binding domains 3-4 of ATP7B proteins. We found that these peptides reduced the proliferation of cancer cells owing to increased cellular copper ions concentration. These outcomes support the idea of harming copper trafficking as an opportunity for devising novel anti-cancer therapies.

Show more

Oct 2022 • Proceedings of the National Academy of Sciences

Sequestration of gut pathobionts in intraluminal casts, a mechanism to avoid dysregulated T cell activation by pathobionts

Martina Sassone-Corsi, Shalhevet Azriel, Ariel Simon, Deepshika Ramanan, Adriana Ortiz-Lopez, Felicia Chen, Nissan Yissachar, Diane Mathis, Christophe Benoist

T cells that express the transcription factor RORγ, regulatory (Treg), or conventional (Th17) are strongly influenced by intestinal symbionts. In a genetic approach to identify mechanisms underlying this influence, we performed a screen for microbial genes implicated, in germfree mice monocolonized with Escherichia coli Nissle. The loss of capsule-synthesis genes impaired clonal expansion and differentiation of intestinal RORγ+ T cells. Mechanistic exploration revealed that the capsule-less mutants remained able to induce species-specific immunoglobulin A (IgA) and were highly IgA-coated. They could still trigger myeloid cells, and more effectively damaged epithelial cells in vitro. Unlike wild-type microbes, capsule-less mutants were mostly engulfed in intraluminal casts, large agglomerates composed of myeloid cells extravasated into the gut lumen. We speculate that sequestration in luminal casts of potentially …

Show more

Oct 2022 • Optics Continuum

16-channel O-band silicon-photonic wavelength division multiplexer with a 1 nm channel spacing

Matan Slook, Saawan Kumar Bag, Moshe Katzman, Dvir Munk, Yuri Kaganovskii, Michael Rosenbluh, Naor Inbar, Inbar Shafir, Leroy Dokhanian, Maayan Priel, Mirit Hen, Elad Zehavi, Avi Zadok

Silicon-photonic integrated circuits are a pivotal technology for the continued growth of data communications. A main task of silicon photonics is the wavelength division multiplexing of communication channels to aggregate bandwidths that exceed the working rates available in electronics. In this work, we design and implement a 16-channel, wavelength division multiplexing device in silicon-on-insulator. The device operates at the O-band wavelengths, centered at 1310 nm, which are favored by many data center applications. The spacing between adjacent channels is 0.96 nm (167 GHz), close to those of dense wavelength division multiplexing standards in the 1550 nm wavelength range (C band). The layout consists of 15 Mach-Zehnder interferometers, cascaded in a four-stage tree topology. The differential phase delay within each interferometer is precisely trimmed post-fabrication, through local illumination of a photosensitive upper cladding layer of As_2Se_3 chalcogenide glass. Trimming is performed subject to closed-loop feedback of transfer functions measurements. The devices can be useful in data center optical communications.

Show more

Oct 2022 • ACS Energy Letters

Solvent-assisted hopping mechanism enables ultrafast charging of lithium-ion batteries

Xiaoteng Huang, Ruhong Li, Chuangchao Sun, Haikuo Zhang, Shuoqing Zhang, Ling Lv, Yiqiang Huang, Liwu Fan, Lixin Chen, Malachi Noked, Xiulin Fan

Fast charging is regarded as one of the most coveted technologies for commercial Li-ion batteries (LIBs), but the lack of suitable electrolytes with sufficient ionic conductivity and effective passivation properties hinders its development. Herein, we designed a mixed-solvent electrolyte (1 M LiPF6 in fluoroethylene carbonate/acetonitrile, FEC/AN, 7/3 by vol.) to overcome these two limitations by achieving an FEC-dominated solvation structure and an AN-rich environment. The specific AN-assisted Li+ hopping transport behavior shortens the Li+ diffusion time, doubling the ionic conductivity to 12 mS cm–1, thus endowing the graphite anode with >300 mAh g–1 at 20C and reversible (de)intercalation over a wide temperature range (from −20 to +60 °C). Furthermore, the designed electrolyte triples the capacity of the 1 Ah graphite||LiNi0.8Mn0.1Co0.1O2 (NMC811) pouch cells at 8C in comparison with the commercial …

Show more

Oct 2022 • Advanced Science

Highly Stable 4.6 V LiCoO2 Cathodes for Rechargeable Li Batteries by Rubidium‐Based Surface Modifications

Tianju Fan, Yujie Wang, Villa Krishna Harika, Amey Nimkar, Kai Wang, Xiaolang Liu, Meng Wang, Leimin Xu, Yuval Elias, Munseok S Chae, Yonggang Min, Yuhao Lu, Netanel Shpigel, Doron Aurbach

Among extensively studied Li‐ion cathode materials, LiCoO2 (LCO) remains dominant for portable electronic applications. Although its theoretical capacity (274 mAh g−1) cannot be achieved in Li cells, high capacity (≤240 mAh g−1) can be obtained by raising the charging voltage up to 4.6 V. Unfortunately, charging Li‐LCO cells to high potentials induces surface and structural instabilities that result in rapid degradation of cells containing LCO cathodes. Yet, significant stabilization is achieved by surface coatings that promote formation of robust passivation films and prevent parasitic interactions between the electrolyte solutions and the cathodes particles. In the search for effective coatings, the authors propose RbAlF4 modified LCO particles. The coated LCO cathodes demonstrate enhanced capacity (>220 mAh g−1) and impressive retention of >80/77% after 500/300 cycles at 30/45 °C. A plausible mechanism …

Show more

Oct 2022 • Biophysical Reviews 14 (5), 1141-1159, 2022

The use of EPR spectroscopy to study transcription mechanisms

L Hofmann, A Mandato, S Saxena, S Ruthstein

Electron paramagnetic resonance (EPR) spectroscopy has become a promising structural biology tool to resolve complex and dynamic biological mechanisms in-vitro and in-cell. Here, we focus on the advantages of continuous wave (CW) and pulsed EPR distance measurements to resolve transcription processes and protein-DNA interaction. The wide range of spin-labeling approaches that can be used to follow structural changes in both protein and DNA render EPR a powerful method to study protein-DNA interactions and structure–function relationships in other macromolecular complexes. EPR-derived data goes well beyond static structural information and thus serves as the method of choice if dynamic insight is needed. Herein, we describe the conceptual details of the theory and the methodology and illustrate the use of EPR to study the protein-DNA interaction of the copper-sensitive transcription factor, CueR.

Show more

Oct 2022 • Small Methods

Stabilizing High‐Voltage LiNi0.5Mn1.5O4 Cathodes for High Energy Rechargeable Li Batteries by Coating With Organic Aromatic Acids and Their Li Salts

Sandipan Maiti, Hadar Sclar, Judith Grinblat, Michael Talianker, Yuval Elias, Xiaohan Wu, Aleksandr Kondrakov, Doron Aurbach

Here, three types of surface coatings based on adsorption of organic aromatic acids or their Li salts are applied as functional coating substrates to engineer the surface properties of high voltage LiNi0.5Mn1.5O4 (LNMO) spinel cathodes. The materials used as coating include 1,3,5‐benzene‐tricarboxylic acid (trimesic acid [TMA]), its Li‐salt, and 1,4‐benzene‐dicarboxylic acid (terephthalic acid). The surface coating involves simple ethanol liquid‐phase mixing and low‐temperature heat treatment under nitrogen flow. In typical comparative studies, TMA‐coated (3–5%) LNMO cathodes deliver >90% capacity retention after 400 cycles with significantly improved rate performance in Li‐coin cells at 30 °C compared to uncoated material with capacity retention of ≈40%. The cathode coating also prevents the rapid drop in the electrochemical activity of high voltage Li cells at 55 °C. Studies of high voltage full cells …

Show more

Oct 2022 • Journal of The Electrochemical Society

Pulsed Charging Protocols with Non-Zero Relaxation Time for Lithium-Ion Batteries

Lautaro N Acosta, Guillermo Garaventta, Mikhael Levi, Doron Aurbach, Victoria Flexer

Lithium-ion batteries are commonly charged following the constant current-constant voltage (CC-CV) protocol. Current flow during charging implies an equivalent ionic flow through the battery materials. Intercalation and de-intercalation of Li+ are accompanied by concentration gradients that are reflected by the rise in the cells' potentials that is required to maintain the constant current during the CC regime. In this work, two new pulsed charging protocols were tested. Firstly, a square current pulse is applied to the cell until the cut-off voltage is reached, followed by a pulsed square voltage protocol (PV). The second methodology keeps the same current pulse, however, after the limiting voltage was reached, the pulsing regime consisted in alternating between a maximum voltage value and a minimum, non-zero, constant current value. Different voltage pulse widths and frequencies were tested, in order to study the …

Show more

Oct 2022 • Advanced Quantum Technologies 5 (2), 2100121, 2022

Geometric phases and the Sagnac effect: Foundational aspects and sensing applications

Ismael L Paiva, Rain Lenny, Eliahu Cohen

Geometric phase is a key player in many areas of quantum science and technology. In this review article, we outline several foundational aspects of quantum geometric phases and their relations to classical geometric phases. We then discuss how the Aharonov-Bohm and Sagnac effects fit into this context. Moreover, we present a concise overview of technological applications of the latter, with special emphasis on gravitational sensing, like in gyroscopes and gravitational wave detectors.

Show more

Oct 2022 • Proceedings of the National Academy of Sciences

Sequestration of gut pathobionts in intraluminal casts, a mechanism to avoid dysregulated T cell activation by pathobionts

Martina Sassone-Corsi, Shalhevet Azriel, Ariel Simon, Deepshika Ramanan, Adriana Ortiz-Lopez, Felicia Chen, Nissan Yissachar, Diane Mathis, Christophe Benoist

T cells that express the transcription factor RORγ, regulatory (Treg), or conventional (Th17) are strongly influenced by intestinal symbionts. In a genetic approach to identify mechanisms underlying this influence, we performed a screen for microbial genes implicated, in germfree mice monocolonized with Escherichia coli Nissle. The loss of capsule-synthesis genes impaired clonal expansion and differentiation of intestinal RORγ+ T cells. Mechanistic exploration revealed that the capsule-less mutants remained able to induce species-specific immunoglobulin A (IgA) and were highly IgA-coated. They could still trigger myeloid cells, and more effectively damaged epithelial cells in vitro. Unlike wild-type microbes, capsule-less mutants were mostly engulfed in intraluminal casts, large agglomerates composed of myeloid cells extravasated into the gut lumen. We speculate that sequestration in luminal casts of potentially …

Show more

Oct 2022 • Biology

The Gut-Ex-Vivo System (GEVS) Is a Dynamic and Versatile Tool for the Study of DNBS-Induced IBD in BALB/C and C57BL/6 Mice, Highlighting the Protective Role of Probiotics

Romina Monzani, Mara Gagliardi, Nausicaa Clemente, Valentina Saverio, Elżbieta Pańczyszyn, Claudio Santoro, Nissan Yissachar, Annalisa Visciglia, Marco Pane, Angela Amoruso, Marco Corazzari

Simple Summary IBD is considered a modern and western diet-related disease characterized by uncontrolled immune activation, resulting in chronic bowel inflammation and tissue damage. Although the precise causes of the onset of the disease are still elusive, it seems that both the environment, genetic predisposition and the dysregulation of the intestinal microbiota are actively involved. The development of a model to study the etiopathology of this disease characterized by an increasing incidence in the population is urgently needed. We have recently developed an organ-on-chip system (Gut-Ex-Vivo System, GEVS) to model IBD induced by DNBS in the colon of mice of the BALB/c strain. Here, we provide data demonstrating that the process can also be efficiently induced in mice of another strain, C57BL/6, which is usually less sensitive to this treatment, using our GEVS. Furthermore, we have shown that the system also replicates other characteristics of human pathology, such as the induction of the two most represented cell death pathways responsible for the tissue damage characteristic of IBD. Finally, we demonstrate that our system can be used efficiently to test new therapeutic interventions, such as those based on the use of probiotics. Indeed, we demonstrated the positive impact of both Lactobacilli and Bifidobacteria. Abstract Background: IBD is a spectrum of pathologies characterized by dysregulated immune activation leading to uncontrolled response against the intestine, thus resulting in chronic gut inflammation and tissue damage. Due to its complexity, the molecular mechanisms responsible for …

Show more

Oct 2022 • arXiv preprint arXiv:2210.07732

The identification of mean quantum potential with Fisher information leads to a strong uncertainty relation

Yakov Bloch, Eliahu Cohen

The Cramer-Rao bound, satisfied by classical Fisher information, a key quantity in information theory, has been shown in different contexts to give rise to the Heisenberg uncertainty principle of quantum mechanics. In this paper, we show that the identification of the mean quantum potential, an important notion in Bohmian mechanics, with the Fisher information, leads, through the Cramer-Rao bound, to an uncertainty principle which is stronger, in general, than both Heisenberg and Robertson-Schrodinger uncertainty relations, allowing to experimentally test the validity of such an identification.

Show more

Oct 2022 • Nature communications

RNA export through the nuclear pore complex is directional

Asaf Ashkenazy-Titelman, Mohammad Khaled Atrash, Alon Boocholez, Noa Kinor, Yaron Shav-Tal

The changes occurring in mRNA organization during nucleo-cytoplasmic transport and export, are not well understood. Moreover, directionality of mRNA passage through the nuclear pore complex (NPC) has not been examined within individual NPCs. Here we find that an mRNP is compact during nucleoplasmic travels compared to a more open structure after transcription and at the nuclear periphery. Compaction levels of nuclear transcripts can be modulated by varying levels of SR proteins and by changing genome organization. Nuclear mRNPs are mostly rod-shaped with distant 5'/3'-ends, although for some, the ends are in proximity. The latter is more abundant in the cytoplasm and can be modified by translation inhibition. mRNAs and lncRNAs exiting the NPC exhibit predominant 5’-first export. In some cases, several adjacent NPCs are engaged in export of the same mRNA suggesting 'gene gating' …

Show more

logo
Articali

Powered by Articali

TermsPrivacy