Oct 2023 • 2023 IEEE Nanotechnology Materials and Devices Conference (NMDC), 660-660, 2023
Man Suk Song, Lothar Houben, Nadav Rothem, Xi Wang, Beena Kalisky, Magdalena A Załuska-Kotur, Hyeonhu Bae, Binghai Yan, Ryszard Buczko, Perla Kacman, Haim Beidenkopf, Hadas Shtrikman
Nanowires consisting of Eu 3 In 2 As 4 were grown by MBE using an unconventional method. Eu 3 In 2 P 4 and Eu 3 InEu 3 were suggested to be an example of material with new magnetic Zintl phases already 20 years ago [1]. Recently, a vast selection of newly emerging compounds, in particular compounds based on InAs with the addition of strontium, barium or europium, such as Eu 3 In 2 As 4 have been included into the Zintl family of materials and widely studied [2]. Extensively conducted research showed a large variety of unique magnetic, electronic, and topological properties both in bulk and layers of Zintl materials. Here we present the formation of a Zintl phase obtained for the first time in nanowires. The properties of these nanowires, including their composition, crystal structure and magnetic order, were thoroughly characterized. The experimental study was supported by theoretical simulations related …
Show moreOct 2023 • Chemical Papers
Pola Shriber, Efrat Shawat Avraham, Bibhudatta Malik, Eti Teblum, Olga Girshevitz, Ilana Perelshtein, Michal Ejgenberg, Yossef Gofer, Yana Zubarev, Phillip Nagler, Gilbert Daniel Nessim
The SnS allotrope of tin sulfide can be beneficial for various multifunctional device applications, but its synthesis is a rather challenging task, sometimes requiring the use of toxic materials. In this work, we propose a simple and rapid method to synthesize bulk SnS. We synthesized our material by heating Sn foil with S gas originating from the sublimation of S powder. Our rapid and controllable reaction conditions allow us to obtain solely a single phase of SnS while halting the formation of additional phases. We synthesized our material by placing Sn foil and S powder at different temperatures in a two-furnace chemical vapor deposition system. The S powder was heated to reach sublimation and its vapor was carried by an inert gas flow to the Sn foil, where the reaction occurred between vapor S and liquid Sn (which was heated in the second furnace). We performed a series of experiments with a wide range of …
Show moreOct 2023 • Physical Chemistry of Semiconductor Materials and Interfaces XXII, PC126500Q, 2023
Gil Otis, Matan Benyamin, Yitzhak Mastai, Zeev Zalevsky
In this research we present a novel method to measure local optical dichroism in opaque crystal powder suspensions using the photoacoustic effect. Our method is based upon the laser speckle contrast technique, a novel technique to perform photoacoustic measurements that do not require contact with the sample. The main novelty of our work is the development of a simple statistical approach for measuring the chirality of crystal suspensions using the photoacoustic effect, which does not require arranging the crystals with a specific orientation on surfaces. A model chiral system was used to demonstrate our method, we have used Cobalt doped L-Histidine crystals that are photoacoustic active and established our ability to measure their optical dichroism in solution under completely random orientation.
Show moreOct 2023 • ACS nano
Ming Hu, Hongbo Chen, Hongru Wang, Stanislav Burov, Eli Barkai, Dapeng Wang
In many disordered systems, the diffusion of classical particles is described by a displacement distribution P(x, t) that displays exponential tails instead of Gaussian statistics expected for Brownian motion. However, the experimental demonstration of control of this behavior by increasing the disorder strength has remained challenging. In this work, we explore the Gaussian-to-exponential transition by using diffusion of poly(ethylene glycol) (PEG) in attractive nanoparticle–polymer mixtures and controlling the volume fraction of the nanoparticles. In this work, we find “knobs”, namely nanoparticle concentration and interaction, which enable the change in the shape of P(x,t) in a well-defined way. The Gaussian-to-exponential transition is consistent with a modified large deviation approach for a continuous time random walk and also with Monte Carlo simulations involving a microscopic model of polymer trapping via …
Show moreOct 2023 • 244th ECS Meeting (October 8-12, 2023)
Roman R Kapaev, Amit Ohayon, Masato Sonoo, Malachi Noked
Oct 2023 • ACS Nano
Ming Hu, Hongbo Chen, Hongru Wang, Stanislav Burov, Eli Barkai, Dapeng Wang
Triggering Gaussian-to-Exponential Transition of Displacement Distribution in Polymer Nanocomposites via Adsorption-Induced Trapping | ACS Nano ACS ACS Publications C&EN CAS Find my institution Log In ACS Nano ACS Publications. Most Trusted. Most Cited. Most Read Share Share on Facebook Twitter WeChat Linked In Reddit Email ACS Nano All Publications/Website OR SEARCH CITATIONS My Activity Recently Viewed New Polycyclic Diamine Scaffolds from Dimerization of 3-Alkyl-1,4-dihydropyridines in Acidic Medium. Clinical Translation of Aptamers for COVID-19 Synthesis of an Advanced Intermediate of the Jatrophane Diterpene Pl-4: A Dibromide Coupling Approach Photoelectron Spectroscopic and Theoretical Studies of MmC6F5 Anionic Complexes (M = Pb and Bi; m = 1−4) Thermodynamics and Its Applications, Second Edition (Modell, Michael; Reid, Robert C.) Publications publications my …
Show moreOct 2023 • Materials Today Energy
Bar Gavriel, Gil Bergman, Meital Turgeman, Amey Nimkar, Yuval Elias, Mikhael D Levi, Daniel Sharon, Netanel Shpigel, Doron Aurbach
Large grid energy storage devices are critical for the success of the clean and sustainable energy revolution. As Li-ion batteries are earmarked for electric vehicles and portable devices such as laptops and cellphones, other electrochemical systems should be developed that enable cost-effective, safe, and durable large-scale energy storage. Due to the low cost and non-flammability of aqueous electrolyte solutions, much effort is being put into development of 'beyond-Li' batteries and supercapacitors that can work in these environments. Here, we propose new proton batteries comprising an acetic acid electrolyte solution, NiII[FeIII(CN)6]2/3·4H2O Prussian blue analog cathodes, and Ti3C2Tx MXene anodes. Both electrodes were investigated independently to discover ideal settings for electrochemical performance and stability. Significant attention was given to the cathodes' protons storage mechanism. In-situ …
Show moreOct 2023 • Sensors
Jonathan Philosof, Yevgeny Beiderman, Sergey Agdarov, Yafim Beiderman, Zeev Zalevsky
Water is an invaluable resource quickly becoming scarce in many parts of the world. Therefore, the importance of efficiency in water supply and distribution has greatly increased. Some of the main tools for limiting losses in supply and distribution networks are leakage sensors that enable real-time monitoring. With fiber optics recently becoming a commodity, along with the sound advances in computing power and its miniaturization, multipurpose sensors relying on these technologies have gradually become common. In this study, we explore the development and testing of a multimode optic-fiber-based pipe monitoring and leakage detector based on statistical and machine learning analyses of speckle patterns captured from the fiber’s outlet by a defocused camera. The sensor was placed inside or over a PVC pipe with covered and exposed core configurations, while 2 to 8 mm diameter pipe leaks were simulated under varied water flow and pressure. We found an overall leak size determination accuracy of 75.8% for a 400 µm covered fiber and of 68.3% for a 400 µm exposed fiber and demonstrated that our sensor detected pipe bursts, outside interventions, and shocks. This result was consistent for the sensors fixed inside and outside the pipe with both covered and exposed fibers.
Show moreSep 2023 • Journal of Raman Spectroscopy
Bharathi Rajeswaran, Rajashree Konar, Rena Yitzhari, Gilbert Daniel Nessim, Yaakov Raphael Tischler
Raman spectroscopy in transition metal dichalcogenides (TMDCs) helps determine their structural information and layer dependency. Because it is non‐destructive and fast, it is an archetypal spectroscopic technique to investigate the structure and defects in TMDCs. In our earlier study, we used a metal‐dielectric coating to enhance Raman signal of WS2 because the Raman Spectra measured from WS2 coated on the standard Si/SiO2 was significantly lower. This metal‐dielectric coating allowed access to the otherwise unavailable E12g and A1g modes of WS2. In this study, we compare the Raman spectra of WS2 on a Si/SiO2 to that of metal layers (Au [200 nm] and Al [200 nm]). A significant enhancement in the Raman signal of 2‐3L WS2 is observed for both the Au and Al coatings. Although 200 nm Au coating enhances the Raman Signal better than the 10 nm Au coating, it does not resolve the other …
Show moreSep 2023 • Applied Physics Letters
Gautier Lefebvre, Marc Dubois, Younes Achaoui, Ros Kiri, Mathias Fink, Sébastien Guenneau, Patrick Sebbah
Maxwell's fish-eye is a paradigm for an absolute optical instrument with a refractive index deduced from the stereographic projection of a sphere on a plane. We investigate experimentally the dynamics of flexural waves in a thin plate with a thickness varying according to the Maxwell fish-eye index profile and a clamped boundary. We demonstrate subwavelength focusing and temporal pulse compression at the image point. This is achieved by introducing a sink emitting a cancelling signal optimally shaped using a time-reversal procedure. Perfect absorption and outward going wave cancellation at the focus point are demonstrated. The time evolution of the kinetic energy stored inside the cavity reveals that the sink absorbs energy out of the plate ten times faster than the natural decay rate.All rays originating from any object point meet again at a single image point. This definition of an absolute optical instrument has …
Show moreSep 2023 • ACS Catalysis
Hyunah Kwon, Hannah-Noa Barad, Alex Ricardo Silva Olaya, Mariana Alarcón-Correa, Kersten Hahn, Gunther Richter, Gunther Wittstock, Peer Fischer
Nanoporous gold (Au) films are self-supported structures that possess a large surface area and extraordinary catalytic activity. Generally, nanoporous gold is obtained by solution-based dealloying where the less noble metal, often silver (Ag), is etched out. However, the residual amounts of the sacrificial metal are not well controlled, the impure samples show restructuring, and the residual metal prevents the study of the catalytic role of Au alone. Here, we fabricate impurity-free nanoporous gold films by a plasma-enabled dry synthetic route. The scheme does not include sacrificial metals or solution processing and is much more general. It is used to obtain self-supported ultra-pure nanoporous gold films with controllable pore sizes. The impurity-free nanoporous gold films possess highly curved ligaments, are remarkably robust, and stable over hundreds of electrochemical cycles. Furthermore, they contain many …
Show moreSep 2023 • Physical Review E
Marc Höll, Alon Nissan, Brian Berkowitz, Eli Barkai
First-passage time statistics in disordered systems exhibiting scale invariance are studied widely. In particular, long trapping times in energy or entropic traps are fat-tailed distributed, which slow the overall transport process. We study the statistical properties of the first-passage time of biased processes in different models, and we employ the big-jump principle that shows the dominance of the maximum trapping time on the first-passage time. We demonstrate that the removal of this maximum significantly expedites transport. As the disorder increases, the system enters a phase where the removal shows a dramatic effect. Our results show how we may speed up transport in strongly disordered systems exploiting scale invariance. In contrast to the disordered systems studied here, the removal principle has essentially no effect in homogeneous systems; this indicates that improving the conductance of a poorly …
Show moreSep 2023 • Electrochimica Acta
Akanksha Gupta, Hari Krishna Sadhanala, Aharon Gedanken
The seawater electrolysis is an economically favorable approach for water splitting application because seawater is one of the plentiful abundant natural resources on our earth. In water splitting pathway, the anodic half-cell reaction from seawater stills a challenging task due to anodic corrosion and the competitive chloride oxidation process. In the current study, we prepared flower-shaped porous nanorods of iron doped cobalt nickel layered double hydroxide supported on nickel foam (Fe0.05 CoNi LDH/NF), which require very less oxygen evolution reaction (OER) overpotential in 1M KOH (212 mV) and alkaline seawater (287 mV) to deliver 10 mAcm−2 current density and exhibited remarkable 14 h durability. At the same time, post treated sample reveals the better OER activity after chronopotentiometry analysis, because of superior conductivity and corrosion-resistance of the electrocatalyst. The doping of Fe …
Show moreSep 2023 • Journal of The Electrochemical Society
Ben Dlugatch, Janina Drews, Ran Attias, Bar Gavriel, Adar Ambar, Timo Danner, Arnulf Latz, Doron Aurbach
One of the major issues in developing electrolyte solutions for rechargeable magnesium batteries is understanding the positive effect of chloride anions on Mg deposition-dissolution processes on the anode side, as well as intercalation-deintercalation of Mg 2+ ions on the cathode side. Our previous results suggested that Cl− ions are adsorbed on the surface of Mg anodes and Chevrel phase Mg x Mo 6 S 8 cathodes. This creates a surface add-layer that reduces the activation energy for the interfacial Mg ions transportation and related charge transfer, as well as promotes the transport of Mg 2+ from the solution phase to the Mg anode surface and into the cathodes' host materials. Here, this work further examines the effect of adding chlorides to the state-of-the-art Mg [B (HFIP) 4] 2/DME electrolyte solution, specifically focusing on reversible magnesium deposition, as well as the performance of Mg cells with …
Show moreSep 2023 • Energy Storage Materials, 103001, 2023
Rajashree Konar, Sandipan Maiti, Netanel Shpigel, Doron Aurbach
Lithium cobalt oxide (LiCoO2 or LCO) is undoubtedly one of the best commercial cathode materials for Lithium-ion batteries (LIBs). High energy density, excellent cycle life, and long-term reliability make it most attractive for the growing electronics market. The working voltages in LCO have been raised to achieve greater energy density that can fulfill fast charging and portable electronics consumer needs. Yet, charging beyond 4.4V inevitably decreases the cathode stability, resulting in poor performance. Several factors cause operational issues in LCO at high voltages, particularly surface degradation, unfavorable side reactions, and irreversible phase transitions. These detrimental phenomena are aggravated by the increased charging voltage, leading to rapid capacity decay and early cell failure. Our review summarizes the failure mechanisms and mitigation strategies adopted recently to stabilize LCO at high …
Show moreSep 2023 • ACS Applied Optical Materials
Tal Raviv, Nadav Shabairou, Ariel Roitman, Abhijit Sanjeev, Vismay Trivedi, Moshe Sinvani, Zeev Zalevsky
Increasing speeds of fiber-optics-based telecommunications, along with a large bandwidth of data processed in data centers, have focused attention on high-speed and bandwidth optical digital information processing. Optical processing requires high-density, high-speed, and low-power optical memory that can be integrated easily with planar semiconductor technology. The concept of optical memory has lent a novel perspective to optical domain data storage. We present our approach to creating nonvolatile optical memory based on the scattering field from gold nanoparticles. In our approach, data storage is based on the fabrication of gold nanoparticles in different spatial configurations. Reading of the stored data is achieved by analyzing the scattering image from each configuration.
Show moreSep 2023 • Journal of Cosmetics, Dermatological Sciences and Applications
Rachel Lubart, Inbar Yariv, Dror Fixler, Ayelet Rothstein, Arie Gruzman, Anat Lipovsky
Objective Hemp seed oil is perfect for most skin types; it moisturizes skin and protects it from inflammation, oxidation, and other causes of aging. The problem is that the Hemp oil-based products do not penetrate the skin; they remain on the skin’s surface. Recently researchers have been trying to prepare nano emulsions of hemp oil to facilitate its permeation to deep skin layers. In all techniques used today, surfactants are added to the emulsification process. These surfactants may cause unwanted skin side effects. In the present study, we prepare micronized Hemp (m-Hemp) without using any surfactants in the micronization process, thus avoiding the side effects associated with surfactant addition. Methods & Results Particles size of m-Hemp was evaluated using electron microscopy. Various sizes of m-Hemp were found, the smallest being 100 nm in diameter. The antioxidation properties of m-Hemp were measured using the Electron Spin Resonance (ESR) technique and were found to be enhanced. Skin topography and morphology following a cream containing m-Hemp treatment were visualized by Optical Profilometry and ESEM respectively. The results show a marked improvement in skin topography in all measured parameters. In addition, human keratinocytes (HaCaT) were exposed to inflammatory conditions and were then treated using Hemp. As a result, one of the key inflammatory factors (IL-2) was significantly reduced after treatment with m-Hemp (p ≤ 0.0001). The skin penetration of the cream containing m-Hemp was tested on human skin using the IMOPE (Iterative Multi-plane Optical Property Extraction) system. The results …
Show moreSep 2023 • Angewandte Chemie (International ed. in English)
Amey Nimkar, Khorsed Alam, Gil Bergman, Mikhael D Levi, Dan Thomas Major, Netanel Shpigel, Doron Aurbach
The introduction of the water‐in‐salt (WIS) concept, using highly concentrated electrolyte solutions to prevent water splitting and widen the electrochemical stability window, has greatly influenced modern aqueous batteries. The successful implementation of these electrolyte solutions in many electrochemical systems shifts the focus from diluted to WIS electrolyte solutions. Considering the high costs and the tendency of these nearly saturated solutions to crystallize, this trend can be carefully re‐evaluated. Herein we show that the stability of organic electrodes comprising the active material perylene‐3,4,9,10‐tetracarboxylic dianhydride (PTCDA), is strongly influenced by the solvation character of the anions rather than the concentration of the electrolyte solution. Even though the charging process of PTCDA involves solely insertion of cations (i.e., principal counter‐ions), surprisingly, the dominant factor influencing its …
Show moreSep 2023 • Journal of Vacuum Science & Technology B
Irit Rosenhek-Goldian, David Cahen, Sidney R Cohen
The class of materials termed halide perovskites has experienced a meteoric rise in popularity due to their potential for photovoltaic and related applications, rivaling the well-established silicon devices within a few short years of development. These materials are characterized by several intriguing properties, among them their mechanical behavior. The study of their response to stress is essential for proper device development, while being of fundamental scientific interest in its own right. In this perspective, we highlight the key concerns surrounding this topic, critically analyzing the measurement techniques and considering the challenges in the current level of understanding.
Show moreSep 2023 • 2023 IEEE 33rd International Workshop on Machine Learning for Signal …, 2023
Tal Kiani, Avi Caciularu, Shani Zev, Dan Thomas Major, Jacob Goldberger
Sep 2023 • Journal of Raman Spectroscopy
Bharathi Rajeswaran, Rajashree Konar, Rena Yitzhari, Gilbert Daniel Nessim, Yaakov Raphael Tischler
Raman spectroscopy in transition metal dichalcogenides (TMDCs) helps determine their structural information and layer dependency. Because it is non‐destructive and fast, it is an archetypal spectroscopic technique to investigate the structure and defects in TMDCs. In our earlier study, we used a metal‐dielectric coating to enhance Raman signal of WS2 because the Raman Spectra measured from WS2 coated on the standard Si/SiO2 was significantly lower. This metal‐dielectric coating allowed access to the otherwise unavailable E12g and A1g modes of WS2. In this study, we compare the Raman spectra of WS2 on a Si/SiO2 to that of metal layers (Au [200 nm] and Al [200 nm]). A significant enhancement in the Raman signal of 2‐3L WS2 is observed for both the Au and Al coatings. Although 200 nm Au coating enhances the Raman Signal better than the 10 nm Au coating, it does not resolve the other …
Show more