Oct 2023 • ACS Nano
Ming Hu, Hongbo Chen, Hongru Wang, Stanislav Burov, Eli Barkai, Dapeng Wang
Triggering Gaussian-to-Exponential Transition of Displacement Distribution in Polymer Nanocomposites via Adsorption-Induced Trapping | ACS Nano ACS ACS Publications C&EN CAS Find my institution Log In ACS Nano ACS Publications. Most Trusted. Most Cited. Most Read Share Share on Facebook Twitter WeChat Linked In Reddit Email ACS Nano All Publications/Website OR SEARCH CITATIONS My Activity Recently Viewed New Polycyclic Diamine Scaffolds from Dimerization of 3-Alkyl-1,4-dihydropyridines in Acidic Medium. Clinical Translation of Aptamers for COVID-19 Synthesis of an Advanced Intermediate of the Jatrophane Diterpene Pl-4: A Dibromide Coupling Approach Photoelectron Spectroscopic and Theoretical Studies of MmC6F5 Anionic Complexes (M = Pb and Bi; m = 1−4) Thermodynamics and Its Applications, Second Edition (Modell, Michael; Reid, Robert C.) Publications publications my …
Show moreOct 2023 • Nature Nanotechnology
Longlong Wang, Ayan Mukherjee, Chang-Yang Kuo, Sankalpita Chakrabarty, Reut Yemini, Arrelaine A Dameron, Jaime W DuMont, Sri Harsha Akella, Arka Saha, Sarah Taragin, Hagit Aviv, Doron Naveh, Daniel Sharon, Ting-Shan Chan, Hong-Ji Lin, Jyh-Fu Lee, Chien-Te Chen, Boyang Liu, Xiangwen Gao, Suddhasatwa Basu, Zhiwei Hu, Doron Aurbach, Peter G Bruce, Malachi Noked
A critical current challenge in the development of all-solid-state lithium batteries (ASSLBs) is reducing the cost of fabrication without compromising the performance. Here we report a sulfide ASSLB based on a high-energy, Co-free LiNiO2 cathode with a robust outside-in structure. This promising cathode is enabled by the high-pressure O2 synthesis and subsequent atomic layer deposition of a unique ultrathin LixAlyZnzOδ protective layer comprising a LixAlyZnzOδ surface coating region and an Al and Zn near-surface doping region. This high-quality artificial interphase enhances the structural stability and interfacial dynamics of the cathode as it mitigates the contact loss and continuous side reactions at the cathode/solid electrolyte interface. As a result, our ASSLBs exhibit a high areal capacity (4.65 mAh cm−2), a high specific cathode capacity (203 mAh g−1), superior cycling stability (92% capacity retention …
Show moreOct 2023 • Physical Chemistry of Semiconductor Materials and Interfaces XXII, PC126500Q, 2023
Gil Otis, Matan Benyamin, Yitzhak Mastai, Zeev Zalevsky
In this research we present a novel method to measure local optical dichroism in opaque crystal powder suspensions using the photoacoustic effect. Our method is based upon the laser speckle contrast technique, a novel technique to perform photoacoustic measurements that do not require contact with the sample. The main novelty of our work is the development of a simple statistical approach for measuring the chirality of crystal suspensions using the photoacoustic effect, which does not require arranging the crystals with a specific orientation on surfaces. A model chiral system was used to demonstrate our method, we have used Cobalt doped L-Histidine crystals that are photoacoustic active and established our ability to measure their optical dichroism in solution under completely random orientation.
Show moreOct 2023 • Colloids and Interfaces
Akmaral B Rakhym, Zarina Ye Baranchiyeva, Aruzhan K Kenessova, Bagashar B Zhaksybai, Diana N Dauzhanova, Yitzhak Mastai, Gulziya A Seilkhanova
Silicate mineral powders (SMP) from weathered granite soil from Kazakhstan are proposed for the desalination of potash brines containing sodium, potassium and chloride ions. Batch adsorption experiments using acid-treated silicate (AS) achieved a Na+/K+/Cl− recovery of ~13/28/6 mg/g. An isothermal study best fitted the Freundlich and Dubinin–Radushkevich models for Na+ and K+/Cl−. The kinetic data were best modeled by pseudo-second-order kinetics for Na+/K+ and pseudo-first-order for Cl−. Thermodynamic calculations showed spontaneity under natural conditions. For Na+/K+, physisorption is accompanied by ion exchange. To study the possibility of sorbent reuse, several cycles of K+/Na+ adsorption–desorption were carried out under optimal conditions. AS selectively adsorbed potassium ions, maintaining a high effectiveness during five cycles providing K-form silicate fertilizers. Leachates of spent AS contain high concentrations of K/Na/Ca/Mg and other microelements essential for plants. Thus, SMP resolve two issues: the desalination of brine and the provision of fertilizer.
Show moreOct 2023 • arXiv preprint arXiv:2310.02722
MN Jayakody, Priodyuti Pradhan, Dana Ben Porath, E Cohen
Multilayer network is a potent platform which paves a way to study the interactions among entities in various networks with multiple types of relationships. In this study, the dynamics of discrete-time quantum walk on a multilayer network are explored in detail. We derive recurrence formulae for the coefficients of the wave function of a quantum walker on an undirected graph with finite number of nodes. By extending these formulae to include extra layers, we develop a simulation model to describe the time-evolution of the quantum walker on a multilayer network. The time-averaged probability and the return probability of the quantum walker are studied in relation to Fourier and Grover walks on multilayer networks. Furthermore, we analyze the impact of decoherence on the quantum transport, shedding light on how environmental interactions may impact the behavior of quantum walkers on multilayer network structures.
Show moreOct 2023 • Nature Communications
Daniel Allen, Orli Knop, Bryan Itkowitz, Nechama Kalter, Michael Rosenberg, Ortal Iancu, Katia Beider, Yu Nee Lee, Arnon Nagler, Raz Somech, Ayal Hendel
RAG2-SCID is a primary immunodeficiency caused by mutations in Recombination-activating gene 2 (RAG2), a gene intimately involved in the process of lymphocyte maturation and function. ex-vivo manipulation of a patient’s own hematopoietic stem and progenitor cells (HSPCs) using CRISPR-Cas9/rAAV6 gene editing could provide a therapeutic alternative to the only current treatment, allogeneic hematopoietic stem cell transplantation (HSCT). Here we show an innovative RAG2 correction strategy that replaces the entire endogenous coding sequence (CDS) for the purpose of preserving the critical endogenous spatiotemporal gene regulation and locus architecture. Expression of the corrective transgene leads to successful development into CD3+TCRαβ+ and CD3+TCRγδ+ T cells and promotes the establishment of highly diverse TRB and TRG repertoires in an in-vitro T-cell differentiation platform. Thus, our …
Show moreOct 2023 • Chemistry of Materials
Amreen Bano, Malachi Noked, Dan Thomas Major
Ni-rich, Co-free layered oxide cathode materials are promising candidates for next-generation Li-ion batteries due to their high energy density. However, these cathode materials suffer from rapid capacity fading during electrochemical cycling. To overcome this shortcoming, so-called high-entropy (HE) materials, which are obtained by incorporating multiple dopants, have been suggested. Recent experimental work has shown that HE Ni-rich cathode materials can offer excellent capacity retention on cycling, although a thorough rationale for this has yet to be provided. Here, we present classical and first-principles calculations to elucidate the salient features of HE layered oxides as cathode materials in Li-ion batteries. We suggest that a combination of five prime factors may be responsible for the enhanced performance of HE Ni-rich layered oxide cathode materials over other Ni-rich cathodes: (1) low crystal lattice …
Show moreOct 2023 • ACS Applied Bio Materials
Shweta Pawar, Hamootal Duadi, Moran Friedman Gohas, Yoram Cohen, Dror Fixler
When exposed to specific light wavelengths, carbon dots (CDs), which tend to be fluorescent, can emit colorful light. It provides them with a lot of adaptability for different applications including bioimaging, optoelectronics, and even environmental sensing. Poly(ethylenimine) (PEI) coated carbon dots (PEI-CDs) with a long emission wavelength were synthesized via the hydrothermal method. The resultant CDs show strong fluorescence with quantum yield up to 20.2%. The PEI-CDs exist with distinct pH-sensitive features with pH values in the range of 2–14. The optical characteristics of CDs are pH-responsive due to the presence of different amine groups on PEI, which is a functional polycationic polymer. One of the most widely employed nanoparticles for improving the fluorescence plasmonic characteristics of a nanocomposite is gold. Gold nanoparticles were coupled with PEI-CDs in this assay by using the EDC …
Show moreOct 2023 • Journal of Energy Storage
Michael Küttinger, Kobby Saadi, Théo Faverge, Nagaprasad Reddy Samala, Ilya Grinberg, David Zitoun, Peter Fischer
1-n-Hexylpyridin-1-ium bromide [C6Py]Br is investigated in this work as bromine complexing agent (BCA) in aqueous bromine electrolytes on its influence on hydrogen bromine redox flow battery (H2/Br2-RFB) performance. [C6Py]+-cations bind bromine of aqueous polybromide solutions safely in an additional fused salt phase limiting the vapor pressure of Br2. Dissolved in aqueous electrolyte solutions, however, [BCA]+ cations drastically lower PFSA membranes' conductivity in the H2/Br2-RFB. In this work the combination of the very strong bromine-binding [C6Py]+cation and an excess of bromine in the electrolyte lead to an almost complete absorption of 99.6 mol% [C6Py]+ into the fused salt within the electrolyte's operation range. In comparison to similar application of short side chain 1-ethylpyridinium bromide, adverse effects are stronger compensated by use of [C6Py]Br. Increases in membrane resistance of …
Show moreOct 2023 • Nano Letters
Sukanta Nandi, Shany Z Cohen, Danveer Singh, Michal Poplinger, Pilkhaz Nanikashvili, Doron Naveh, Tomer Lewi
Topological insulators are materials characterized by an insulating bulk and high mobility topologically protected surface states, making them promising candidates for future optoelectronic and quantum devices. Although their electronic properties have been extensively studied, their mid-infrared (MIR) properties and prospective photonic capabilities have not been fully uncovered. Here, we use a combination of far-field and near-field nanoscale imaging and spectroscopy to study chemical vapor deposition-grown Bi2Se3 nanobeams (NBs). We extract the MIR optical constants of Bi2Se3, revealing refractive index values as high as n ∼ 6.4, and demonstrate that the NBs support Mie resonances across the MIR. Local near-field reflection phase mapping reveals domains of various phase shifts, providing information on the local optical properties of the NBs. We experimentally measure up to 2π phase-shift across the …
Show moreOct 2023 • ACS nano
Tom Naor, Shira Gigi, Nir Waiskopf, Gila Jacobi, Sivan Shoshani, Doron Kam, Shlomo Magdassi, Ehud Banin, Uri Banin
Nanocomposites are constructed from a matrix material combined with dispersed nanosized filler particles. Such a combination yields a powerful ability to tailor the desired mechanical, optical, electrical, thermodynamic, and antimicrobial material properties. Colloidal semiconductor nanocrystals (SCNCs) are exciting potential fillers, as they display size-, shape-, and composition-controlled properties and are easily embedded in diverse matrices. Here we present their role as quantum photoinitiators (QPIs) in acrylate-based polymer, where they act as a catalytic radical initiator and endow the system with mechanical, photocatalytic, and antimicrobial properties. By utilizing ZnO nanorods (NRs) as QPIs, we were able to increase the tensile strength and elongation at break of poly(ethylene glycol) diacrylate (PEGDA) hydrogels by up to 85%, unlike the use of the same ZnO NRs acting merely as fillers. Simultaneously …
Show moreOct 2023 • Nano Letters
Sukanta Nandi, Shany Z Cohen, Danveer Singh, Michal Poplinger, Pilkhaz Nanikashvili, Doron Naveh, Tomer Lewi
Topological insulators are materials characterized by an insulating bulk and high mobility topologically protected surface states, making them promising candidates for future optoelectronic and quantum devices. Although their electronic properties have been extensively studied, their mid-infrared (MIR) properties and prospective photonic capabilities have not been fully uncovered. Here, we use a combination of far-field and near-field nanoscale imaging and spectroscopy to study chemical vapor deposition-grown Bi2Se3 nanobeams (NBs). We extract the MIR optical constants of Bi2Se3, revealing refractive index values as high as n ∼ 6.4, and demonstrate that the NBs support Mie resonances across the MIR. Local near-field reflection phase mapping reveals domains of various phase shifts, providing information on the local optical properties of the NBs. We experimentally measure up to 2π phase-shift across the …
Show moreOct 2023 • Chemistry of Materials
Amreen Bano, Malachi Noked, Dan Thomas Major
Ni-rich, Co-free layered oxide cathode materials are promising candidates for next-generation Li-ion batteries due to their high energy density. However, these cathode materials suffer from rapid capacity fading during electrochemical cycling. To overcome this shortcoming, so-called high-entropy (HE) materials, which are obtained by incorporating multiple dopants, have been suggested. Recent experimental work has shown that HE Ni-rich cathode materials can offer excellent capacity retention on cycling, although a thorough rationale for this has yet to be provided. Here, we present classical and first-principles calculations to elucidate the salient features of HE layered oxides as cathode materials in Li-ion batteries. We suggest that a combination of five prime factors may be responsible for the enhanced performance of HE Ni-rich layered oxide cathode materials over other Ni-rich cathodes: (1) low crystal lattice …
Show moreOct 2023 • Springer Handbook of Aerogels, 1189-1210, 2023
Racheli Ron, Adi Salomon
Since the pioneering set of aerogels created by Kistler in 1931, this fascinating class of materials has evoked a myriad of scientific and technological possibilities and inspired an ever-growing and diverse research community. Within each aerogel lies an inner nanonetworked solid architecture that imparts it with novel physical and chemical properties; hence, scientists have continued to seek synthetic routes for preparing aerogels of an ever-widening variety of substances, including inorganic oxides, synthetic and biological polymers, metal chalcogenides, and, recently, metals. Metal aerogels in particular combine the unique catalytic, electrical, optical, and chemical functionalities of metals with the high surface area, high porosity, and low density typified by aerogel architectures. However, preparation of metallic aerogels via traditional sol–gel synthesis and supercritical drying is challenging, highly dependent on …
Show moreOct 2023 • Scientific Reports
Viktor Vorobev, David Weidmann, Sergey Agdarov, Yafim Beiderman, Nadav Shabairou, Matan Benyamin, Florian Klämpfl, Michael Schmidt, Dmitry Gorin, Zeev Zalevsky
This paper presents an approach for achieving full optical photoacoustic imaging with enhanced resolution utilizing speckle pattern analysis. The proposed technique involves projecting patterns derived from binary masks corresponding to orthogonal functions onto the target to elicit a photoacoustic signal. The resulting signal is then recorded using a high-speed camera and analyzed using correlation analysis of the speckle motion. Our results demonstrate the feasibility of this optical approach to achieve imaging with enhanced resolution without the need for physical contact with the target, opening up new possibilities for non-invasive medical imaging and other applications.
Show moreOct 2023 • Angewandte Chemie International Edition
Adi Azoulay, Sapir Shekef Aloni, Lidan Xing, Ayelet Tashakory, Yitzhak Mastai, Menny Shalom
The facile synthesis of chiral materials is of paramount importance for various applications. Supramolecular preorganization of monomers for thermal polymerization has been proven as an effective tool to synthesize carbon and carbon nitride‐based (CN) materials with ordered morphology and controlled properties. However, the transfer of an intrinsic chemical property, such as chirality from supramolecular assemblies to the final material after thermal condensation, was not shown. Here, we report the large‐scale synthesis of chiral CN materials capable of enantioselective recognition. To achieve this, we designed supramolecular assemblies with a chiral center that remains intact at elevated temperatures. The optimized chiral CN demonstrates an enantiomeric preference of ca. 14 %; CN electrodes were also prepared and show stereoselective interactions with enantiomeric probes in electrochemical …
Show moreOct 2023 • arXiv preprint arXiv:2210.10935
Lucianno Defaveri, Eli Barkai, David A Kessler
We study the motion of an overdamped particle connected to a thermal heat bath in the presence of an external periodic potential. When the coarse-graining is larger than the periodicity of the potential, the packet of spreading particles, all starting from a common origin, converges to a normal distribution centered at the origin with a mean-squared displacement that grows like , with an effective diffusion constant that is smaller than that of a freely diffusing particle. We examine the interplay between this coarse-grained description and the fine structure of the density, which is given by the Boltzmann-Gibbs factor , the latter being non-normalizable. We explain this result and construct a theory of observables using the Fokker-Planck equation. These observables are classified as those that are related to the BG fine structure, like the energy or occupation times, while others, like the positional moments, for long times, converge to those of the large-scale description. Entropy falls into a special category as it has a coarse-grained and a fine structure description. The basic thermodynamic formula is extended to this far from equilibrium system. The ergodic properties are also studied using tools from infinite ergodic theory.
Show moreOct 2023 • 244th ECS Meeting (October 8-12, 2023)
Malachi Noked
Sep 2023 • Journal of Raman Spectroscopy
Bharathi Rajeswaran, Rajashree Konar, Rena Yitzhari, Gilbert Daniel Nessim, Yaakov Raphael Tischler
Raman spectroscopy in transition metal dichalcogenides (TMDCs) helps determine their structural information and layer dependency. Because it is non‐destructive and fast, it is an archetypal spectroscopic technique to investigate the structure and defects in TMDCs. In our earlier study, we used a metal‐dielectric coating to enhance Raman signal of WS2 because the Raman Spectra measured from WS2 coated on the standard Si/SiO2 was significantly lower. This metal‐dielectric coating allowed access to the otherwise unavailable E12g and A1g modes of WS2. In this study, we compare the Raman spectra of WS2 on a Si/SiO2 to that of metal layers (Au [200 nm] and Al [200 nm]). A significant enhancement in the Raman signal of 2‐3L WS2 is observed for both the Au and Al coatings. Although 200 nm Au coating enhances the Raman Signal better than the 10 nm Au coating, it does not resolve the other …
Show moreSep 2023 • Nature Communications
Harsh Vashistha, Joanna Jammal-Touma, Kulveer Singh, Yitzhak Rabin, Hanna Salman
The timing of cell division, and thus cell size in bacteria, is determined in part by the accumulation dynamics of the protein FtsZ, which forms the septal ring. FtsZ localization depends on membrane-associated Min proteins, which inhibit FtsZ binding to the cell pole membrane. Changes in the relative concentrations of Min proteins can disrupt FtsZ binding to the membrane, which in turn can delay cell division until a certain cell size is reached, in which the dynamics of Min proteins frees the cell membrane long enough to allow FtsZ ring formation. Here, we study the effect of Min proteins relative expression on the dynamics of FtsZ ring formation and cell size in individual Escherichia coli bacteria. Upon inducing overexpression of minE, cell size increases gradually to a new steady-state value. Concurrently, the time required to initiate FtsZ ring formation grows as the size approaches the new steady-state, at which point …
Show moreSep 2023 • Journal of Power Sources 579, 233312, 2023
Naresh Vangapally, Tirupathi Rao Penki, Yuval Elias, Sadananda Muduli, Satyanarayana Maddukuri, Shalom Luski, Doron Aurbach, Surendra Kumar Martha
Lead-acid systems dominate the global market owing to simple technology, easy fabrication, availability, and mature recycling processes. However, the sulfation of negative lead electrodes in lead-acid batteries limits its performance to less than 1000 cycles in heavy-duty applications. Incorporating activated carbons, carbon nanotubes, graphite, and other allotropes of carbon and compositing carbon with metal oxides into the negative active material significantly improves the overall health of lead-acid batteries. Carbons play a vital role in advancing the properties of lead-acid batteries for various applications, including deep depth of discharge cycling, partial state-of-charge, and high-rate partial state-of-charge cycling. Therefore, lead-carbon hybrid batteries and supercapacitor systems have been developed to enhance energy-power density and cycle life. This review article provides an overview of lead-acid …
Show more