Sep 2023 • arXiv preprint arXiv:2209.00480
Ismael L Paiva, Pedro R Dieguez, Renato M Angelo, Eliahu Cohen
The Aharonov-Bohm effect is a fundamental topological phenomenon with a wide range of applications. It consists of a charge encircling a region with a magnetic flux in a superposition of wavepackets having their relative phase affected by the flux. In this work, we analyze this effect using an entropic measure known as realism, originally introduced as a quantifier of a system's degree of reality and mathematically related to notions of global and local quantum coherence. More precisely, we look for observables that lead to gauge-invariant realism associated with the charge before it completes its loop. We find that the realism of these operators has a sudden change when the line connecting the center of both wavepackets crosses the solenoid. Moreover, we consider the case of a quantized magnetic field source, pointing out similarities and differences between the two cases. Finally, we discuss the implications of these results to the understanding of the effect.
Show moreSep 2023 • Journal of Raman Spectroscopy
Bharathi Rajeswaran, Rajashree Konar, Rena Yitzhari, Gilbert Daniel Nessim, Yaakov Raphael Tischler
Raman spectroscopy in transition metal dichalcogenides (TMDCs) helps determine their structural information and layer dependency. Because it is non‐destructive and fast, it is an archetypal spectroscopic technique to investigate the structure and defects in TMDCs. In our earlier study, we used a metal‐dielectric coating to enhance Raman signal of WS2 because the Raman Spectra measured from WS2 coated on the standard Si/SiO2 was significantly lower. This metal‐dielectric coating allowed access to the otherwise unavailable E12g and A1g modes of WS2. In this study, we compare the Raman spectra of WS2 on a Si/SiO2 to that of metal layers (Au [200 nm] and Al [200 nm]). A significant enhancement in the Raman signal of 2‐3L WS2 is observed for both the Au and Al coatings. Although 200 nm Au coating enhances the Raman Signal better than the 10 nm Au coating, it does not resolve the other …
Show moreSep 2023 • arXiv preprint arXiv:2209.11760
Kun Tang, Eitam Luz, David Amram, Luna Kadysz, Sebastien Guenneau, Patrick Sebbah
Invisibility cloaks for flexural waves have been mostly examined in the continuous-wave regime, while invisibility is likely to deteriorate for short pulses. Here, we propose the practical realization of a unidirectional invisibility cloak for flexural waves based on an area-preserving coordinate transformation. Time-resolved experiments reveal how the invisibility cloak deviates a pulsed plane-wave from its initial trajectory, and how the initial wavefront perfectly recombines behind the cloak, leaving the diamond-shaped hole invisible, notwithstanding the appearance of a forerunner. Three-dimensional full-elasticity simulations support our experimental observations.
Show moreSep 2023 • ACS Catalysis
Hyunah Kwon, Hannah-Noa Barad, Alex Ricardo Silva Olaya, Mariana Alarcón-Correa, Kersten Hahn, Gunther Richter, Gunther Wittstock, Peer Fischer
Nanoporous gold (Au) films are self-supported structures that possess a large surface area and extraordinary catalytic activity. Generally, nanoporous gold is obtained by solution-based dealloying where the less noble metal, often silver (Ag), is etched out. However, the residual amounts of the sacrificial metal are not well controlled, the impure samples show restructuring, and the residual metal prevents the study of the catalytic role of Au alone. Here, we fabricate impurity-free nanoporous gold films by a plasma-enabled dry synthetic route. The scheme does not include sacrificial metals or solution processing and is much more general. It is used to obtain self-supported ultra-pure nanoporous gold films with controllable pore sizes. The impurity-free nanoporous gold films possess highly curved ligaments, are remarkably robust, and stable over hundreds of electrochemical cycles. Furthermore, they contain many …
Show moreSep 2023 • Journal of The Electrochemical Society
Ortal Breuer, Gayathri Peta, Yuval Elias, Hadas Alon-Yehezkel, Yu-Ting Weng, Miryam Fayena-Greenstein, Nae-Lih Wu, Mikhael D Levi, Doron Aurbach
Composite solid electrolytes with ceramic particles dispersed in a polymer matrix are considered a correct choice for all-solid-state batteries. These electrolytes balance the high ionic conductivity of superionic-ceramic conductors and the elasticity of polymers. Here, Li|| LiFePO 4 batteries with 30 wt% of LATP embedded in PEO 20: LiTFSI show superior performance at elevated temperature. After∼ 150 cycles, cells retained 84% of their original capacity compared to only 51% for batteries with no additive. At 5 C cells demonstrate 43% higher capacity. In symmetric cells with blocking and non-blocking electrodes and all-solid-state batteries LATP lowers the impedance of the electrode-electrolyte interface ensuring cycling stability. LATP improves performance by stabilization of the cathode-electrolyte interface, apparently the major contributor to the cell impedance.
Show moreSep 2023 • Journal of Physics B: Atomic, Molecular and Optical Physics
Ori Licht, Maria Nihamkin, Mirit Anaby, Patrick Rousseau, Alexandre Giuliani, Aleksandar Milosavljevic, Raj Singh, Vy Nguyen, Laurent Nahon, Yoni Toker
In a recent work, we have shown that photon absorption can cause a chemical bond to be created between the two monomers within a protonated serine dimer, a process known as intra-cluster bond formation (ICBF), despite this process not occurring following thermal excitation via low energy collision-induced dissociation (LE-CID). Here we show further evidence for non-statistical photon-induced dissociation (PID) of the protonated serine dimer. In addition we discuss LE-CID and PID studies of the protonated serine octamer, showing that in this case as well, PID leads to non-statistical fragmentation and to the formation of two bonds between three neighboring monomers.
Show moreSep 2023 • 2023 48th International Conference on Infrared, Millimeter, and Terahertz …, 2023
S Levy, N Lander Gower, S Piperno, SJ Addamane, JL Reno, A Albo
We present a novel terahertz quantum cascade laser (THz QCL) scheme supporting a clean four-level system, ‘four’ being the number of the active laser states, as verified by the negative differential resistance (NDR) observed all the way up to room temperature. In this study, we analyze and discuss the temperature performance of this new design. Experimental as well as theoretical work was performed to analyze the effects of the doping density as well as the impact of the different scattering mechanisms.
Show moreSep 2023 • arXiv preprint arXiv:2309.13197
NJ Hartley, D Hodge, T Buckway, R Camacho, P Chow, E Christie, A Gleason, S Glenzer, A Halavanau, AM Hardy, C Recker, S Sheehan, S Shwartz, H Tarvin, M Ware, J Wunschel, Y Xiao, RL Sandberg, G Walker
We present measurements of X-ray Parametric Down Conversion at the Advanced Photon Source synchrotron facility. We use an incoming pump beam at 22 keV to observe the simultaneous, elastic emission of down-converted photon pairs generated in a diamond crystal. The pairs are detected using high count rate silicon drift detectors with low noise. Production by down-conversion is confirmed by measuring time-energy correlations in the detector signal, where photon pairs within an energy window ranging from 10 to 12 keV are only observed at short time differences. By systematically varying the crystal misalignment and detector positions, we obtain results that are consistent with the constant total of the down-converted signal.
Show moreSep 2023 • Electrochimica Acta
Akanksha Gupta, Hari Krishna Sadhanala, Aharon Gedanken
The seawater electrolysis is an economically favorable approach for water splitting application because seawater is one of the plentiful abundant natural resources on our earth. In water splitting pathway, the anodic half-cell reaction from seawater stills a challenging task due to anodic corrosion and the competitive chloride oxidation process. In the current study, we prepared flower-shaped porous nanorods of iron doped cobalt nickel layered double hydroxide supported on nickel foam (Fe0.05 CoNi LDH/NF), which require very less oxygen evolution reaction (OER) overpotential in 1M KOH (212 mV) and alkaline seawater (287 mV) to deliver 10 mAcm−2 current density and exhibited remarkable 14 h durability. At the same time, post treated sample reveals the better OER activity after chronopotentiometry analysis, because of superior conductivity and corrosion-resistance of the electrocatalyst. The doping of Fe …
Show moreSep 2023 • Journal of Raman Spectroscopy
Bharathi Rajeswaran, Rajashree Konar, Rena Yitzhari, Gilbert Daniel Nessim, Yaakov Raphael Tischler
Raman spectroscopy in transition metal dichalcogenides (TMDCs) helps determine their structural information and layer dependency. Because it is non‐destructive and fast, it is an archetypal spectroscopic technique to investigate the structure and defects in TMDCs. In our earlier study, we used a metal‐dielectric coating to enhance Raman signal of WS2 because the Raman Spectra measured from WS2 coated on the standard Si/SiO2 was significantly lower. This metal‐dielectric coating allowed access to the otherwise unavailable E12g and A1g modes of WS2. In this study, we compare the Raman spectra of WS2 on a Si/SiO2 to that of metal layers (Au [200 nm] and Al [200 nm]). A significant enhancement in the Raman signal of 2‐3L WS2 is observed for both the Au and Al coatings. Although 200 nm Au coating enhances the Raman Signal better than the 10 nm Au coating, it does not resolve the other …
Show moreSep 2023 • Angewandte Chemie (International ed. in English)
Amey Nimkar, Khorsed Alam, Gil Bergman, Mikhael D Levi, Dan Thomas Major, Netanel Shpigel, Doron Aurbach
The introduction of the water‐in‐salt (WIS) concept, using highly concentrated electrolyte solutions to prevent water splitting and widen the electrochemical stability window, has greatly influenced modern aqueous batteries. The successful implementation of these electrolyte solutions in many electrochemical systems shifts the focus from diluted to WIS electrolyte solutions. Considering the high costs and the tendency of these nearly saturated solutions to crystallize, this trend can be carefully re‐evaluated. Herein we show that the stability of organic electrodes comprising the active material perylene‐3,4,9,10‐tetracarboxylic dianhydride (PTCDA), is strongly influenced by the solvation character of the anions rather than the concentration of the electrolyte solution. Even though the charging process of PTCDA involves solely insertion of cations (i.e., principal counter‐ions), surprisingly, the dominant factor influencing its …
Show moreSep 2023 • Superconductor Science and Technology
Michal Wasserman, Avner Shaulov, Amos Sharoni, Yosef Yeshurun
Magneto-optical imaging was employed to study dendritic flux avalanches in metal/superconductor and superconductor/superconductor hybrid structures over an extended range of magnetic field ramping rates. Our results in Cu/NbN show that the previously reported suppression of dendritic flux avalanches in metal coated superconducting films is limited to low ramping rates; as the ramping rate increases, the metal coating becomes less and less effective. A more complex behavior is exhibited in superconductor/superconductor hybrid structures. Our measurement in NbN partially coated with Nb, reveal three distinctive types of dendritic avalanches: those propagating in only one layer, either as regular dendrites in the uncoated NbN or as surface dendrites in the Nb layer, and hybrid dendrites that propagate in both the Nb and NbN layers simultaneously. These three types of dendrites are distinguished by their …
Show moreSep 2023 • arXiv preprint arXiv:2309.13126
Lucianno Defaveri, Eli Barkai, David A Kessler
Stretched-exponential relaxation is a widely observed phenomenon found in glassy systems. It was previously modeled with non-Markovian dynamics reflecting a memory effect. Here, we study a Brownian particle under the influence of a confining, albeit weak, potential field that grows with distance as a sub-linear power law. We find that for this memoryless model, observables display stretched-exponential relaxation. The probability density function of the system is studied using a rate function ansatz. We obtain analytically the stretched-exponential exponent along with an anomalous power-law scaling of length with time. The rate function exhibits a point of nonanalyticity, indicating a dynamical phase transition. In particular, the rate function is double-valued both to the left and right of this point, leading to four different rate functions, depending on the choice of initial conditions and symmetry.
Show moreSep 2023 • Nucleic Acids Research
Ayelet Peres, William D Lees, Oscar L Rodriguez, Noah Y Lee, Pazit Polak, Ronen Hope, Meirav Kedmi, Andrew M Collins, Mats Ohlin, Steven H Kleinstein, Corey T Watson, Gur Yaari
In adaptive immune receptor repertoire analysis, determining the germline variable (V) allele associated with each T- and B-cell receptor sequence is a crucial step. This process is highly impacted by allele annotations. Aligning sequences, assigning them to specific germline alleles, and inferring individual genotypes are challenging when the repertoire is highly mutated, or sequence reads do not cover the whole V region. Here, we propose an alternative naming scheme for the V alleles, as well as a novel method to infer individual genotypes. We demonstrate the strengths of the two by comparing their outcomes to other genotype inference methods. We validate the genotype approach with independent genomic long-read data. The naming scheme is compatible with current annotation tools and pipelines. Analysis results can be converted from the proposed naming scheme to the nomenclature determined …
Show moreSep 2023 • ACS Applied Optical Materials
Tal Raviv, Nadav Shabairou, Ariel Roitman, Abhijit Sanjeev, Vismay Trivedi, Moshe Sinvani, Zeev Zalevsky
Increasing speeds of fiber-optics-based telecommunications, along with a large bandwidth of data processed in data centers, have focused attention on high-speed and bandwidth optical digital information processing. Optical processing requires high-density, high-speed, and low-power optical memory that can be integrated easily with planar semiconductor technology. The concept of optical memory has lent a novel perspective to optical domain data storage. We present our approach to creating nonvolatile optical memory based on the scattering field from gold nanoparticles. In our approach, data storage is based on the fabrication of gold nanoparticles in different spatial configurations. Reading of the stored data is achieved by analyzing the scattering image from each configuration.
Show moreSep 2023 • Scientific Reports
Abhijit Sanjeev, David Glukhov, Rinsa Salahudeen Rafeeka, Avi Karsenty, Zeev Zalevsky
A new super-resolution method, entitled Near-field Projection Optical Microscopy (NPOM), is presented. This novel technique enables the imaging of nanoscale objects without the need for surface scanning, as is usually required in existing methods such as NSOM (near-field scanning optical microscope). The main advantage of the proposed concept, besides the elimination of the need for a mechanical scanning mechanism, is that the full field of regard/view is imaged simultaneously and not point-by-point as in scanning-based techniques. Furthermore, by using compressed sensing, the number of projected patterns needed to decompose the spatial information of the inspected object can be made smaller than the obtainable points of spatial resolution. In addition to the development of mathematical formalism, this paper presents the results of a series of complementary numerical tests, using various objects and …
Show moreSep 2023 • Journal of The Electrochemical Society
Gayathri Peta, Hadas Alon-Yehezkel, Nagaprasad Reddy Samala, Shaul Bublil, Yuval Elias, Ilya Grinberg, Miryam Fayena-Greenstein, Doron Aurbach
Nanometric fillers are known to affect the electrochemical performance of polymer electrolytes. Here, nanowires and nanotubes of TiO 2 with the same crystal structure are compared as additives to poly (ethylene oxide) based electrolytes for solid state sodium batteries. Electrochemical studies of symmetric cells with blocking and non-blocking electrodes examined the effects of the additive shapes on the bulk electrolyte and Na-electrolyte interface. Impedance spectroscopy was used as a major electroanalytical tool. To obtain a full perspective, all-solid-state batteries were evaluated. In galvanostatic measurements the filler shape effect is most noticeable at a high current density. TiO 2 nanotubes improve the solid electrolyte behavior considerably more than titania nanowires. This effect is related mainly to the interface of the polymeric matrix with the electrodes.
Show moreSep 2023 • arXiv preprint arXiv:2309.05469
Hilario Espinós, Loris Maria Cangemi, Amikam Levy, Ricardo Puebla, Erik Torrontegui
Quantum many-body systems are emerging as key elements in the quest for quantum-based technologies and in the study of fundamental physics. In this context, finding control protocols that allow for fast and high fidelity evolutions across quantum phase transitions is of particular interest. Ideally, such controls should be scalable with the system size and not require controllable and unwanted extra interactions. In addition, its performance should be robust against potential imperfections. Here we design an invariant-based control technique that ensures perfect adiabatic-like evolution in the lowest energy subspace of the many-body system, and is able to meet all these requirements -- tuning the controllable parameter according to the analytical control results in high-fidelity evolutions operating close to the speed limit, valid for any number particles. As such, Kibble-Zurek scaling laws break down, leading to tunable and much better time scaling behavior. We illustrate our findings by means of detailed numerical simulations in the transverse-field Ising and long-range Kitaev models and demonstrate the robustness against noisy controls and disorder.
Show moreSep 2023 • Journal of The Electrochemical Society
Gayathri peta, hadas Alon-Yehezkel, Nagaprasad Reddy Samala, Shaul Bublil, Yuval Elias, Ilya Grinberg, Miryam Fayena-Greenstein, Doron Aurbach
Nanometric fillers are known to affect the electrochemical performance of polymer electrolytes. Here, nanowires and nanotubes of TiO2 with the same crystal structure are compared as additives to poly(ethylene oxide) based electrolytes for solid state sodium batteries. Electrochemical studies of symmetric cells with blocking and non-blocking electrodes examined the effects of the additive shapes on the bulk electrolyte and Na-electrolyte interface. Impedance spectroscopy was used as a major electroanalytical tool. To obtain a full perspective, all-solid-state batteries were evaluated. In galvanostatic measurements the filler shape effect is most noticeable at a high current density. TiO2 nanotubes improve the solid electrolyte behavior considerably more than titania nanowires. This effect is related mainly to the interface of the polymeric matrix with the electrodes.
Show moreSep 2023 • Joule
Yatao Liu, Linhan Xu, Yongquan Yu, MengXue He, Han Zhang, Yanqun Tang, Feng Xiong, Song Gao, Aijun Li, Jianhui Wang, Shenzhen Xu, Doron Aurbach, Ruqiang Zou, Quanquan Pang
The transition from dissolution-precipitation to quasi-solid-state sulfur reaction promises restricted polysulfide shuttle and lean electrolyte operation of Li-S batteries but incurs poor reaction kinetics. We here demonstrate that structural reorganization of sparingly solvating electrolytes (SSEs)—which is uniquely afforded by using low-density and low-cost aromatic anti-solvents—is vital for taming the quasi-solid-state sulfur reaction. Aromatic anti-solvents disrupt the interconnected structure of concentrated tetrahydrofuran (THF) electrolyte, uniquely creating subdomains that act to dissolve elemental sulfur, thus accelerating its consumption and re-formation while maintaining ultralow polysulfides solubility. The altered subdomains further result in robust solid electrolyte interphase (SEI) on lithium metal. As a result, the Li-S cell with a 3 mgsulfur cm−2 sulfur cathode can cycle steadily for ∼160 cycles with a lean …
Show moreSep 2023 • The European Physical Journal Special Topics, 1-13, 2023
Michael Suleymanov, Eliahu Cohen
In this short review paper, relative evolution in time and related issues are analyzed within classical and quantum mechanics. We first discuss the basics of quantum frames of reference in both space and time. We then focus on the latter, and more specifically on the “timeless” approach to quantum mechanics due to Page and Wootters. We address time–energy uncertainty relations and the emergence of non-unitarity within this framework. We emphasize relational aspects of quantum time as well as unique features of non-inertial clock frames.
Show more