BINA

4725 articles

79 publishers

Join mailing list

Dec 2023 • Optics Letters

Synchrotron-based x ray fluorescence ghost imaging

Mathieu Manni, Adi Ben-Yehuda, Yishai Klein, Bratislav Lukic, Andrew Kingston, Alexander Rack, Sharon Shwartz, Nicola Viganò

X ray fluorescence ghost imaging (XRF-GI) was recently demonstrated for x ray lab sources. It has the potential to reduce the acquisition time and deposited dose by choosing their trade-off with a spatial resolution while alleviating the focusing constraints of the probing beam. Here, we demonstrate the realization of synchrotron-based XRF-GI: we present both an adapted experimental setup and its corresponding required computational technique to process the data. This extends the above-mentioned potential advantages of GI to synchrotron XRF imaging. In addition, it enables new strategies to improve resilience against drifts at all scales and the study of previously inaccessible samples, such as liquids.

Show more

Dec 2023 • Nature Catalysis

Modifying Fe–N interaction to boost catalytic performance

Ulrike I Kramm, Lior Elbaz

Iron–nitrogen–carbon (FeNC) catalysts are a viable alternative to platinum, but still lack the necessary performance. Now, pyrolysis under forming gas is found as a path to boosting their site density, activity and durability.

Show more

Dec 2023 • Nature Catalysis

Modifying Fe–N interaction to boost catalytic performance

Ulrike I Kramm, Lior Elbaz

Iron–nitrogen–carbon (FeNC) catalysts are a viable alternative to platinum, but still lack the necessary performance. Now, pyrolysis under forming gas is found as a path to boosting their site density, activity and durability.

Show more

Dec 2023 • NAR Genomics and Bioinformatics

Elevated A-to-I RNA editing in COVID-19 infected individuals

Rona Merdler-Rabinowicz, David Gorelik, Jiwoon Park, Cem Meydan, Jonathan Foox, Miriam Karmon, Hillel S Roth, Roni Cohen-Fultheim, Galit Shohat-Ophir, Eli Eisenberg, Eytan Ruppin, Christopher E Mason, Erez Y Levanon


Dec 2023 • Journal of Biological Engineering

Optimizing the fabrication of a 3D high-resolution implant for neural stimulation

Gal Shpun, Nairouz Farah, Yoav Chemla, Amos Markus, Tamar Azrad Leibovitch, Erel Lasnoy, Doron Gerber, Zeev Zalevsky, Yossi Mandel

Tissue-integrated micro-electronic devices for neural stimulation hold great potential in restoring the functionality of degenerated organs, specifically, retinal prostheses, which are aimed at vision restoration. The fabrication process of 3D polymer-metal devices with high resolution and a high aspect-ratio (AR) is very complex and faces many challenges that impair its functionality. Here we describe the optimization of the fabrication process of a bio-functionalized 3D high-resolution 1mm circular subretinal implant composed of SU-8 polymer integrated with dense gold microelectrodes (23μm pitch) passivated with 3D micro-well-like structures (20μm diameter, 3μm resolution). The main challenges were overcome by step-by-step planning and optimization while utilizing a two-step bi-layer lift-off process; bio-functionalization was carried out by N2 plasma treatment and the addition of a bio-adhesion molecule. In-vitro and in-vivo investigations, including SEM and FIB cross section examinations, revealed a good structural design, as well as a good long-term integration of the device in the rat sub-retinal space and cell migration into the wells. Moreover, the feasibility of subretinal neural stimulation using the fabricated device was demonstrated in-vitro by electrical activation of rat’s retina. The reported process and optimization steps described here in detail can aid in designing and fabricating retinal prosthetic devices or similar neural implants.

Show more

Dec 2023 • Molecular Therapy Nucleic Acids 34, 2023

Progress and harmonization of gene editing to treat human diseases: Proceeding of COST Action CA21113 GenE-HumDi

Alessia Cavazza, Ayal Hendel, Rasmus O Bak, Paula Rio, Marc Güell, Duško Lainšček, Virginia Arechavala-Gomeza, Ling Peng, Fatma Zehra Hapil, Joshua Harvey, Francisco G Ortega, Coral Gonzalez-Martinez, Carsten W Lederer, Kasper Mikkelsen, Giedrius Gasiunas, Nechama Kalter, Manuel AFV Gonçalves, Julie Petersen, Alejandro Garanto, Lluis Montoliu, Marcello Maresca, Stefan E Seemann, Jan Gorodkin, Loubna Mazini, Rosario Sanchez, Juan R Rodriguez-Madoz, Noelia Maldonado-Pérez, Torella Laura, Michael Schmueck-Henneresse, Cristina Maccalli, Julian Grünewald, Gloria Carmona, Neli Kachamakova-Trojanowska, Annarita Miccio, Francisco Martin, Giandomenico Turchiano, Toni Cathomen, Yonglun Luo, Shengdar Q Tsai, Karim Benabdellah

The European Cooperation in Science and Technology (COST) is an intergovernmental organization dedicated to funding and coordinating scientific and technological research in Europe, fostering collaboration among researchers and institutions across countries. Recently, COST Action funded the "Genome Editing to treat Human Diseases" (GenE-HumDi) network, uniting various stakeholders such as pharmaceutical companies, academic institutions, regulatory agencies, biotech firms, and patient advocacy groups. GenE-HumDi's primary objective is to expedite the application of genome editing for therapeutic purposes in treating human diseases. To achieve this goal, GenE-HumDi is organized in several working groups, each focusing on specific aspects. These groups aim to enhance genome editing technologies, assess delivery systems, address safety concerns, promote clinical translation, and develop …

Show more

Dec 2023 • APL Photonics

Tensor characteristics of forward Brillouin sensors in bare and coated fibers

Alon Bernstein, Elad Zehavi, Yosef London, Mirit Hen, Rafael Suna, Shai Ben-Ami, Avi Zadok

Forward Brillouin scattering fiber sensors can detect and analyze media outside the cladding of standard fibers, where guided light does not reach. Nearly all such sensors reported to-date have relied on the radially symmetric guided acoustic modes of the fiber. Wave motion in these modes is strictly dilatational. However, forward Brillouin scattering also takes place through torsional–radial guided acoustic modes of the fiber. Torsional–radial modes exhibit more complex tensor characteristics, and they consist of both dilatational and shear wave contributions. In this work, we show that forward Brillouin sensing through torsional–radial acoustic modes is qualitatively different from processes based on the radial ones. While dilatational wave components may dissipate toward liquids outside the fiber cladding, shear waves do not. Consequently, the effect of outside liquids varies among torsional–radial modes. Those …

Show more

Dec 2023 • ACS omega

Monte Carlo-Simulated Annealing and Machine Learning-Based Funneled Approach for Finding the Global Minimum Structure of Molecular Clusters

Michal Roth, Yoni Toker, Dan T Major

Understanding the physical underpinnings and geometry of molecular clusters is of great importance in many fields, ranging from studying the beginning of the universe to the formation of atmospheric particles. To this end, several approaches have been suggested, yet identifying the most stable cluster geometry (i.e., global potential energy minimum) remains a challenge, especially for highly symmetric clusters. Here, we suggest a new funneled Monte Carlo-based simulated annealing (SA) approach, which includes two key steps: generation of symmetrical clusters and classification of the clusters according to their geometry using machine learning (MCSA-ML). We demonstrate the merits of the MCSA-ML method in comparison to other approaches on several Lennard-Jones (LJ) clusters and four molecular clusters─Ser8(Cl–)2, H+(H2O)6, Ag+(CO2)8, and Bet4Cl–. For the latter of these clusters, the correct …

Show more

Dec 2023 • International Journal of Molecular Sciences

Nicotinamide-expanded allogeneic natural killer cells with CD38 deletion, expressing an enhanced CD38 chimeric antigen receptor, target multiple myeloma cells

Avishay Edri, Nimrod Ben-Haim, Astar Hailu, Nurit Brycman, Orit Berhani-Zipori, Julia Rifman, Sherri Cohen, Dima Yackoubov, Michael Rosenberg, Ronit Simantov, Hideshima Teru, Keiji Kurata, Kenneth Carl Anderson, Ayal Hendel, Aviad Pato, Yona Geffen

Natural killer (NK) cells are a vital component of cancer immune surveillance. They provide a rapid and potent immune response, including direct cytotoxicity and mobilization of the immune system, without the need for antigen processing and presentation. NK cells may also be better tolerated than T cell therapy approaches and are susceptible to various gene manipulations. Therefore, NK cells have become the focus of extensive translational research. Gamida Cell’s nicotinamide (NAM) platform for cultured NK cells provides an opportunity to enhance the therapeutic potential of NK cells. CD38 is an ectoenzyme ubiquitously expressed on the surface of various hematologic cells, including multiple myeloma (MM). It has been selected as a lead target for numerous monoclonal therapeutic antibodies against MM. Monoclonal antibodies target CD38, resulting in the lysis of MM plasma cells through various antibody-mediated mechanisms such as antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity, and antibody-dependent cellular phagocytosis, significantly improving the outcomes of patients with relapsed or refractory MM. However, this therapeutic strategy has inherent limitations, such as the anti-CD38-induced depletion of CD38-expressing NK cells, thus hindering ADCC. We have developed genetically engineered NK cells tailored to treat MM, in which CD38 was knocked-out using CRISPR-Cas9 technology and an enhanced chimeric antigen receptor (CAR) targeting CD38 was introduced using mRNA electroporation. This combined genetic approach allows for an improved cytotoxic activity directed against …

Show more

Dec 2023 • Laser & Photonics Reviews

Roadmap on Label‐Free Super‐Resolution Imaging (Laser Photonics Rev. 17 (12)/2023)

Vasily N Astratov, Yair Ben Sahel, Yonina C Eldar, Luzhe Huang, Aydogan Ozcan, Nikolay Zheludev, Junxiang Zhao, Zachary Burns, Zhaowei Liu, Evgenii Narimanov, Neha Goswami, Gabriel Popescu, Emanuel Pfitzner, Philipp Kukura, Yi‐Teng Hsiao, Chia‐Lung Hsieh, Brian Abbey, Alberto Diaspro, Aymeric LeGratiet, Paolo Bianchini, Natan T Shaked, Bertrand Simon, Nicolas Verrier, Matthieu Debailleul, Olivier Haeberlé, Sheng Wang, Mengkun Liu, Yeran Bai, Ji‐Xin Cheng, Behjat S Kariman, Katsumasa Fujita, Moshe Sinvani, Zeev Zalevsky, Xiangping Li, Guan‐Jie Huang, Shi‐Wei Chu, Omer Tzang, Dror Hershkovitz, Ori Cheshnovsky, Mikko J Huttunen, Stefan G Stanciu, Vera N Smolyaninova, Igor I Smolyaninov, Ulf Leonhardt, Sahar Sahebdivan, Zengbo Wang, Boris Luk'yanchuk, Limin Wu, Alexey V Maslov, Boya Jin, Constantin R Simovski, Stephane Perrin, Paul Montgomery, Sylvain Lecler

In article number 2200029, Vasily Astratov and colleagues representing 27 research teams worldwide created a roadmap on label-free super-resolution imaging. Its scope spans from diffraction-limited interference detection techniques to methods allowing to overcome classical diffraction limit without using fluorescent markers, which are based on information science; structured illumination; near-field, nonlinear, and transformation optics; and advanced superlens designs. Cover images are provided by Aydogan Ozcan and Nikolay Zheludev participating in this Roadmap.

Show more

Dec 2023

New Protein Variants Resulting from RNA Editing May Lead to Proteotoxic Stress

S Ben-Aroya, A Avram-Shperling, A Ben-David, M Eidelman, E Kopel, O Gabay, GD Kadoch, J Rosenthal, E Levanon, E Eisenberg

Maintaining protein homeostasis is critical for cellular function, as disruptions can result in accumulation of misfolded proteins associated with various diseases. RNA editing, particularly deamination by base-editing enzymes like ADAR, can modify the transcriptome, potentially influencing amino acid sequences and protein diversity. We hypothesize that irregular RNA editing, leading to a more complex proteome, may generate defective proteins, triggering cellular toxicity. Using an editing-naïve yeast system expressing a robust ADAR enzyme, we demonstrated that extensive RNA editing results in non-synonymous protein changes, correlated with increased protein ubiquitination and reliance on quality control pathways. This suggests that extensive editing in yeast produces abnormal proteins prone to misfolding and degradation. While mouse and human genomes are well-adapted to the ADAR enzymes, introduction of base editors into human cells is found to increase activity in proteotoxic-stress-related pathways due to off-target editing. Signs of proteotoxic stress are also observed in human samples exhibiting elevated activity of endogenous ADARs. These findings emphasize the detrimental impact of dysregulated RNA editing on protein balance and suggest a potential role for aberrant editing in disease onset and progression.

Show more

Dec 2023 • ACS Omega

Monte Carlo-Simulated Annealing and Machine Learning-Based Funneled Approach for Finding the Global Minimum Structure of Molecular Clusters

Michal Roth, Yoni Toker, Dan T Major

Understanding the physical underpinnings and geometry of molecular clusters is of great importance in many fields, ranging from studying the beginning of the universe to the formation of atmospheric particles. To this end, several approaches have been suggested, yet identifying the most stable cluster geometry (i.e., global potential energy minimum) remains a challenge, especially for highly symmetric clusters. Here, we suggest a new funneled Monte Carlo-based simulated annealing (SA) approach, which includes two key steps: generation of symmetrical clusters and classification of the clusters according to their geometry using machine learning (MCSA-ML). We demonstrate the merits of the MCSA-ML method in comparison to other approaches on several Lennard-Jones (LJ) clusters and four molecular clusters─Ser8(Cl–)2, H+(H2O)6, Ag+(CO2)8, and Bet4Cl–. For the latter of these clusters, the correct …

Show more

Dec 2023 • ACS Omega

Monte Carlo-Simulated Annealing and Machine Learning-Based Funneled Approach for Finding the Global Minimum Structure of Molecular Clusters

Michal Roth, Yoni Toker, Dan T Major

Understanding the physical underpinnings and geometry of molecular clusters is of great importance in many fields, ranging from studying the beginning of the universe to the formation of atmospheric particles. To this end, several approaches have been suggested, yet identifying the most stable cluster geometry (i.e., global potential energy minimum) remains a challenge, especially for highly symmetric clusters. Here, we suggest a new funneled Monte Carlo-based simulated annealing (SA) approach, which includes two key steps: generation of symmetrical clusters and classification of the clusters according to their geometry using machine learning (MCSA-ML). We demonstrate the merits of the MCSA-ML method in comparison to other approaches on several Lennard-Jones (LJ) clusters and four molecular clusters─Ser8(Cl–)2, H+(H2O)6, Ag+(CO2)8, and Bet4Cl–. For the latter of these clusters, the correct …

Show more

Dec 2023 • EJIFCC

A novel score-based approach by using routine laboratory tests for accurate diagnosis of spontaneous bacterial peritonitis (SBP) in cirrhotic patients

George Abdo, Uri Nir, Rasha Rawajdey, Wadie Abu Dahoud, Jammal Massalha, Taleb Hajouj, Mohammad H Assadi, Nseir William

BackgroundSpontaneous Bacterial Peritonitis (SBP) poses a significant risk to cirrhosis patients with ascites, emphasizing the critical need for early detection and intervention. This retrospective observational study spanning a decade aimed to devise predictive models for SBP using routine laboratory tests. Additionally, it aimed to propose a novel scoring system to aid SBP diagnosis.MethodsData analysis encompassed 229 adult cirrhotic patients hospitalized for ascites between 2012 and 2021. Exclusions eliminated cases of secondary ascites unrelated to liver cirrhosis. Patients were categorized into SBP-positive (n= 110) and SBP-negative (n= 119) groups. Comparative analysis of demographic details and various laboratory indicators (Neutrophil-to-Lymphocyte Ratio (NLR), Mean Platelet Volume (MPV), C-Reactive Protein (CRP), Platelet (PLT), Alanine Transaminase (ALT), Aspartate Amino Transferase (AST …

Show more

Dec 2023 • NAR Genomics and Bioinformatics

Elevated A-to-I RNA editing in COVID-19 infected individuals

Rona Merdler-Rabinowicz, David Gorelik, Jiwoon Park, Cem Meydan, Jonathan Foox, Miriam Karmon, Hillel S Roth, Roni Cohen-Fultheim, Galit Shohat-Ophir, Eli Eisenberg, Eytan Ruppin, Christopher E Mason, Erez Y Levanon

Given the current status of coronavirus disease 2019 (COVID-19) as a global pandemic, it is of high priority to gain a deeper understanding of the disease's development and how the virus impacts its host. Adenosine (A)-to-Inosine (I) RNA editing is a post-transcriptional modification, catalyzed by the ADAR family of enzymes, that can be considered part of the inherent cellular defense mechanism as it affects the innate immune response in a complex manner. It was previously reported that various viruses could interact with the host's ADAR enzymes, resulting in epigenetic changes both to the virus and the host. Here, we analyze RNA-seq of nasopharyngeal swab specimens as well as whole-blood samples of COVID-19 infected individuals and show a significant elevation in the global RNA editing activity in COVID-19 compared to healthy controls. We also detect specific coding sites that exhibit higher editing …

Show more

Dec 2023 • Angewandte Chemie 135 (50), e202306904, 2023

Polyimide compounds for post‐lithium energy storage applications

Amey Nimkar, Gil Bergman, Elad Ballas, Nophar Tubul, Noam Levi, Fyodor Malchik, Idan Kukurayeve, Munseok S Chae, Daniel Sharon, Mikhael Levi, Netanel Shpigel, Guoxiu Wang, Doron Aurbach

The exploration of cathode and anode materials that enable reversible storage of mono and multivalent cations has driven extensive research on organic compounds. In this regard, polyimide (PI)‐based electrodes have emerged as a promising avenue for the development of post‐lithium energy storage systems. This review article provides a comprehensive summary of the syntheses, characterizations, and applications of PI compounds as electrode materials capable of hosting a wide range of cations. Furthermore, the review also delves into the advancements in PI based solid state batteries, PI‐based separators, current collectors, and their effectiveness as polymeric binders. By highlighting the key findings in these areas, this review aims at contributing to the understanding and advancement of PI‐based structures paving the way for the next generation of energy storage systems.

Show more

Dec 2023 • Advanced Materials Technologies

Biolistic Delivery of Photosensitizer‐Loaded Porous Si Carriers for Localized Photodynamic Therapy

Elina Haimov‐Talmoud, Michal Rosenberg, Sofia Arshavsky‐Graham, Eli Varon, Orit Shefi, Ester Segal

Among numerous approaches for treating cancer, clinically approved photodynamic therapy (PDT) is considered a promising non‐invasive therapeutic strategy for solid tumors. While PDT has distinct advantages over conventional cancer treatments, systemic exposure to the photosensitizer and its stability are some of the limitations of clinical PDT. Herein, a therapeutic strategy for highly localized focal PDT is introduced based on direct biolistic delivery of photosensitizer‐loaded carriers to cancerous tumors. Degradable porous silicon microparticles (PSiMPs) are used as efficient carriers for the photosensitizer, meso‐tetrahydroxy‐phenylchlorin (mTHPC), and its conjugates with gold nanoparticles (AuNP‐mTHPC conjugates). The loaded PSiMP carriers are successfully bombarded using a pneumatic gene gun to breast cancer cells in vitro and into tumor xenografts in vivo, and subsequent uptake of the released …

Show more

Dec 2023 • Advanced Healthcare Materials

Noninvasive Treatment of Alzheimer's Disease with Scintillating Nanotubes

Sudipta Senapati, Valeria Secchi, Francesca Cova, Michal Richman, Irene Villa, Ronen Yehuda, Yulia Shenberger, Marcello Campione, Shai Rahimipour, Angelo Monguzzi

Effective and accessible treatments for Alzheimer's disease (AD) are urgently needed. Soluble Aβ oligomers are identified as neurotoxic species in AD and targeted in antibody‐based drug development to mitigate cognitive decline. However, controversy exists concerning their efficacy and safety. In this study, an alternative strategy is proposed to inhibit the formation of Aβ oligomers by selectively oxidizing specific amino acids in the Aβ sequence, thereby preventing its aggregation. Targeted oxidation is achieved using biocompatible and blood‐brain barrier‐permeable multicomponent nanoscintillators that generate singlet oxygen upon X‐ray interaction. Surface‐modified scintillators interact selectively with Aβ and, upon X‐ray irradiation, inhibit the formation of neurotoxic aggregates both in vitro and in vivo. Feeding transgenic Caenorhabditis elegans expressing human Aβ with the nanoscintillators and …

Show more

Dec 2023 • arXiv preprint arXiv:2312.10367

Covariant field lines: a geometrical approach to electrodynamics

Yaron Hadad, Ido Kaminer, Aharon Elitzur, Eliahu Cohen

This paper revisits the geometric foundations of electromagnetic theory, by studying Faraday's concept of field lines. We introduce "covariant electromagnetic field lines," a novel construct that extends traditional field line concepts to a covariant framework. Our work includes the derivation of a closed-form formula for the field line curvature in proximity to a moving electric charge, showcasing the curvature is always non-singular, including nearby a point charge. Our geometric framework leads to a geometric derivation of the Lorentz force equation and its first-order corrections, circumventing the challenges of self-force singularities and providing insights into the problem of radiation-reaction. This study not only provides a fresh geometric perspective on electromagnetic field lines but also opens avenues for future research in fields like quantum electrodynamics, gravitational field theory, and beyond.

Show more

Dec 2023 • Advanced Optical Materials 11 (5), 2201475, 2023

Linear and Nonlinear Optical Properties of Well‐Defined and Disordered Plasmonic Systems: A Review

Racheli Ron, Tchiya Zar, Adi Salomon

Disordered metallic nanostructures have features that are not realized in well‐defined nanometallic counterparts, such as broadband light localization and inhomogeneous refraction index at the nanoscale. Disordered metal systems with a networked inner architecture have both particles and voids with subwavelength dimensions which are randomly 3D organized in space. These disordered structures are benefited from high surface area and damage stability, permit guest materials permeability, and can be achieved in large scales employing less costs and expertise. Their abundant nanosize gaps and sharp tips can interact with incident light over a broadband range to generate a rich pattern of hot‐spots and can therefore function as an artificial leaf, for example. Here, the linear and nonlinear optical properties of both well‐defined and disordered plasmonic structures are reviewed with a focus on largescale 3D …

Show more

Dec 2023 • APL Photonics

Tensor characteristics of forward Brillouin sensors in bare and coated fibers

Alon Bernstein, Elad Zehavi, Yosef London, Mirit Hen, Rafael Suna, Shai Ben-Ami, Avi Zadok

Forward Brillouin scattering fiber sensors can detect and analyze media outside the cladding of standard fibers, where guided light does not reach. Nearly all such sensors reported to-date have relied on the radially symmetric guided acoustic modes of the fiber. Wave motion in these modes is strictly dilatational. However, forward Brillouin scattering also takes place through torsional–radial guided acoustic modes of the fiber. Torsional–radial modes exhibit more complex tensor characteristics, and they consist of both dilatational and shear wave contributions. In this work, we show that forward Brillouin sensing through torsional–radial acoustic modes is qualitatively different from processes based on the radial ones. While dilatational wave components may dissipate toward liquids outside the fiber cladding, shear waves do not. Consequently, the effect of outside liquids varies among torsional–radial modes. Those …

Show more

logo
Articali

Powered by Articali

TermsPrivacy