BINA

4542 articles

77 publishers

Join mailing list

Sep 2023 • Journal of The Electrochemical Society

The effect of titania additives on the performance of PEO-based solid sodium batteries: bulk and interfacial aspects

Gayathri Peta, Hadas Alon-Yehezkel, Nagaprasad Reddy Samala, Shaul Bublil, Yuval Elias, Ilya Grinberg, Miryam Fayena-Greenstein, Doron Aurbach

Nanometric fillers are known to affect the electrochemical performance of polymer electrolytes. Here, nanowires and nanotubes of TiO 2 with the same crystal structure are compared as additives to poly (ethylene oxide) based electrolytes for solid state sodium batteries. Electrochemical studies of symmetric cells with blocking and non-blocking electrodes examined the effects of the additive shapes on the bulk electrolyte and Na-electrolyte interface. Impedance spectroscopy was used as a major electroanalytical tool. To obtain a full perspective, all-solid-state batteries were evaluated. In galvanostatic measurements the filler shape effect is most noticeable at a high current density. TiO 2 nanotubes improve the solid electrolyte behavior considerably more than titania nanowires. This effect is related mainly to the interface of the polymeric matrix with the electrodes.

Show more

Sep 2023 • 2023 48th International Conference on Infrared, Millimeter, and Terahertz …, 2023

Novel split-well resonant-phonon terahertz quantum cascade laser supporting clean four-level system.

S Levy, N Lander Gower, S Piperno, SJ Addamane, JL Reno, A Albo

We present a novel terahertz quantum cascade laser (THz QCL) scheme supporting a clean four-level system, ‘four’ being the number of the active laser states, as verified by the negative differential resistance (NDR) observed all the way up to room temperature. In this study, we analyze and discuss the temperature performance of this new design. Experimental as well as theoretical work was performed to analyze the effects of the doping density as well as the impact of the different scattering mechanisms.

Show more

Sep 2023 • Applied Physics Letters

Subwavelength pulse focusing and perfect absorption in the Maxwell fish-eye

Gautier Lefebvre, Marc Dubois, Younes Achaoui, Ros Kiri, Mathias Fink, Sébastien Guenneau, Patrick Sebbah

Maxwell's fish-eye is a paradigm for an absolute optical instrument with a refractive index deduced from the stereographic projection of a sphere on a plane. We investigate experimentally the dynamics of flexural waves in a thin plate with a thickness varying according to the Maxwell fish-eye index profile and a clamped boundary. We demonstrate subwavelength focusing and temporal pulse compression at the image point. This is achieved by introducing a sink emitting a cancelling signal optimally shaped using a time-reversal procedure. Perfect absorption and outward going wave cancellation at the focus point are demonstrated. The time evolution of the kinetic energy stored inside the cavity reveals that the sink absorbs energy out of the plate ten times faster than the natural decay rate.All rays originating from any object point meet again at a single image point. This definition of an absolute optical instrument has …

Show more

Sep 2023 • Diagnostics

PTOLEMI: Personalized Cancer Treatment through Machine Learning-Enabled Image Analysis of Microfluidic Assays

Bernard Moerdler, Matan Krasner, Elazar Orenbuch, Avi Grad, Benjamin Friedman, Eliezer Graber, Efrat Barbiro-Michaely, Doron Gerber

Contemporary personalized cancer diagnostic approaches encounter multiple challenges. The presence of cellular and molecular heterogeneity in patient samples introduces complexities to analysis protocols. Conventional analyses are manual, reliant on expert personnel, time-intensive, and financially burdensome. The copious data amassed for subsequent analysis strains the system, obstructing real-time diagnostics at the “point of care” and impeding prompt intervention. This study introduces PTOLEMI: Python-based Tensor Oncological Locator Examining Microfluidic Instruments. PTOLEMI stands out as a specialized system designed for high-throughput image analysis, particularly in the realm of microfluidic assays. Utilizing a blend of machine learning algorithms, PTOLEMI can process large datasets rapidly and with high accuracy, making it feasible for point-of-care diagnostics. Furthermore, its advanced analytics capabilities facilitate a more granular understanding of cellular dynamics, thereby allowing for more targeted and effective treatment options. Leveraging cutting-edge AI algorithms, PTOLEMI rapidly and accurately discriminates between cell viability and distinct cell types within biopsy samples. The diagnostic process becomes automated, swift, precise, and resource-efficient, rendering it well-suited for point-of-care requisites. By employing PTOLEMI alongside a microfluidic cell culture chip, physicians can attain personalized diagnostic and therapeutic insights. This paper elucidates the evolution of PTOLEMI and showcases its prowess in analyzing cancer patient samples within a microfluidic apparatus. While the integration of …

Show more

Sep 2023 • Journal of The Electrochemical Society

The Effect of Chlorides on the Performance of DME/Mg [B (HFIP) 4] 2 Solutions for Rechargeable Mg Batteries

Ben Dlugatch, Janina Drews, Ran Attias, Bar Gavriel, Adar Ambar, Timo Danner, Arnulf Latz, Doron Aurbach

One of the major issues in developing electrolyte solutions for rechargeable magnesium batteries is understanding the positive effect of chloride anions on Mg deposition-dissolution processes on the anode side, as well as intercalation-deintercalation of Mg 2+ ions on the cathode side. Our previous results suggested that Cl− ions are adsorbed on the surface of Mg anodes and Chevrel phase Mg x Mo 6 S 8 cathodes. This creates a surface add-layer that reduces the activation energy for the interfacial Mg ions transportation and related charge transfer, as well as promotes the transport of Mg 2+ from the solution phase to the Mg anode surface and into the cathodes' host materials. Here, this work further examines the effect of adding chlorides to the state-of-the-art Mg [B (HFIP) 4] 2/DME electrolyte solution, specifically focusing on reversible magnesium deposition, as well as the performance of Mg cells with …

Show more

Sep 2023 • Advanced Science

A platform for assessing cellular contractile function based on magnetic manipulation of magnetoresponsive hydrogel films

Moran Yadid, Mario Hagel, Megan Beldjilali Labro, Baptiste Le Roi, Carina Flaxer, Eli Flaxer, A Ronny Barnea, Shai Tejman‐Yarden, Eric Silberman, Xin Li, Rossana Rauti, Yael Leichtmann‐Bardoogo, Hongyan Yuan, Ben M Maoz

Despite significant advancements in in vitro cardiac modeling approaches, researchers still lack the capacity to obtain in vitro measurements of a key indicator of cardiac function: contractility, or stroke volume under specific loading conditions—defined as the pressures to which the heart is subjected prior to and during contraction. This work puts forward a platform that creates this capability, by providing a means of dynamically controlling loading conditions in vitro. This dynamic tissue loading platform consists of a thin magnetoresponsive hydrogel cantilever on which 2D engineered myocardial tissue is cultured. Exposing the cantilever to an external magnetic field—generated by positioning magnets at a controlled distance from the cantilever—causes the hydrogel film to stretch, creating tissue load. Next, cell contraction is induced through electrical stimulation, and the force of the contraction is recorded, by …

Show more

Sep 2023 • arXiv preprint arXiv:2309.13126

Stretched-exponential relaxation in weakly-confined Brownian systems through large deviation theory

Lucianno Defaveri, Eli Barkai, David A Kessler

Stretched-exponential relaxation is a widely observed phenomenon found in glassy systems. It was previously modeled with non-Markovian dynamics reflecting a memory effect. Here, we study a Brownian particle under the influence of a confining, albeit weak, potential field that grows with distance as a sub-linear power law. We find that for this memoryless model, observables display stretched-exponential relaxation. The probability density function of the system is studied using a rate function ansatz. We obtain analytically the stretched-exponential exponent along with an anomalous power-law scaling of length with time. The rate function exhibits a point of nonanalyticity, indicating a dynamical phase transition. In particular, the rate function is double-valued both to the left and right of this point, leading to four different rate functions, depending on the choice of initial conditions and symmetry.

Show more

Sep 2023 • Journal of Power Sources 579, 233312, 2023

Lead-acid batteries and lead–carbon hybrid systems: A review

Naresh Vangapally, Tirupathi Rao Penki, Yuval Elias, Sadananda Muduli, Satyanarayana Maddukuri, Shalom Luski, Doron Aurbach, Surendra Kumar Martha

Lead-acid systems dominate the global market owing to simple technology, easy fabrication, availability, and mature recycling processes. However, the sulfation of negative lead electrodes in lead-acid batteries limits its performance to less than 1000 cycles in heavy-duty applications. Incorporating activated carbons, carbon nanotubes, graphite, and other allotropes of carbon and compositing carbon with metal oxides into the negative active material significantly improves the overall health of lead-acid batteries. Carbons play a vital role in advancing the properties of lead-acid batteries for various applications, including deep depth of discharge cycling, partial state-of-charge, and high-rate partial state-of-charge cycling. Therefore, lead-carbon hybrid batteries and supercapacitor systems have been developed to enhance energy-power density and cycle life. This review article provides an overview of lead-acid …

Show more

Sep 2023 • Journal of Raman Spectroscopy

Enhancement of the E12g and A1g Raman modes and layer identification of 2H‐WS2 nanosheets with metal coatings

Bharathi Rajeswaran, Rajashree Konar, Rena Yitzhari, Gilbert Daniel Nessim, Yaakov Raphael Tischler

Raman spectroscopy in transition metal dichalcogenides (TMDCs) helps determine their structural information and layer dependency. Because it is non‐destructive and fast, it is an archetypal spectroscopic technique to investigate the structure and defects in TMDCs. In our earlier study, we used a metal‐dielectric coating to enhance Raman signal of WS2 because the Raman Spectra measured from WS2 coated on the standard Si/SiO2 was significantly lower. This metal‐dielectric coating allowed access to the otherwise unavailable E12g and A1g modes of WS2. In this study, we compare the Raman spectra of WS2 on a Si/SiO2 to that of metal layers (Au [200 nm] and Al [200 nm]). A significant enhancement in the Raman signal of 2‐3L WS2 is observed for both the Au and Al coatings. Although 200 nm Au coating enhances the Raman Signal better than the 10 nm Au coating, it does not resolve the other …

Show more

Sep 2023 • Applied Physics Letters

Super-resolution reconstruction of structured illumination microscopy based on pixel reassignment

Xing Liu, Xiang Fang, Yunze Lei, Jiaoyue Li, Sha An, Juanjuan Zheng, Ying Ma, Haiyang Ma, Zeev Zalevsky, Peng Gao

In this work, we report a pixel reassignment based super-resolution reconstruction algorithm for structured illumination microscopy (entitled PR-SIM). PR-SIM provides a twofold theoretical resolution enhancement by reassigning the pixels in raw SIM images with respect to the center of each illumination fringe and applying further deconvolution. By comparing with frequency domain based algorithms, PR-SIM is more immune to fringe distortion and, hence, it is more suited for large-field SIM in that it processes the raw images locally. Meanwhile, the reconstruction speed of PR-SIM can be enhanced by skipping empty regions in the image and further enhanced by employing GPU-base parallel calculation. Overall, we can envisage that the PR-SIM can be extended for other illumination modulation based microscopic techniques.Optical microscopy is an indispensable imaging tool in many fields, yet its spatial …

Show more

Sep 2023 • Journal of Physics B: Atomic, Molecular and Optical Physics

Vacuum UV studies of protonated serine clusters

Ori Licht, Maria Nihamkin, Mirit Anaby, Patrick Rousseau, Alexandre Giuliani, Aleksandar Milosavljevic, Raj Singh, Vy Nguyen, Laurent Nahon, Yoni Toker

In a recent work, we have shown that photon absorption can cause a chemical bond to be created between the two monomers within a protonated serine dimer, a process known as intra-cluster bond formation (ICBF), despite this process not occurring following thermal excitation via low energy collision-induced dissociation (LE-CID). Here we show further evidence for non-statistical photon-induced dissociation (PID) of the protonated serine dimer. In addition we discuss LE-CID and PID studies of the protonated serine octamer, showing that in this case as well, PID leads to non-statistical fragmentation and to the formation of two bonds between three neighboring monomers.

Show more

Sep 2023 • Journal of Raman Spectroscopy

Enhancement of the E12g and A1g Raman modes and layer identification of 2H‐WS2 nanosheets with metal coatings

Bharathi Rajeswaran, Rajashree Konar, Rena Yitzhari, Gilbert Daniel Nessim, Yaakov Raphael Tischler

Raman spectroscopy in transition metal dichalcogenides (TMDCs) helps determine their structural information and layer dependency. Because it is non‐destructive and fast, it is an archetypal spectroscopic technique to investigate the structure and defects in TMDCs. In our earlier study, we used a metal‐dielectric coating to enhance Raman signal of WS2 because the Raman Spectra measured from WS2 coated on the standard Si/SiO2 was significantly lower. This metal‐dielectric coating allowed access to the otherwise unavailable E12g and A1g modes of WS2. In this study, we compare the Raman spectra of WS2 on a Si/SiO2 to that of metal layers (Au [200 nm] and Al [200 nm]). A significant enhancement in the Raman signal of 2‐3L WS2 is observed for both the Au and Al coatings. Although 200 nm Au coating enhances the Raman Signal better than the 10 nm Au coating, it does not resolve the other …

Show more

Sep 2023 • Journal of Cosmetics, Dermatological Sciences and Applications

A Novel Facial Cream Based on Skin Penetrable Hemp Oil Microparticles

Rachel Lubart, Inbar Yariv, Dror Fixler, Ayelet Rothstein, Arie Gruzman, Anat Lipovsky

Objective Hemp seed oil is perfect for most skin types; it moisturizes skin and protects it from inflammation, oxidation, and other causes of aging. The problem is that the Hemp oil-based products do not penetrate the skin; they remain on the skin’s surface. Recently researchers have been trying to prepare nano emulsions of hemp oil to facilitate its permeation to deep skin layers. In all techniques used today, surfactants are added to the emulsification process. These surfactants may cause unwanted skin side effects. In the present study, we prepare micronized Hemp (m-Hemp) without using any surfactants in the micronization process, thus avoiding the side effects associated with surfactant addition. Methods & Results Particles size of m-Hemp was evaluated using electron microscopy. Various sizes of m-Hemp were found, the smallest being 100 nm in diameter. The antioxidation properties of m-Hemp were measured using the Electron Spin Resonance (ESR) technique and were found to be enhanced. Skin topography and morphology following a cream containing m-Hemp treatment were visualized by Optical Profilometry and ESEM respectively. The results show a marked improvement in skin topography in all measured parameters. In addition, human keratinocytes (HaCaT) were exposed to inflammatory conditions and were then treated using Hemp. As a result, one of the key inflammatory factors (IL-2) was significantly reduced after treatment with m-Hemp (p ≤ 0.0001). The skin penetration of the cream containing m-Hemp was tested on human skin using the IMOPE (Iterative Multi-plane Optical Property Extraction) system. The results …

Show more

Sep 2023 • 2023 IEEE 33rd International Workshop on Machine Learning for Signal …, 2023

Utilizing Perturbation of Atoms’ Positions for Equivariant Pre-Training in 3D Molecular Analysis

Tal Kiani, Avi Caciularu, Shani Zev, Dan Thomas Major, Jacob Goldberger


Sep 2023 • Applied Physics Letters

Super-resolution reconstruction of structured illumination microscopy based on pixel reassignment

Xing Liu, Xiang Fang, Yunze Lei, Jiaoyue Li, Sha An, Juanjuan Zheng, Ying Ma, Haiyang Ma, Zeev Zalevsky, Peng Gao

In this work, we report a pixel reassignment based super-resolution reconstruction algorithm for structured illumination microscopy (entitled PR-SIM). PR-SIM provides a twofold theoretical resolution enhancement by reassigning the pixels in raw SIM images with respect to the center of each illumination fringe and applying further deconvolution. By comparing with frequency domain based algorithms, PR-SIM is more immune to fringe distortion and, hence, it is more suited for large-field SIM in that it processes the raw images locally. Meanwhile, the reconstruction speed of PR-SIM can be enhanced by skipping empty regions in the image and further enhanced by employing GPU-base parallel calculation. Overall, we can envisage that the PR-SIM can be extended for other illumination modulation based microscopic techniques.

Show more

Sep 2023 • The European Physical Journal Special Topics, 1-13, 2023

Quantum frames of reference and the relational flow of time

Michael Suleymanov, Eliahu Cohen

In this short review paper, relative evolution in time and related issues are analyzed within classical and quantum mechanics. We first discuss the basics of quantum frames of reference in both space and time. We then focus on the latter, and more specifically on the “timeless” approach to quantum mechanics due to Page and Wootters. We address time–energy uncertainty relations and the emergence of non-unitarity within this framework. We emphasize relational aspects of quantum time as well as unique features of non-inertial clock frames.

Show more

Sep 2023 • Journal of Vacuum Science & Technology B

Measuring and understanding the nanomechanical properties of halide perovskites and their correlation to structure—A perspective

Irit Rosenhek-Goldian, David Cahen, Sidney R Cohen

The class of materials termed halide perovskites has experienced a meteoric rise in popularity due to their potential for photovoltaic and related applications, rivaling the well-established silicon devices within a few short years of development. These materials are characterized by several intriguing properties, among them their mechanical behavior. The study of their response to stress is essential for proper device development, while being of fundamental scientific interest in its own right. In this perspective, we highlight the key concerns surrounding this topic, critically analyzing the measurement techniques and considering the challenges in the current level of understanding.

Show more

Sep 2023 • ACS Applied Optical Materials

Optical Memory Based on Scattering from Gold Nanoparticles

Tal Raviv, Nadav Shabairou, Ariel Roitman, Abhijit Sanjeev, Vismay Trivedi, Moshe Sinvani, Zeev Zalevsky

Increasing speeds of fiber-optics-based telecommunications, along with a large bandwidth of data processed in data centers, have focused attention on high-speed and bandwidth optical digital information processing. Optical processing requires high-density, high-speed, and low-power optical memory that can be integrated easily with planar semiconductor technology. The concept of optical memory has lent a novel perspective to optical domain data storage. We present our approach to creating nonvolatile optical memory based on the scattering field from gold nanoparticles. In our approach, data storage is based on the fabrication of gold nanoparticles in different spatial configurations. Reading of the stored data is achieved by analyzing the scattering image from each configuration.

Show more

Sep 2023 • arXiv preprint arXiv:2209.00480

Coherence and realism in the Aharonov-Bohm effect

Ismael L Paiva, Pedro R Dieguez, Renato M Angelo, Eliahu Cohen

The Aharonov-Bohm effect is a fundamental topological phenomenon with a wide range of applications. It consists of a charge encircling a region with a magnetic flux in a superposition of wavepackets having their relative phase affected by the flux. In this work, we analyze this effect using an entropic measure known as realism, originally introduced as a quantifier of a system's degree of reality and mathematically related to notions of global and local quantum coherence. More precisely, we look for observables that lead to gauge-invariant realism associated with the charge before it completes its loop. We find that the realism of these operators has a sudden change when the line connecting the center of both wavepackets crosses the solenoid. Moreover, we consider the case of a quantized magnetic field source, pointing out similarities and differences between the two cases. Finally, we discuss the implications of these results to the understanding of the effect.

Show more

Sep 2023 • Superconductor Science and Technology

Dendritic flux avalanches in superconducting hybrid structures

Michal Wasserman, Avner Shaulov, Amos Sharoni, Yosef Yeshurun

Magneto-optical imaging was employed to study dendritic flux avalanches in metal/superconductor and superconductor/superconductor hybrid structures over an extended range of magnetic field ramping rates. Our results in Cu/NbN show that the previously reported suppression of dendritic flux avalanches in metal coated superconducting films is limited to low ramping rates; as the ramping rate increases, the metal coating becomes less and less effective. A more complex behavior is exhibited in superconductor/superconductor hybrid structures. Our measurement in NbN partially coated with Nb, reveal three distinctive types of dendritic avalanches: those propagating in only one layer, either as regular dendrites in the uncoated NbN or as surface dendrites in the Nb layer, and hybrid dendrites that propagate in both the Nb and NbN layers simultaneously. These three types of dendrites are distinguished by their …

Show more

Sep 2023 • Journal of Cosmetics, Dermatological Sciences and Applications

A Novel Facial Cream Based on Skin Penetrable Hemp Oil Microparticles

Rachel Lubart, Inbar Yariv, Dror Fixler, Ayelet Rothstein, Arie Gruzman, Anat Lipovsky

Objective Hemp seed oil is perfect for most skin types; it moisturizes skin and protects it from inflammation, oxidation, and other causes of aging. The problem is that the Hemp oil-based products do not penetrate the skin; they remain on the skin’s surface. Recently researchers have been trying to prepare nano emulsions of hemp oil to facilitate its permeation to deep skin layers. In all techniques used today, surfactants are added to the emulsification process. These surfactants may cause unwanted skin side effects. In the present study, we prepare micronized Hemp (m-Hemp) without using any surfactants in the micronization process, thus avoiding the side effects associated with surfactant addition. Methods & Results Particles size of m-Hemp was evaluated using electron microscopy. Various sizes of m-Hemp were found, the smallest being 100 nm in diameter. The antioxidation properties of m-Hemp were measured using the Electron Spin Resonance (ESR) technique and were found to be enhanced. Skin topography and morphology following a cream containing m-Hemp treatment were visualized by Optical Profilometry and ESEM respectively. The results show a marked improvement in skin topography in all measured parameters. In addition, human keratinocytes (HaCaT) were exposed to inflammatory conditions and were then treated using Hemp. As a result, one of the key inflammatory factors (IL-2) was significantly reduced after treatment with m-Hemp (p ≤ 0.0001). The skin penetration of the cream containing m-Hemp was tested on human skin using the IMOPE (Iterative Multi-plane Optical Property Extraction) system. The results …

Show more

logo
Articali

Powered by Articali

TermsPrivacy