BINA

3857 articles

77 publishers

Join mailing list

Dec 2022 • Polymers

Fabrication and Characterization of Hydrogen Peroxide and Thymol-Loaded PVA/PVP Hydrogel Coatings as a Novel Anti-Mold Surface for Hay Protection

Eyal Malka, Ayelet Caspi, Reut Cohen, Shlomo Margel

Animal food source production is increasing due to the growing world population. Many sources (e.g., hay) are prone to mold development, resulting in food degradation. This study proposes an environmentally friendly anti-mold fungicide comprising hydrogen peroxide (HP) and thymol entrapped in a polyvinyl alcohol/pyrrolidone (PVA/PVP) hydrogel (PVA is biodegradable and PVP is water soluble and non-toxic) coated on a polyethylene (PE) films for preservative hay packaging. The hydrogels improved the thermal stability of the entrapped HP and thymol, resulting in a prolonged release into the hay and thereby increasing anti-mold activity. The hydrogel composition and morphology, thymol and HP thermal stability, and release rates through indirect (gas phase) contact were investigated. Fungicidal capabilities were tested, indicating wide-range efficiency against mold growth on hay with a clear advantage for the thymol-loaded hydrogels. No visual side effects were observed on hay exposed to the released fumes of HP and/or thymol. These results demonstrate the potential of thymol-loaded hydrogels as effective and safe post-harvest preservatives.

Show more

Dec 2022 • 2022-Sustainable Industrial Processing Summit 13, 73-96, 2022

Recovery of Pre-Seismic Gas Flow Anomalous Signals at Deep Boreholes as a Proxy for Investigating Tectonic Activity

Hovav Zafrir, Susana Barbosa, Danielle Ilzycer, Gustavo Haquin, Noam Weisbrod, Zeev Zalevsky

An innovative method based on the capability to measure temporal changes of gas flow such as Rn-222 and CO2 in deep boreholes, led to the clear discovery that both gases are affected by underground activity and could be associated with the regional geodynamic pre-seismic evolution along the Dead Sea Fault Zone (DSFZ) in northern Israel. Long-term monitoring of natural gases in deep boreholes along seismogenic active fault zones, based on passive measuring systems (avoiding pumping and gas circulation that disturb the local equilibrium) enables to eliminate from the acquired time series, the climatic-induced periodic contributions caused by temperature and barometric pressure, and to expose the remaining portion of the signals that may be associated with the underground tectonic preseismic activity. It was highlighted that the radon present in country rock formations as measured by gamma radiation …

Show more

Dec 2022 • Materials Today Energy

Ionically selective carbon nanotubes for hydrogen electrocatalysis in the hydrogen–bromine redox flow battery

Samuel S Hardisty, Kobby Saadi, Samala Nagaprasad Reddy, Ilya Grinberg, David Zitoun

Catalyst poisoning and leaching is a problem faced in almost all catalyst applications. A specific technology where catalyst poisoning and leaching are a major concern is the hydrogen bromine redox flow battery (H 2-B r 2 RFB), one of the most promising energy storage technologies. However, it is currently hindered through degradation of the hydrogen oxidation/evolution catalyst, caused by B r-/B r 3-which have crossed the membrane. To prevent this degradation, Pt nanoparticles were synthesized inside 2 nm single-walled carbon nanotubes (SWCNTs). Electrochemical and spectroscopic techniques show that the Pt@ SWCNT has a vastly improved stability and higher mass activity over a commercial 50% Pt/C catalyst. Density functional theory (DFT) calculations show that the stability results from the selective diffusion of H 2 and H+ over the B r-and B r 3-species through the SWCNT to the Pt catalyst, effectively …

Show more

Dec 2022 • International Journal of Molecular Sciences

CT and MRI Imaging of Theranostic Bimodal Fe3O4@Au NanoParticles in Tumor Bearing Mice

Alexey A Lipengolts, Yulia A Finogenova, Vsevolod A Skribitsky, Kristina E Shpakova, Adi Anaki, Menachem Motiei, Alevtina S Semkina, Maxim A Abakumov, Anna V Smirnova, Elena Y Grigorieva, Rachela Popovtzer

Gold-containing nanoparticles are proven to be an effective radiosensitizer in the radiotherapy of tumors. Reliable imaging of nanoparticles in a tumor and surrounding normal tissues is crucial both for diagnostics and for nanoparticle application as radiosensitizers. The Fe3O4 core was introduced into gold nanoparticles to form a core/shell structure suitable for MRI imaging. The aim of this study was to assess the in vivo bimodal CT and MRI enhancement ability of novel core/shell Fe3O4@Au theranostic nanoparticles. Core/shell Fe3O4@Au nanoparticles were synthesized and coated with PEG and glucose. C57Bl/6 mice bearing Ca755 mammary adenocarcinoma tumors received intravenous injections of the nanoparticles. CT and MRI were performed at several timepoints between 5 and 102 min, and on day 17 post-injection. Core/shell Fe3O4@Au nanoparticles provided significant enhancement of the tumor and tumor blood vessels. Nanoparticles also accumulated in the liver and spleen and were retained in these organs for 17 days. Mice did not show any signs of toxicity over the study duration. These results indicate that theranostic bimodal Fe3O4@Au nanoparticles are non-toxic and serve as effective contrast agents both for CT and MRI diagnostics. These nanoparticles have potential for future biomedical applications in cancer diagnostics and beyond.

Show more

Dec 2022 • Materials Today Sustainability

Methyl formate and dimethyl ether electro-oxidation on PtPdSn catalyst supported on carbon nanotube decorated with carbon dots

Vijay Bhooshan Kumar, Diwakar Kashyap, Hanan Teller, Medhanie Gebremedhin Gebru, Aharon Gedanken, Alex Schechter

In this work methyl formate (MF) and dimethyl ether (DME) electro-oxidation was studied on equimolar ratio Pt-Pd-Sn catalyst supported on Vulcan Carbon XC-72, carbon nanotubes (CNT), and CNT - nitrogen-doped carbon dots (NCDs) composite. The ternary catalyst was synthesized by the ethylene glycol assisted thermal reduction method and NCDs were synthesized by a hydrothermal method in the presence of CNT to form CNT-NCDs composite, in which the NCDs are incorporated onto the CNT surface. The activity of the catalyst in the oxidation of MF and DME was analyzed using cyclic voltammetry and chronoamperometry techniques. The ternary catalyst supported on CNT-NCDs composite (Pt1Pd1Sn1/CNT-NCDs) showed peak oxidation current of 75 mA mg-1 and 365 mA mg-1 for DME and MF, respectively, highest among the studied Pt1Pd1Sn1/XC-72 and Pt1Pd1Sn1/CNT. The onset potential of DME …

Show more

Dec 2022 • International Journal of Molecular Sciences

Supermagnetic Human Serum Albumin (HSA) Nanoparticles and PLGA-Based Doxorubicin Nanoformulation: A Duet for Selective Nanotherapy

Julia Malinovskaya, Rawan Salami, Marat Valikhov, Veronika Vadekhina, Aleksey Semyonkin, Alevtina Semkina, Maxim Abakumov, Yifat Harel, Esthy Levy, Tzuriel Levin, Rachel Persky, Vladimir Chekhonin, Jean-Paul Lellouche, Pavel Melnikov, Svetlana Gelperina

Predicting the ability of nanoparticles (NP) to access the tumor is key to the success of chemotherapy using nanotherapeutics. In the present study, the ability of the dual NP-based theranostic system to accumulate in the tumor was evaluated in vivo using intravital microscopy (IVM) and MRI. The system consisted of model therapeutic doxorubicin-loaded poly(lactide-co-glycolide) NP (Dox-PLGA NP) and novel hybrid Ce3/4+-doped maghemite NP encapsulated within the HSA matrix (hMNP) as a supermagnetic MRI contrasting agent. Both NP types had similar sizes of ~100 nm and negative surface potentials. The level of the hMNP and PLGA NP co-distribution in the same regions of interest (ROI, ~2500 µm2) was assessed by IVM in mice bearing the 4T1-mScarlet murine mammary carcinoma at different intervals between the NP injections. In all cases, both NP types penetrated into the same tumoral/peritumoral regions by neutrophil-assisted extravasation through vascular micro- and macroleakages. The maximum tumor contrasting in MRI scans was obtained 5 h after hMNP injection/1 h after PLGA NP injection; the co-distribution level at this time reached 78%. Together with high contrasting properties of the hMNP, these data indicate that the hMNP and PLGA NPs are suitable theranostic companions. Thus, analysis of the co-distribution level appears to be a useful tool for evaluation of the dual nanoparticle theranostics, whereas assessment of the leakage areas helps to reveal the tumors potentially responsive to nanotherapeutics.

Show more

Dec 2022 • Crystals

Nitrogen Structure Determination in Treated Fancy Diamonds via EPR Spectroscopy

Ira Litvak, Avner Cahana, Yaakov Anker, Sharon Ruthstein, Haim Cohen

Color induction in nitrogen-contaminated diamonds was carried out via various procedures that involve irradiation, thermal treatments (annealing), and more. These treatments affect vacancy defect production and atom orientation centers in the diamond lattice. Natural diamonds underwent color enhancement treatments in order to produce green, blue, and yellow fancy diamonds. The aim of this study was to follow the changes occurring during the treatment, mainly by EPR spectroscopy, which is the main source for the determination of the effect of paramagnetic centers (carbon-centered radicals) on the color centers produced via the treatments, but also via visual assessment, fluorescence, UV-vis, and FTIR spectroscopy. The results indicate that diamonds containing high levels of nitrogen contamination are associated with high carbon-centered radical concentrations. Four paramagnetic center structures (N1, N4, and P2/W21) were generated by the treatment. It is suggested that the N4 structure correlates with the formation of blue color centers, whereas yellow color centers are attributed to the presence of N1 species. While to produce blue and yellow colors, a thermal treatment is needed after irradiation, for treated green diamonds, no thermal treatment is needed (only irradiation).

Show more

Dec 2022 • Applications of Lasers for Sensing and Free Space Communications, LsTh3C. 3, 2022

Full Spectral control in a One-Dimensional Solid State Random Laser

Bhupesh Kumar, Ran Homri, Patrick Sebbah

We report temperature-induced, narrow linewidth wavelength-tunable random lasing in 1D solid-state random laser. First, random laser is operated in a single-mode regime using the iterative pump optimization method. After that temperature-induced change in the refractive index of the PMMA-DCM layer leads to wavelength tunability.

Show more

Dec 2022 • International Journal of Molecular Sciences

Characterization of Diabetic Retinopathy in Two Mouse Models and Response to a Single Injection of Anti-Vascular Endothelial Growth Factor

Tamar Azrad-Leibovich, Alon Zahavi, Moran Friedman Gohas, Myles Brookman, Orit Barinfeld, Orkun Muhsinoglu, Shalom Michowiz, Dror Fixler, Nitza Goldenberg-Cohen

In this study, we characterized diabetic retinopathy in two mouse models and the response to anti-vascular endothelial growth factor (VEGF) injection. The study was conducted in 58 transgenic, non-obese diabetic (NOD) mice with spontaneous type 1 diabetes (n = 30, DMT1-NOD) or chemically induced (n = 28, streptozotocin, STZ-NOD) type 1 diabetes and 20 transgenic db/db mice with type 2 diabetes (DMT2-db/db); 30 NOD and 8 wild-type mice served as controls. Mice were examined at 21 days for vasculopathy, retinal thickness, and expression of genes involved in oxidative stress, angiogenesis, gliosis, and diabetes. The right eye was histologically examined one week after injection of bevacizumab, ranibizumab, saline, or no treatment. Flat mounts revealed microaneurysms and one apparent area of tufts of neovascularization in the diabetic retina. Immunostaining revealed activation of Müller glia and prominent Müller cells. Mean retinal thickness was greater in diabetic mice. RAGE increased and GFAP decreased in DMT1-NOD mice; GFAP and SOX-9 mildly increased in db/db mice. Anti-VEGF treatment led to reduced retinal thickness. Retinas showed vasculopathy and edema in DMT1-NOD and DMT2-db/db mice and activation of Müller glia in DMT1-NOD mice, with some response to anti-VEGF treatment. Given the similarity of diabetic retinopathy in mice and humans, comparisons of type 1 and type 2 diabetic mouse models may assist in the development of new treatment modalities.

Show more

Dec 2022 • arXiv preprint arXiv:1812.11450

Spin‐Spacetime Censorship

Jonathan Nemirovsky, Eliahu Cohen, Ido Kaminer

Quantum entanglement and relativistic causality are key concepts in theoretical works seeking to unify quantum mechanics and gravity. In this article, we show that the interplay between relativity theory and quantum entanglement has intriguing consequences for the spacetime surrounding elementary particles with spin. Classical and quantum gravity theories predict that a spin-generated magnetic dipole field causes a (slight) bending to the spacetime around particles, breaking its spherical symmetry. Motivated by the apparent break of spherical symmetry, we propose a very general gedanken experiment that does not rely on any specific theory of classical or quantum gravity, and analyze this gedanken experiment in the context of quantum information. We show that any spin-related deviation from spherical symmetry would violate relativistic causality. To avoid the violation of causality, the measurable spacetime around the particle's rest frame must remain spherically symmetric, potentially as a back-action by the act of measurement. This way, our gedanken experiment proves that there must be a censorship mechanism preventing the possibility of spacetime-based spin detection, which sheds new light on the interface between quantum mechanics and gravity. We emphasize that our proposed gedanken experiment is independent of any theory and by allowing spacetime to be quantized its purpose is to be used for testing present and future candidate theories of quantum gravity.

Show more

Dec 2022 • JOURNAL OF PHYSICS-CONDENSED MATTER

Novel in situ multi-harmonic EQCM-D approach to characterize complex carbon pore architectures for capacitive deionization of brackish water (vol 28, 114001, 2016)

Netanel Shpigel, Mikhael D Levi, Sergey Sigalov, Doron Aurbach, Leonid Daikhin, Volker Presser


Dec 2022 • International Journal of Molecular Sciences

Characterization of diabetic retinopathy in two mouse models and response to a single injection of anti-vascular endothelial growth factor

Tamar Azrad-Leibovich, Alon Zahavi, Moran Friedman Gohas, Myles Brookman, Orit Barinfeld, Orkun Muhsinoglu, Shalom Michowiz, Dror Fixler, Nitza Goldenberg-Cohen

In this study, we characterized diabetic retinopathy in two mouse models and the response to anti-vascular endothelial growth factor (VEGF) injection. The study was conducted in 58 transgenic, non-obese diabetic (NOD) mice with spontaneous type 1 diabetes (n = 30, DMT1-NOD) or chemically induced (n = 28, streptozotocin, STZ-NOD) type 1 diabetes and 20 transgenic db/db mice with type 2 diabetes (DMT2-db/db); 30 NOD and 8 wild-type mice served as controls. Mice were examined at 21 days for vasculopathy, retinal thickness, and expression of genes involved in oxidative stress, angiogenesis, gliosis, and diabetes. The right eye was histologically examined one week after injection of bevacizumab, ranibizumab, saline, or no treatment. Flat mounts revealed microaneurysms and one apparent area of tufts of neovascularization in the diabetic retina. Immunostaining revealed activation of Müller glia and prominent Müller cells. Mean retinal thickness was greater in diabetic mice. RAGE increased and GFAP decreased in DMT1-NOD mice; GFAP and SOX-9 mildly increased in db/db mice. Anti-VEGF treatment led to reduced retinal thickness. Retinas showed vasculopathy and edema in DMT1-NOD and DMT2-db/db mice and activation of Müller glia in DMT1-NOD mice, with some response to anti-VEGF treatment. Given the similarity of diabetic retinopathy in mice and humans, comparisons of type 1 and type 2 diabetic mouse models may assist in the development of new treatment modalities.

Show more

Dec 2022 • Crystals

Nitrogen Structure Determination in Treated Fancy Diamonds via EPR Spectroscopy

Ira Litvak, Avner Cahana, Yaakov Anker, Sharon Ruthstein, Haim Cohen

Color induction in nitrogen-contaminated diamonds was carried out via various procedures that involve irradiation, thermal treatments (annealing), and more. These treatments affect vacancy defect production and atom orientation centers in the diamond lattice. Natural diamonds underwent color enhancement treatments in order to produce green, blue, and yellow fancy diamonds. The aim of this study was to follow the changes occurring during the treatment, mainly by EPR spectroscopy, which is the main source for the determination of the effect of paramagnetic centers (carbon-centered radicals) on the color centers produced via the treatments, but also via visual assessment, fluorescence, UV-vis, and FTIR spectroscopy. The results indicate that diamonds containing high levels of nitrogen contamination are associated with high carbon-centered radical concentrations. Four paramagnetic center structures (N1, N4, and P2/W21) were generated by the treatment. It is suggested that the N4 structure correlates with the formation of blue color centers, whereas yellow color centers are attributed to the presence of N1 species. While to produce blue and yellow colors, a thermal treatment is needed after irradiation, for treated green diamonds, no thermal treatment is needed (only irradiation).

Show more

Dec 2022 • arXiv preprint arXiv:2212.04350

Secure communication using low dimensional topological elements

Manuel F Ferrer-Garcia, Avishy Carmi, Alessio D'Errico, Hugo Larocque, Eliahu Cohen, Ebrahim Karimi

Low-dimensional topological objects, such as knots and braids, have become prevalent in multiple areas of physics, such as fluid dynamics, optics, and quantum information processing. Such objects also now play a role in cryptography, where a framed knot can store encoded information using its braid representation for communications purposes. The greater resilience of low-dimensional topological elements under deformations allows them to be employed as a reliable framework for information exchange. Here, we introduce a challenge-response protocol as an application of this construction for authentication. We provide illustrative examples of both procedures showing how framed links and braids may help to enhance secure communication.

Show more

Dec 2022 • Physical Review B

Giant response to spin-orbit torques in heavy-metal/ferromagnetic bilayers associated with magnetic reversal

Ariel Zaig, Shubhankar Das, Moty Shultz, Lior Klein

Using bilayer films of β-Ta (5 nm)/Ni 0.8 Fe 0.2 (2 nm), we fabricate elliptical structures which exhibit uniaxial magnetic anisotropy, resulting in single magnetic domain behavior. We study induced spin-orbit torques (SOTs) in these devices with first-and second-order harmonic Hall measurements for current flowing along the long axis of the ellipses and external magnetic field applied in the film plane. We observe a giant response to the SOTs associated with magnetization reversal of the NiFe layer, and we correlate it quantitatively with a d φ m/d φ H term, where φ m and φ H are the in-plane angles of the magnetization and the magnetic field, respectively. We discuss theoretical and applicative implications of this intriguing behavior.

Show more

Dec 2022 • Advanced Functional Materials

Bioengineering 3D Neural Networks Using Magnetic Manipulations (Adv. Funct. Mater. 50/2022)

Reut Plen, Alejandra Smith, Ofir Blum, Or Aloni, Uri Locker, Zehavit Shapira, Shlomo Margel, Orit Shefi

In article number 2204925, Orit Shefi and co-workers depict that neurons are transformed into magnetic units and dynamically localized within 3D biomaterials using magnetic manipulations. Iron-oxide nanoparticles are synthesized and incorporated into neurons, which are then subjected to various magnetic fields. The neurons' movement is controlled inside multi-layered 3D collagen scaffolds simulating in-vivo tissue structures, thus constructing pre-designed, viable and functional 3D microarchitectures of neural networks.

Show more

Dec 2022 • ACS Applied Bio Materials

Enhanced UV Protection, Heavy Metal Detection, and Antibacterial Properties of Biomass-Derived Carbon Dots Coated on Protective Fabrics

Arulappan Durairaj, Moorthy Maruthapandi, John HT Luong, Ilana Perelshtein, Aharon Gedanken

Carbon dots (CDs) were simply prepared from charcoal by hydrothermal processing at 180 °C for 15 h without any chemicals. The as-prepared CDs with an average diameter of 5 ± 6 nm exhibited a predominant absorption peak at 290 nm, corresponding to the n to π* transition of the oxygen functional groups (C═O) and the free amine functional groups (−NH2). The resulting CDs were then incorporated into cotton and polyester by facile ultrasonication for 1 h. The obtained CD-coated fabrics were first evaluated for their UV-blocking capability and then for their antibacterial properties against two model pathogens: Gram-negative E. coli and Gram-positive S. aureus. Both cotton and polyester showed no UV protection at 280 or 380 nm; conversely, cotton or polyester decorated with CDs exhibited a UV blocking ratio of 82–98%. The CD-coated fabrics showed 100% antibacterial activities against E. coli and S. aureus …

Show more

Dec 2022 • Annual Review of Condensed Matter Physics 13, 385-405, 2022

Studying Quantum Materials with Scanning SQUID Microscopy

Eylon Persky, Ilya Sochnikov, Beena Kalisky

Electronic correlations give rise to fascinating macroscopic phenomena such as superconductivity, magnetism, and topological phases of matter. Although these phenomena manifest themselves macroscopically, fully understanding the underlying microscopic mechanisms often requires probing on multiple length scales. Spatial modulations on the mesoscopic scale are especially challenging to probe, owing to the limited range of suitable experimental techniques. Here, we review recent progress in scanning superconducting quantum interference device (SQUID) microscopy. We demonstrate how scanning SQUID combines unmatched magnetic field sensitivity and highly versatile designs, by surveying discoveries in unconventional superconductivity, exotic magnetism, topological states, and more. Finally, we discuss how SQUID microscopy can be further developed to answer the increasing demand for imaging …

Show more

Dec 2022 • Scientific Reports

Current dependence of the negative magnetoresistance in superconducting NbN nanowires

Zoharchen Sofer, Avner Shaulov, Yosef Yeshurun

Magnetoresistance measurements in amorphous NbN nanowires show that transport current affects their negative magnetoresistance (nMR) in a manner qualitatively similar to temperature. In particular, the current suppresses the nMR and, beyond a certain level it eliminates the effect altogether. As the temperature dependence of the nMR effect is more pronounced at low currents, similarly the current dependence of the effect is more pronounced at low temperatures. These results are discussed in terms of the phenomenological model which attributes the nMR to the interplay between the resistance originating from the rate of phase slips via the Josephson relation and the Ohmic contribution from quasiparticles charge imbalance that accompany fluctuations of the order parameter in the nanowire.

Show more

Dec 2022 • Journal of The Electrochemical Society

An Improved Cycling Performance of Different Types of Composite Sulfur-Carbon Cathodes with the Use of Lithium Polysulfides Containing Electrolyte Solutions

Elena Markevich, Gregory Salitra, Hideki Yoshida, Shunsuke Sawada, Doron Aurbach

We report on stabilization of Li-S cells with different types of composite sulfur cathodes using ethereal LiTFSI/LiNO3/DOL/DME electrolyte solutions containing a-priori 0.1M Li2S8. These electrolyte solutions enable an improved cycling behavior for Li-S cells compared to Li2S8-free electrolyte solutions, thanks to the presence of LiSx species from the beginning of operation. We show that Li anodes cycled in Li|S cells with solutions containing Li2S8 possess flatter and more uniform surface, higher dimensions of the surface structures in average and, as a result, a lower surface area. This surface morphology ensures a low rate of parasitic surface reactions of the electrolyte components on the Li anodes’ surface, slower depletion of the electrolyte solution in the cells and stabilization of the cells cycling. Besides, the presence of Li2S8 maintains a better integrity of composite sulfur/carbon/PVdF cathodes, ensuring a …

Show more

Dec 2022 • Optica

Distributed chemical detection outside standard coated fibers using Brillouin optical time-domain analysis of cladding mode spectra

Elad Zehavi, Alon Bernstein, Gil Bashan, Hilel Hagai Diamandi, Kavita Sharma, Yosef London, Mirit Hen, Keren Shemer, Andrei A Stolov, Jie Li, Avi Zadok

Propagation in the cladding modes of standard optical fibers enables the sensing of chemicals outside the fiber boundary, where light in the single core mode cannot reach. Coupling to the cladding modes typically relies on the inscription of permanent gratings, which restricts the operation of the sensors to point measurements only. In addition, most applications rely on bare, uncoated fibers, which are difficult to deploy outside the research laboratory. In this work, we report the spatially distributed analysis of cladding mode spectra in a standard, off-the-shelf coated fiber. The inscription of the gratings, removal of the coating, or other structural modifications are not required. Coupling is based on Brillouin dynamic gratings: Two optical pump fields stimulate an acoustic wave, which couples a probe field to a counter-propagating cladding mode. Spatial mapping is obtained through time-of-flight analysis: pulsed modulation of one pump wave and the monitoring of the output probe power as a function of time. All fields are launched and detected only in the core mode. The coupling spectrum is sensitive to local changes in the refractive index of the coating layer, to the third decimal point. The spatial resolution is one meter. The demonstrated range is a few meters, and is scalable to hundreds of meters. The technique is used to detect and monitor the local immersion of a fiber section in acetone. The results establish a practical method for spatially distributed fiber optic chemical sensors.

Show more

logo
Articali

Powered by Articali

TermsPrivacy