BINA

3964 articles

77 publishers

Join mailing list

Jan 2023 • The Journal of Physical Chemistry B

Correction to “Monte Carlo Diffusion-Enhanced Photon Inference: Distance Distributions and Conformational Dynamics in Single-Molecule FRET”

Antonino Ingargiola, Shimon Weiss, Eitan Lerner

The Supporting Information is available free of charge at https://pubs. acs. org/doi/10.1021/acs. jpcb. 2c09011. A thorough description of additional MC-DEPI simulations of different conditions that yield the same FRET histograms and a full description of the methods used in this work as well as an appendix thoroughly describing the loss function used in this work for the fitting procedure (PDF)

Show more

Jan 2023 • Plos one

Study of entanglement via a multi-agent dynamical quantum game

Amit Te’eni, Bar Y Peled, Eliahu Cohen, Avishy Carmi

At both conceptual and applied levels, quantum physics provides new opportunities as well as fundamental limitations. We hypothetically ask whether quantum games inspired by population dynamics can benefit from unique features of quantum mechanics such as entanglement and nonlocality. For doing so, we extend quantum game theory and demonstrate that in certain models inspired by ecological systems where several predators feed on the same prey, the strength of quantum entanglement between the various species has a profound effect on the asymptotic behavior of the system. For example, if there are sufficiently many predator species who are all equally correlated with their prey, they are all driven to extinction. Our results are derived in two ways: by analyzing the asymptotic dynamics of the system, and also by modeling the system as a quantum correlation network. The latter approach enables us to apply various tools from classical network theory in the above quantum scenarios. Several generalizations and applications are discussed.

Show more

Jan 2023 • Materials Today Energy

Evolution of ternary LixSnyOz artificial cathode-electrolyte interphase (ACEI) through ALD: a surface strengthened NCM811 with enhanced electrochemical performances for Li-ion …

Arka Saha, Ortal Shalev, Sandipan Maiti, Longlong Wang, Sri Harsha Akella, Bruria Schmerling, Sarah Targin, Maria Tkachev, Xiulin Fan, Malachi Noked

[(LiNi0·8Co0·1Mn0.1)O2], or NCM811, a member of the LixNi1−y−zCoyMnzO2 (NCM) family of cathode active materials (CAMs), is gaining recognition in the battery community as the CAM of choice for future high energy density lithium-ion batteries, given its high nickel content of c. 80%. Yet, its commercialization is impeded by its mechanochemical instability at a high state of charge (SOC), which results in severe capacity fading and active lithium loss during cycling. In this contribution, we report conformal nanometer-thick (c. 4–7 nm) lithiated tin-oxide ternary coatings (LixSnyOz) deposited on NCM811 cathode powder using the atomic layer deposition (ALD) technique. The first-of-its-kind ALD coating, where Li is being accompanied by a second metal ion (Sn); provides a combination of benefits: (i) it stabilizes the crystal structure, (ii) suppresses electrode polarization, (iii) lowers the voltage hysteresis, and (iv …

Show more

Jan 2023 • Frontiers in Oncology

A predictive model for personalization of nanotechnology-based phototherapy in cancer treatment

Eli Varon, Gaddi Blumrosen, Orit Shefi

A major challenge in radiation oncology is predicting and optimizing a clinical response on a personalized manner. Recently, nanotechnology-based cancer treatments are being combined with photodynamic therapy (PDT) and photothermal therapy (PTT). Machine learning predictive models can be used to optimize the clinical setup configuration, such as: laser radiation intensity, treatment duration, and nanoparticles features. In this work we demonstrate a methodology to find the optimized treatment parameters for PDT and PTT by collecting data of in vitro cytotoxicity assay of PDT/PTT-induced cell death using a single nanocomplex. We examine three machine learning prediction models of regression, interpolation, and low degree analytical function to predict the laser radiation intensity and duration that maximize the treatment efficiency. To examine these prediction models accuracy, we built a dedicated dataset for PDT, PTT, and a combined treatment that is based on cell death measurements after light radiation treatment, divided to training and test sets. The preliminary results show that all models offer sufficient performance with death rate error of 0.09, 0.15, and 0.12 for the regression, interpolation, and analytical function fitting. Nevertheless, the analytical function due to its simple form has a clinical application advantage that can be used for further sensitivity analysis of the treatment parameters on the performance. In all, the results of this work form a baseline for a future machine learning base personal prediction model in combined nanotechnology-based phototherapy cancer treatment.

Show more

Jan 2023 • Crystals

L-Glu Hierarchical Structure Crystallization Using Inorganic Ions

Michal Ejgenberg, Yitzhak Mastai

Hierarchical organic structures have gained vast attention in the past decade owing to their great potential in chemical and medical applications in industries such as the food and pharmaceutical industries. In this paper, the crystallization of L-glu hierarchical spheres using inorganic ions, namely calcium, barium and strontium cations, is described. The anti-solvent precipitation method is used for the spherical crystallization. The L-glu microspheres are characterized using various techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photo-electron microscopy (XPS) and polarized microscopy (POM). It is shown that without additives, L-glu crystallizes as flower-like structures, very different from the hierarchical spheres crystallized with the charged additives. Based on our results, we suggest a mechanism for the hierarchical sphere formation based on the crystallization and self-assembly of L-glu in emulsion droplets using charged additives.

Show more

Jan 2023 • Crystals

L-Glu Hierarchical Structure Crystallization Using Inorganic Ions

Michal Ejgenberg, Yitzhak Mastai

Hierarchical organic structures have gained vast attention in the past decade owing to their great potential in chemical and medical applications in industries such as the food and pharmaceutical industries. In this paper, the crystallization of L-glu hierarchical spheres using inorganic ions, namely calcium, barium and strontium cations, is described. The anti-solvent precipitation method is used for the spherical crystallization. The L-glu microspheres are characterized using various techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photo-electron microscopy (XPS) and polarized microscopy (POM). It is shown that without additives, L-glu crystallizes as flower-like structures, very different from the hierarchical spheres crystallized with the charged additives. Based on our results, we suggest a mechanism for the hierarchical sphere formation based on the crystallization and self-assembly of L-glu in emulsion droplets using charged additives.

Show more

Jan 2023 • Optics Express

Thermo-elastic gigahertz-frequency oscillator through surface acoustic wave-silicon photonics

Maayan Priel, Saawan Kumar Bag, Matan Slook, Leroy Dokhanian, Inbar Shafir, Mirit Hen, Moshe Katzman, Etai Grunwald, Dvir Munk, Moshe Feldberg, Tali Sharabani, Naor Inbar, Gil Bashan, Avi Zadok

Opto-electronic oscillators are sources of microwave-frequency tones that may reach very low noise levels. Much effort is being dedicated to the realization of oscillators based on photonic integrated devices. In this work, we propose and demonstrate a thermo-elastic opto-electronic oscillator at 2.213 GHz frequency based on a standard silicon-photonic integrated circuit. A microwave-frequency electrical signal modulates an optical pump wave carrier. The modulated waveform launches surface acoustic waves in a silicon-on-insulator substrate, through absorption in a metallic grating and thermo-elastic actuation. The waveform is reconverted to the optical domain through photoelastic modulation of an optical probe wave carrier in a standard racetrack resonator waveguide. Both the thermo-elastic actuation and the photoelastic modulation are radio-frequency selective. The output probe wave is detected, and the receiver voltage is amplified and fed back to modulate the optical pump input. Sufficient gain drives the loop into oscillations. The oscillator does not involve piezoelectricity and can be realized on any substrate. Long acoustic delays may be implemented in compact devices. The frequency of operation is scalable to tens of GHz. The principle may be useful in integrated microwave-photonic signal processing and in the elastic analysis of surfaces and thin layers.

Show more

Jan 2023 • Polymer-Based Nanoscale Materials for Surface Coatings, 479-500, 2023

Superhydrophobic nanoscale materials for surface coatings

Sayan Ganguly, Shlomo Margel

Superhydrophobic surface preparation is developed by inspiration from nature. As it is a natural fact that lotus leaves are water repellant, thus researchers tried their best to develop superhydrophobic coatings by using several materials. The materials are categorized by inorganic, organic, and their synergistic hybrids. Polymeric coatings are more usable by scientists because of its tunable chemical features and their internal morphologies. This chapter will discuss in brief the coating materials and how polymer systems influenced the superhydrophobicity.

Show more

Jan 2023 • Power Ultrasonics, 431-454, 2023

Power ultrasound for the production of nanomaterials

A Gedanken, I Perelshtein, N Perkas

Sonochemistry in now well recognized as a technique for the fabrication of nanomaterials. This is reflected in the many review articles on sonochemistry and nanoparticles that have been published over the last few years. It is so happened that Suslick, one of the forefathers of this field, has lately written a very comprehensive review on this topic (Bang, 2010). In his review, Suslick has summarized the work published on sonochemistry and nanomaterials until 2010. The current review will try to scan the work done in this area until the end of 2012. The current review will concentrate first on explaining why nano? Namely, when, why, and what kind of nanomaterials are produced upon the collapse of the acoustic bubble?

Show more

Jan 2023 • Advanced Optical Materials

Optical Properties and Ultrafast Near‐Infrared Localized Surface Plasmon Dynamics in Naturally p‐Type Digenite Films

Andrea Villa, Madina Telkhozhayeva, Fabio Marangi, Eti Teblum, Aaron M Ross, Mirko Prato, Luca Andena, Roberto Frassine, Francesco Scotognella, Gilbert Daniel Nessim

Copper chalcogenides are materials characterized by intrinsic doping properties, allowing them to display high carrier concentrations due to their defect‐heavy structures, independent of the preparation method. Such high doping enables these materials to display plasmonic resonances, tunable by varying their stoichiometry. Here, plasmonic dynamics is studied in drop‐cast Cu9S5 (digenite) nanocrystals (NCs) film using ultrafast pump–probe spectroscopy. The NCs are synthesized by thermal annealing of copper foil using chemical vapor deposition (CVD), followed by sonication and drop‐casting of the isolated few‐layered flakes on different substrates. The samples display a broad localized surface plasmon resonance (LSPR) in the near‐infrared (NIR), peaking at 2100 nm. The free carrier response is further confirmed by fitting the linear absorption with a Drude–Lorentz effective medium approximation model …

Show more

Jan 2023 • Analysis & Sensing

Cover Feature: Measurement of Protein Dynamics from Site Directed Cu (II) Labeling (Anal. Sens. 1/2023)

Kevin Singewald, Hannah Hunter, Timothy F Cunningham, Sharon Ruthstein, Sunil Saxena

The cover feature image illustrates two sites of a protein with different site specific reorientational dynamics (purple). Such differences can be measured by newly developed site-directed Cu (II) labeling methodology. The resultant EPR lineshape at physiological temperatures is sensitive to the timescale of backbone motion. Importantly, this methodology enables site-specific detection on both α-helices and β-sheets via EPR. Thus, the role of protein dynamics to protein function can be elucidated. More information can be found in the Review by Sunil Saxena and co-workers.

Show more

Jan 2023 • arXiv preprint arXiv:2301.01581

Universal to nonuniversal transition of the statistics of rare events during the spread of random walks

RK Singh, Stanislav Burov

Particle hopping is a common feature in heterogeneous media. We explore such motion by using the widely applicable formalism of the continuous time random walk and focus on the statistics of rare events. Numerous experiments have shown that the decay of the positional probability density function P (X, t), describing the statistics of rare events, exhibits universal exponential decay. We show that such universality ceases to exist once the threshold of exponential distribution of particle hops is crossed. While the mean hop is not diverging and can attain a finite value; the transition itself is critical. The exponential universality of rare events arises due to the contribution of all the different states occupied during the process. Once the reported threshold is crossed, a single large event determines the statistics. In this realm, the big jump principle replaces the large deviation principle, and the spatial part of the decay is unaffected by the temporal properties of rare events.

Show more

2023 • bioRxiv

A highly conserved A-to-I RNA editing event within the glutamate-gated chloride channel GluClα is necessary for olfactory-based behaviors in Drosophila

Galit Shohat-Ophir

A-to-I RNA editing is an important cellular process that modifies genomically encoded information during transcription, to generate various RNA isoforms from a single DNA sequence. It involves the conversion of specific adenosines in the RNA sequence to inosines by ADAR proteins, resulting in their recognition as guanosines by cellular machinery, and as such plays a vital role in neuronal and immune functions. Given the widespread occurrence of A-to-I RNA editing events across the animal kingdom, with thousands to millions of editing sites found in the transcriptomes of organisms such as flies and humans, identifying the critical sites and understanding their in-vivo functions remains a challenging task. Here we show for the first time the physiological importance of a single editing site, found within the extracellular domain of the glutamate-gated chloride channel (GluClα), and bridge the gap between its evolutionary conservation across Drosophila species and its function in shaping the behavior of adult flies. We used genomic editing to ablate editing at this specific site, such that the endogenous channel harbors only the unedited version and used a battery of behavioral paradigms to analyze the effects on various features of adult behavior. We provide evidence that GluClαunedited flies exhibit reduced olfactory responses to both appetitive and aversive odors, as well as impaired pheromone-dependent social interactions, and that editing of this site is required for proper processing of olfactory information in olfactory projection neurons. Our findings demonstrate that evolutionary conservation is a useful criterion to pinpoint which of the many …

Show more

2023 • Energy & Environmental Science

A practical perspective on the potential of rechargeable Mg batteries

J Alberto Blázquez, Rudi R Maça, Olatz Leonet, Eneko Azaceta, Ayan Mukherjee, Zhirong Zhao-Karger, Zhenyou Li, Aleksey Kovalevsky, Ana Fernández-Barquín, Aroa R Mainar, Piotr Jankowski, Laurin Rademacher, Sunita Dey, Siân E Dutton, Clare P Grey, Janina Drews, Joachim Häcker, Timo Danner, Arnulf Latz, Dane Sotta, M Rosa Palacin, Jean-Frédéric Martin, Juan Maria García Lastra, Maximilian Fichtner, Sumana Kundu, Alexander Kraytsberg, Yair Ein-Eli, Malachi Noked, Doron Aurbach

Emerging energy storage systems based on abundant and cost-effective materials are key to overcome the global energy and climate crisis of the 21st century. Rechargeable Magnesium Batteries (RMB), based on Earth-abundant magnesium, can provide a cheap and environmentally responsible alternative to the benchmark Li-ion technology, especially for large energy storage applications. Currently, RMB technology is the subject of intense research efforts at laboratory scale. However, these emerging approaches must be placed in a real-world perspective to ensure that they satisfy key technological requirements. In an attempt to bridge the gap between laboratory advancements and industrial development demands, herein, we report the first non-aqueous multilayer RMB pouch cell prototypes and propose a roadmap for a new advanced RMB chemistry. Through this work, we aim to show the great unrealized …

Show more

2023 • Carbon Energy

Single‐atom Pt on carbon nanotubes for selective electrocatalysis

Samuel S Hardisty, Xiaoqian Lin, Anthony RJ Kucernak, David Zitoun

Utilizing supported single atoms as catalysts presents an opportunity to reduce the usage of critical raw materials such as platinum, which are essential for electrochemical reactions such as hydrogen oxidation reaction (HOR). Herein, we describe the synthesis of a Pt single electrocatalyst inside single‐walled carbon nanotubes (SWCNTs) via a redox reaction. Characterizations via electron microscopy, X‐ray photoelectron microscopy, and X‐ray absorption spectroscopy show the single‐atom nature of the Pt. The electrochemical behavior of the sample to hydrogen and oxygen was investigated using the advanced floating electrode technique, which minimizes mass transport limitations and gives a thorough insight into the activity of the electrocatalyst. The single‐atom samples showed higher HOR activity than state‐of‐the‐art 30% Pt/C while almost no oxygen reduction reaction activity in the proton exchange …

Show more

2023 • Physical Chemistry Chemical Physics

Velocity Map Imaging with No Spherical Aberrations

Yehuda Ben Shabo, Adeliya Kurbanov, Claus-Dieter Schröter, Robert Moshammer, Holger Kreckel, Yoni Toker

{Velocity map imaging (VMI) is a powerful technique that allows to infer the kinetic energy of ions or electrons that are produced from a large volume in space with good resolution. The size of the acceptance volume is determined by the spherical aberrations of the ion optical system. Here we present an analytical derivation for velocity map imaging with no spherical aberrations. We will discuss a particular example for the implementation of the technique that allows using the reaction microscope recently installed in the Cryogenic storage ring (CSR) in a VMI mode. SIMION simulations confirm that a beam of electrons produced almost over the entire volume of the source region, with width of 8 cm, can be focused to a spot of 0.1 mm on the detector. The use of the same formalism for position imaging, as well as an option of position imaging in one axis and velocity map imaging in a different axis, are also discussed.

Show more

2023 • Chemical Communications

Anodic instability of carbon in non-alkaline Zn–air batteries

Roman R Kapaev, Malachi Noked

Although non-alkaline rechargeable Zn–air batteries (RZABs) are promising for energy storage, their chemistry is still underdeveloped and unclear. It was suggested that using Zn(OAc)2 or Zn(OTf)2 aqueous solutions as electrolytes enables reversible, corrosion-free charge–discharge processes, but the anodic stability of carbon in these cells has remained poorly studied. We report that CO2 evolution is manifested during the oxygen evolution reaction in non-alkaline RZABs, which is associated with the corrosion of carbon scaffolds. This corrosion is observed for different electrolyte compositions, such as Zn(OAc)2, ZnSO4 and Zn(OTf)2 solutions of various concentrations. The corrosion rate decreases when the overpotentials during the oxygen evolution reaction are lower. This study underlines the importance of addressing the anodic instability of carbon in non-alkaline RZABs.

Show more

2023

Modelling of Magnesium Intercalation into Chevrel Phase

Janina Drews, Ben Dlugatch, Johannes Wiedemann, Rudi Ruben Maça, Liping Wang, J Alberto Blazquez, Zhirong Zhao-Karger, Maximilian Fichtner, Doron Aurbach, Timo Danner, Arnulf Latz

Regarding energy density, safety, cost, and sustainability rechargeable magnesium batteries are a very promising next-generation energy storage technology. However, for a successful commercialization of Mg batteries there are still some challenges to overcome. Generally, the high charge density of the bivalent cation causes strong coulomb interactions with anions and solvent molecules. Therefore, energetic barriers for desolvation and solid-state diffusion are usually very high, which can have a crucial impact on the battery performance. Former can significantly hinder the electron-transfer reaction,[1] whereas latter makes the choice of suitable cathode materials very challenging. For instance, it is wellknown that the morphology of an intercalation material can strongly influence the battery performance and smaller particles as well as thinner electrodes are common strategies for avoiding adverse effects of transport limitations. Moreover, the presence of chlorides can influence the intercalation process.[2] Up to date Chevrel phase (CP) Mo6S8 is considered as a benchmark intercalation cathode. In our contribution we carefully study this model system of a magnesium-ion battery to get a better understanding of how to overcome undesired limitations. Therefore, we present a newly-developed continuum model, which is able to describe the complex intercalation process of magnesium cations into a CP cathode (Fig. 1). The model considers not only the different thermodynamics and kinetics of the two intercalation sites of Mo6S8 and their interplay, but also the impact of the desolvation on the electrochemical reactions and possible ion …

Show more

2023 • GigaScience

simAIRR: simulation of adaptive immune repertoires with realistic receptor sequence sharing for benchmarking of immune state prediction methods

Chakravarthi Kanduri, Lonneke Scheffer, Milena Pavlović, Knut Dagestad Rand, Maria Chernigovskaya, Oz Pirvandy, Gur Yaari, Victor Greiff, Geir K Sandve

Background Machine learning (ML) has gained significant attention for classifying immune states in adaptive immune receptor repertoires (AIRRs) to support the advancement of immunodiagnostics and therapeutics. Simulated data are crucial for the rigorous benchmarking of AIRR-ML methods. Existing approaches to generating synthetic benchmarking datasets result in the generation of naive repertoires missing the key feature of many shared receptor sequences (selected for common antigens) found in antigen-experienced repertoires. Results We demonstrate that a common approach to generating simulated AIRR benchmark datasets can introduce biases, which may be exploited for undesired shortcut learning by certain ML methods. To mitigate undesirable access to true signals in simulated AIRR datasets, we devised a simulation strategy (simAIRR) that constructs …

Show more

2023 • bioRxiv

A novel approach to T-cell receptor beta chain (TCRB) repertoire encoding using lossless string compression

Thomas Konstantinovsky, Gur Yaari

T-cell diversity is crucial for producing effective receptors that can recognize the pathogens encountered throughout life. A stochastic biological process known as VDJ recombination accounts for the high diversity of these receptors, making their analysis challenging. We present a new approach to sequence encoding and analysis, based on the Lempel-Ziv 76 algorithm (LZ-76). By creating a graph-like model, we identify specific sequence features and produce a new encoding approach to an individual's repertoire. We demonstrate that this repertoire representation allows for various applications, such as generation probability inference, informative feature vector derivation, sequence generation, and a new measure for diversity estimation.

Show more

2023 • Journal of Materials Chemistry A

Exploring the impact of lithium halide-based redox mediators in suppressing CO 2 evolution in Li–O 2 cells

Sri Harsha Akella, Muniyandi Bagavathi, Daniel Sharon, Capraz Ozgur, Malachi Noked

The realization of lithium–oxygen (Li–O2) batteries has been impeded by parasitic reactions that cause cell component degradation, often accompanied by the release of CO2 gas during oxidation reactions. The use of halide-based redox mediators (RMs) like LiBr and LiI has been proposed as a strategy to reduce overpotentials during oxygen evolution reactions and thus suppress the subsequent evolution of CO2. However, there is a scarcity of research examining the effectiveness of these RMs in the direct mitigation of parasitic reactions. In this study, we investigated the evolution of CO2 during the oxidation processes using an online electrochemical mass spectrometer. The results show that cells without RMs exhibited high overpotentials and significant CO2 evolution from the first charging cycle. In contrast, the addition of 50 mM LiI to the electrolyte resulted in a delay in CO2 evolution, observed only after …

Show more

logo
Articali

Powered by Articali

TermsPrivacy