Sep 2023 • Physical Review E
Marc Höll, Alon Nissan, Brian Berkowitz, Eli Barkai
First-passage time statistics in disordered systems exhibiting scale invariance are studied widely. In particular, long trapping times in energy or entropic traps are fat-tailed distributed, which slow the overall transport process. We study the statistical properties of the first-passage time of biased processes in different models, and we employ the big-jump principle that shows the dominance of the maximum trapping time on the first-passage time. We demonstrate that the removal of this maximum significantly expedites transport. As the disorder increases, the system enters a phase where the removal shows a dramatic effect. Our results show how we may speed up transport in strongly disordered systems exploiting scale invariance. In contrast to the disordered systems studied here, the removal principle has essentially no effect in homogeneous systems; this indicates that improving the conductance of a poorly …
Show moreSep 2023 • Joule
Yatao Liu, Linhan Xu, Yongquan Yu, MengXue He, Han Zhang, Yanqun Tang, Feng Xiong, Song Gao, Aijun Li, Jianhui Wang, Shenzhen Xu, Doron Aurbach, Ruqiang Zou, Quanquan Pang
The transition from dissolution-precipitation to quasi-solid-state sulfur reaction promises restricted polysulfide shuttle and lean electrolyte operation of Li-S batteries but incurs poor reaction kinetics. We here demonstrate that structural reorganization of sparingly solvating electrolytes (SSEs)—which is uniquely afforded by using low-density and low-cost aromatic anti-solvents—is vital for taming the quasi-solid-state sulfur reaction. Aromatic anti-solvents disrupt the interconnected structure of concentrated tetrahydrofuran (THF) electrolyte, uniquely creating subdomains that act to dissolve elemental sulfur, thus accelerating its consumption and re-formation while maintaining ultralow polysulfides solubility. The altered subdomains further result in robust solid electrolyte interphase (SEI) on lithium metal. As a result, the Li-S cell with a 3 mgsulfur cm−2 sulfur cathode can cycle steadily for ∼160 cycles with a lean …
Show moreSep 2023 • Science Advances
David Barcons Ruiz, Niels CH Hesp, Hanan Herzig Sheinfux, Carlos Ramos Marimón, Curdin Martin Maissen, Alessandro Principi, Reza Asgari, Takashi Taniguchi, Kenji Watanabe, Marco Polini, Rainer Hillenbrand, Iacopo Torre, Frank HL Koppens
Fermi liquids respond differently to perturbations depending on whether their frequency is higher (collisionless regime) or lower (hydrodynamic regime) than the interparticle collision rate. This results in a different phase velocity between the collisionless zero sound and the hydrodynamic first sound. We performed terahertz photocurrent nanoscopy measurements on graphene devices, with a metallic gate close to the graphene layer, to probe the dispersion of propagating acoustic plasmons, the counterpart of sound modes in electronic Fermi liquids. We report the observation of a change in the plasmon phase velocity when the excitation frequency approaches the electron-electron collision rate that is compatible with the transition between the zero and the first sound mode.
Show moreSep 2023 • Journal of Raman Spectroscopy
Bharathi Rajeswaran, Rajashree Konar, Rena Yitzhari, Gilbert Daniel Nessim, Yaakov Raphael Tischler
Raman spectroscopy in transition metal dichalcogenides (TMDCs) helps determine their structural information and layer dependency. Because it is non‐destructive and fast, it is an archetypal spectroscopic technique to investigate the structure and defects in TMDCs. In our earlier study, we used a metal‐dielectric coating to enhance Raman signal of WS2 because the Raman Spectra measured from WS2 coated on the standard Si/SiO2 was significantly lower. This metal‐dielectric coating allowed access to the otherwise unavailable E12g and A1g modes of WS2. In this study, we compare the Raman spectra of WS2 on a Si/SiO2 to that of metal layers (Au [200 nm] and Al [200 nm]). A significant enhancement in the Raman signal of 2‐3L WS2 is observed for both the Au and Al coatings. Although 200 nm Au coating enhances the Raman Signal better than the 10 nm Au coating, it does not resolve the other …
Show moreSep 2023 • American Physical Society
Gadi Afek, Nir Davidson, David A Kessler, Eli Barkai
Diffusion occurs in numerous physical systems throughout nature, drawing its generality from the universality of the central limit theorem. Approximately a century ago it was realized that an extension to this type of dynamics can be obtained in the form of “anomalous” diffusion, where distributions are allowed to have heavy power-law tails. Owing to a unique feature of its momentum-dependent dissipative friction force, laser-cooled atomic ensembles can be used as a test bed for such dynamics. The interplay between laser cooling and anomalous dynamics bears deep predictive implications for fundamental concepts in both equilibrium and nonequilibrium statistical physics. The high degree of control available in cold-atom experiments allows for the parameters of the friction to be tuned, revealing transitions in the dynamical properties of the system. Rare events in both the momentum and spatial distributions are …
Show moreSep 2023 • Superconductor Science and Technology
M Wasserman, A Shaulov, A Sharoni, Y Yeshurun
Magneto-optical imaging was employed to study dendritic flux avalanches in metal/superconductor and superconductor/superconductor hybrid structures over an extended range of magnetic field ramping rates. Our results in Cu/NbN show that the previously reported suppression of dendritic flux avalanches in metal coated superconducting films is limited to low ramping rates; as the ramping rate increases, the metal coating becomes less and less effective. A more complex behavior is exhibited in superconductor/superconductor hybrid structures. Our measurement in NbN partially coated with Nb, reveal three distinctive types of dendritic avalanches: those propagating in only one layer, either as regular dendrites in the uncoated NbN or as surface dendrites in the Nb layer, and hybrid dendrites that propagate in both the Nb and NbN layers simultaneously. These three types of dendrites are distinguished by their …
Show moreSep 2023 • Electrochimica Acta
Yan Yurko, Lior Elbaz
The need for new, reliable, and sustainable energy sources led to the development of new types of fuel cells. Fuel cells that rely on liquid hydrogen carriers may be the ultimate solution to the expensive hydrogen logistics issues. In this category, direct quinone fuel cells (DQFCs) are a promising new technology that solves many of the issues of traditional fuel cells. As a new technology, DQFCs need to be studied thoroughly to reach their full potential. Here, we use a distribution of relaxation times (DRT) analysis to analyze the impedance data of DQFCs, to gain a better understanding of the system. We systematically changed the operating parameters and attributed the changes in the DRT spectra to the physical processes they correspond to. The four main peaks observed in the DRT measurements were assigned to oxygen reduction reaction (ORR), quinone diffusion resistance, proton diffusion in the membrane …
Show moreSep 2023 • Journal of Raman Spectroscopy
Bharathi Rajeswaran, Rajashree Konar, Rena Yitzhari, Gilbert Daniel Nessim, Yaakov Raphael Tischler
Raman spectroscopy in transition metal dichalcogenides (TMDCs) helps determine their structural information and layer dependency. Because it is non‐destructive and fast, it is an archetypal spectroscopic technique to investigate the structure and defects in TMDCs. In our earlier study, we used a metal‐dielectric coating to enhance Raman signal of WS2 because the Raman Spectra measured from WS2 coated on the standard Si/SiO2 was significantly lower. This metal‐dielectric coating allowed access to the otherwise unavailable E12g and A1g modes of WS2. In this study, we compare the Raman spectra of WS2 on a Si/SiO2 to that of metal layers (Au [200 nm] and Al [200 nm]). A significant enhancement in the Raman signal of 2‐3L WS2 is observed for both the Au and Al coatings. Although 200 nm Au coating enhances the Raman Signal better than the 10 nm Au coating, it does not resolve the other …
Show moreSep 2023 • 2023 48th International Conference on Infrared, Millimeter, and Terahertz …, 2023
S Levy, N Lander Gower, S Piperno, SJ Addamane, JL Reno, A Albo
We present a novel terahertz quantum cascade laser (THz QCL) scheme supporting a clean four-level system, ‘four’ being the number of the active laser states, as verified by the negative differential resistance (NDR) observed all the way up to room temperature. In this study, we analyze and discuss the temperature performance of this new design. Experimental as well as theoretical work was performed to analyze the effects of the doping density as well as the impact of the different scattering mechanisms.
Show moreSep 2023 • Angewandte Chemie (International ed. in English)
Amey Nimkar, Khorsed Alam, Gil Bergman, Mikhael D Levi, Dan Thomas Major, Netanel Shpigel, Doron Aurbach
The introduction of the water‐in‐salt (WIS) concept, using highly concentrated electrolyte solutions to prevent water splitting and widen the electrochemical stability window, has greatly influenced modern aqueous batteries. The successful implementation of these electrolyte solutions in many electrochemical systems shifts the focus from diluted to WIS electrolyte solutions. Considering the high costs and the tendency of these nearly saturated solutions to crystallize, this trend can be carefully re‐evaluated. Herein we show that the stability of organic electrodes comprising the active material perylene‐3,4,9,10‐tetracarboxylic dianhydride (PTCDA), is strongly influenced by the solvation character of the anions rather than the concentration of the electrolyte solution. Even though the charging process of PTCDA involves solely insertion of cations (i.e., principal counter‐ions), surprisingly, the dominant factor influencing its …
Show moreSep 2023 • Electrochimica Acta
Ariel Friedman, Rifael Z Snitkoff-Sol, Hilah C Honig, Lior Elbaz
The development of platinum group metal-free catalysts is considered the most prominent path for reducing the cost of low-temperature fuel cells (LTFC). Despite the great advancement in the field, its further progress is currently limited by the ability to understand and mitigate the catalysts’ degradation mechanisms, which up to recent years was limited by the lack of activity descriptors. Recent work showed that this could be solved using Fourier-transformed alternating current voltammetry that enables to deconvolute Faradaic currents arising from the redox reaction of the active sites from the capacitive currents, and by that accurately measure the electrochemically active site density of these catalysts in situ fuel cells. However, the analysis of the results can be complex, requiring simulation software for accurate parameter extraction. Herein, a simplified analysis of Fourier-transformed alternating current voltammetry is …
Show moreSep 2023 • 2023 48th International Conference on Infrared, Millimeter, and Terahertz …, 2023
S Levy, N Lander Gower, S Piperno, SJ Addamane, JL Reno, A Albo
We present a novel terahertz quantum cascade laser (THz QCL) scheme supporting a clean four-level system, ‘four’ being the number of the active laser states, as verified by the negative differential resistance (NDR) observed all the way up to room temperature. In this study, we analyze and discuss the temperature performance of this new design. Experimental as well as theoretical work was performed to analyze the effects of the doping density as well as the impact of the different scattering mechanisms.
Show moreSep 2023 • Nature Communications
Harsh Vashistha, Joanna Jammal-Touma, Kulveer Singh, Yitzhak Rabin, Hanna Salman
The timing of cell division, and thus cell size in bacteria, is determined in part by the accumulation dynamics of the protein FtsZ, which forms the septal ring. FtsZ localization depends on membrane-associated Min proteins, which inhibit FtsZ binding to the cell pole membrane. Changes in the relative concentrations of Min proteins can disrupt FtsZ binding to the membrane, which in turn can delay cell division until a certain cell size is reached, in which the dynamics of Min proteins frees the cell membrane long enough to allow FtsZ ring formation. Here, we study the effect of Min proteins relative expression on the dynamics of FtsZ ring formation and cell size in individual Escherichia coli bacteria. Upon inducing overexpression of minE, cell size increases gradually to a new steady-state value. Concurrently, the time required to initiate FtsZ ring formation grows as the size approaches the new steady-state, at which point …
Show moreSep 2023 • Electrochimica Acta
Akanksha Gupta, Hari Krishna Sadhanala, Aharon Gedanken
The seawater electrolysis is an economically favorable approach for water splitting application because seawater is one of the plentiful abundant natural resources on our earth. In water splitting pathway, the anodic half-cell reaction from seawater stills a challenging task due to anodic corrosion and the competitive chloride oxidation process. In the current study, we prepared flower-shaped porous nanorods of iron doped cobalt nickel layered double hydroxide supported on nickel foam (Fe0.05 CoNi LDH/NF), which require very less oxygen evolution reaction (OER) overpotential in 1M KOH (212 mV) and alkaline seawater (287 mV) to deliver 10 mAcm−2 current density and exhibited remarkable 14 h durability. At the same time, post treated sample reveals the better OER activity after chronopotentiometry analysis, because of superior conductivity and corrosion-resistance of the electrocatalyst. The doping of Fe …
Show moreSep 2023 • Journal of The Electrochemical Society
Gayathri peta, hadas Alon-Yehezkel, Nagaprasad Reddy Samala, Shaul Bublil, Yuval Elias, Ilya Grinberg, Miryam Fayena-Greenstein, Doron Aurbach
Nanometric fillers are known to affect the electrochemical performance of polymer electrolytes. Here, nanowires and nanotubes of TiO2 with the same crystal structure are compared as additives to poly(ethylene oxide) based electrolytes for solid state sodium batteries. Electrochemical studies of symmetric cells with blocking and non-blocking electrodes examined the effects of the additive shapes on the bulk electrolyte and Na-electrolyte interface. Impedance spectroscopy was used as a major electroanalytical tool. To obtain a full perspective, all-solid-state batteries were evaluated. In galvanostatic measurements the filler shape effect is most noticeable at a high current density. TiO2 nanotubes improve the solid electrolyte behavior considerably more than titania nanowires. This effect is related mainly to the interface of the polymeric matrix with the electrodes.
Show moreSep 2023 • arXiv preprint arXiv:2309.05469
Hilario Espinós, Loris Maria Cangemi, Amikam Levy, Ricardo Puebla, Erik Torrontegui
Quantum many-body systems are emerging as key elements in the quest for quantum-based technologies and in the study of fundamental physics. In this study, we address the challenge of achieving fast and high-fidelity evolutions across quantum phase transitions, a crucial requirement for practical applications. We introduce a control technique based on dynamical invariants tailored to ensure adiabatic-like evolution within the lowest-energy subspace of the many-body systems described by the transverse-field Ising and long-range Kitaev models. By tuning the controllable parameter according to analytical control results, we achieve high-fidelity evolutions operating close to the speed limit. Remarkably, our approach leads to the breakdown of Kibble-Zurek scaling laws, offering tunable and significantly improved time scaling behavior. We provide detailed numerical simulations to illustrate our findings, demonstrating scalability with the system size and robustness against noisy controls and disorder, as well as its applicability to a non-integrable system.
Show moreSep 2023 • arXiv preprint arXiv:2309.05577
Jakob Bätge, Yu Wang, Amikam Levy, Wenjie Dou, Michael Thoss
Periodic driving and Floquet engineering have emerged as invaluable tools for controlling and uncovering novel phenomena in quantum systems. In this study, we adopt these methods to manipulate nonequilibrium processes within electronic-vibronic open quantum systems. Through resonance mechanisms and by focusing on the limit-cycle dynamics and quantum thermodynamic properties, we illustrate the intricate interplay between the driving field and vibronic states and its overall influence on the electronic system. Specifically, we observe an effective decoupling of the electronic system from the periodic driving at specific frequencies, a phenomenon that is mediated by the vibrational mode interaction. Additionally, we engineer the driving field to obtain a partial removal of the Franck-Condon blockade. These insights hold promise for efficient charge current control. Our results are obtained from numerically exact calculations of the hierarchical equations of motion and further analyzed by a time-periodic master equation approach.
Show moreSep 2023 • Nucleic Acids Research
Ayelet Peres, William D Lees, Oscar L Rodriguez, Noah Y Lee, Pazit Polak, Ronen Hope, Meirav Kedmi, Andrew M Collins, Mats Ohlin, Steven H Kleinstein, Corey T Watson, Gur Yaari
In adaptive immune receptor repertoire analysis, determining the germline variable (V) allele associated with each T- and B-cell receptor sequence is a crucial step. This process is highly impacted by allele annotations. Aligning sequences, assigning them to specific germline alleles, and inferring individual genotypes are challenging when the repertoire is highly mutated, or sequence reads do not cover the whole V region. Here, we propose an alternative naming scheme for the V alleles, as well as a novel method to infer individual genotypes. We demonstrate the strengths of the two by comparing their outcomes to other genotype inference methods. We validate the genotype approach with independent genomic long-read data. The naming scheme is compatible with current annotation tools and pipelines. Analysis results can be converted from the proposed naming scheme to the nomenclature determined …
Show moreSep 2023 • Scientific Reports
Abhijit Sanjeev, David Glukhov, Rinsa Salahudeen Rafeeka, Avi Karsenty, Zeev Zalevsky
A new super-resolution method, entitled Near-field Projection Optical Microscopy (NPOM), is presented. This novel technique enables the imaging of nanoscale objects without the need for surface scanning, as is usually required in existing methods such as NSOM (near-field scanning optical microscope). The main advantage of the proposed concept, besides the elimination of the need for a mechanical scanning mechanism, is that the full field of regard/view is imaged simultaneously and not point-by-point as in scanning-based techniques. Furthermore, by using compressed sensing, the number of projected patterns needed to decompose the spatial information of the inspected object can be made smaller than the obtainable points of spatial resolution. In addition to the development of mathematical formalism, this paper presents the results of a series of complementary numerical tests, using various objects and …
Show moreSep 2023 • The European Physical Journal Special Topics 232 (20), 3325-3337, 2023
Michael Suleymanov, Eliahu Cohen
In this short review paper, relative evolution in time and related issues are analyzed within classical and quantum mechanics. We first discuss the basics of quantum frames of reference in both space and time. We then focus on the latter, and more specifically on the “timeless” approach to quantum mechanics due to Page and Wootters. We address time–energy uncertainty relations and the emergence of non-unitarity within this framework. We emphasize relational aspects of quantum time as well as unique features of non-inertial clock frames.
Show moreSep 2023 • Scientific Reports
Abhijit Sanjeev, David Glukhov, Rinsa Salahudeen Rafeeka, Avi Karsenty, Zeev Zalevsky
A new super-resolution method, entitled Near-field Projection Optical Microscopy (NPOM), is presented. This novel technique enables the imaging of nanoscale objects without the need for surface scanning, as is usually required in existing methods such as NSOM (near-field scanning optical microscope). The main advantage of the proposed concept, besides the elimination of the need for a mechanical scanning mechanism, is that the full field of regard/view is imaged simultaneously and not point-by-point as in scanning-based techniques. Furthermore, by using compressed sensing, the number of projected patterns needed to decompose the spatial information of the inspected object can be made smaller than the obtainable points of spatial resolution. In addition to the development of mathematical formalism, this paper presents the results of a series of complementary numerical tests, using various objects and …
Show more