BINA

2708 articles

72 publishers

Join mailing list

Nov 2021 • JOSA B

Light detection and ranging (lidar): introduction

Zeev Zalevsky, Gerald S Buller, Tao Chen, Moshik Cohen, Rory Barton-Grimley

In this introduction we provide an overview of the papers that were accepted for publication in the special issue on light detection and ranging (lidar). Four of the papers were published in JOSA A, and four were published in JOSA B. They represent different aspects of this important and fast-growing field while showing the relevant state-of-the-art achievements currently existing in the field of lidars in the world of science and engineering.

Show more

Nov 2021 • International Journal of Molecular Sciences

Latently KSHV-Infected Cells Promote Further Establishment of Latency upon Superinfection with KSHV

Chen Gam ze Letova, Inna Kalt, Meir Shamay, Ronit Sarid

Kaposi’s sarcoma-associated herpesvirus (KSHV) is a cancer-related virus which engages in two forms of infection: latent and lytic. Latent infection allows the virus to establish long-term persistent infection, whereas the lytic cycle is needed for the maintenance of the viral reservoir and for virus spread. By using recombinant KSHV viruses encoding mNeonGreen and mCherry fluorescent proteins, we show that various cell types that are latently-infected with KSHV can be superinfected, and that the new incoming viruses establish latent infection. Moreover, we show that latency establishment is enhanced in superinfected cells compared to primary infected ones. Further analysis revealed that cells that ectopically express the major latency protein of KSHV, LANA-1, prior to and during infection exhibit enhanced establishment of latency, but not cells expressing LANA-1 fragments. This observation supports the notion that the expression level of LANA-1 following infection determines the efficiency of latency establishment and avoids loss of viral genomes. These findings imply that a host can be infected with more than a single viral genome and that superinfection may support the maintenance of long-term latency.

Show more

Nov 2021 • The Journal of Physical Chemistry C

Asymmetric Spin Transport in Colloidal Quantum Dot Junctions

John P Philbin, Amikam Levy, Prineha Narang, Wenjie Dou

The study of charge and spin transport through semiconductor quantum dots is experiencing a renaissance due to recent advances in nanofabrication and the realization of quantum dots as candidates for quantum computing. In this work, we combine atomistic electronic structure calculations with quantum master equation methods to study the transport of electrons and holes through strongly confined quantum dots coupled to two leads with a voltage bias. We find that a competition between the energy spacing between the two lowest quasi-particle energy levels and the strength of the exchange interaction determines the spin states of the lowest two quasi-particle energy levels. Specifically, the low density of electron states results in a spin singlet being the lowest-energy two-electron state, whereas, in contrast, the high density of states and significant exchange interaction result in a spin triplet being the lowest …

Show more

Nov 2021 • ACS Sustainable Chemistry & Engineering

Phase-dependent photocatalytic activity of bulk and exfoliated defect-controlled flakes of layered copper sulfides under simulated solar light

Madina Telkhozhayeva, Rajashree Konar, Ronit Lavi, Eti Teblum, Bibhudatta Malik, Sharon Ruthstein, Elisa Moretti, Gilbert Daniel Nessim

Sunlight-driven photocatalysis is an environmentally friendly approach to solve ecological issues. The development of simple yet sufficiently stable photocatalytic materials capable of responding to the full-spectrum light remains challenging. Here, we demonstrate the phase transformations of bulk copper sulfides from digenite (Cu9S5) to djurleite (Cu1.97S) and low chalcocite (Cu2S) by the reactive thermal annealing during ambient pressure chemical vapor deposition, followed by their top-down exfoliation. Using multiple techniques, we confirm that monoclinic Cu2S is primarily formed at higher temperatures or greater reaction times and using a reducing atmosphere. We measured the average thickness to be approximately 4 nm for the exfoliated flakes with relatively large lateral sizes of up to 10 μm. We tested the three phases of bulk copper sulfides and their exfoliated forms as photocatalysts for dye degradation …

Show more

Nov 2021 • Journal of Experimental Medicine

Inherited SLP76 deficiency in humans causes severe combined immunodeficiency, neutrophil and platelet defects

Atar Lev, Yu Nee Lee, Guangping Sun, Enas Hallumi, Amos J Simon, Keren S Zrihen, Shiran Levy, Tal Beit Halevi, Maria Papazian, Neta Shwartz, Ido Somekh, Sarina Levy-Mendelovich, Baruch Wolach, Ronit Gavrieli, Helly Vernitsky, Ortal Barel, Elisheva Javasky, Tali Stauber, Chi A Ma, Yuan Zhang, Ninette Amariglio, Gideon Rechavi, Ayal Hendel, Deborah Yablonski, Joshua D Milner, Raz Somech

The T cell receptor (TCR) signaling pathway is an ensemble of numerous proteins that are crucial for an adequate immune response. Disruption of any protein involved in this pathway leads to severe immunodeficiency and unfavorable clinical outcomes. Here, we describe an infant with severe immunodeficiency who was found to have novel biallelic mutations in SLP76. SLP76 is a key protein involved in TCR signaling and in other hematopoietic pathways. Previous studies of this protein were performed using Jurkat-derived human leukemic T cell lines and SLP76-deficient mice. Our current study links this gene, for the first time, to a human immunodeficiency characterized by early-onset life-threatening infections, combined T and B cell immunodeficiency, severe neutrophil defects, and impaired platelet aggregation. Hereby, we characterized aspects of the patient's immune phenotype, modeled them with an …

Show more

Nov 2021 • Journal of the American Chemical Society

High energy density rechargeable batteries based on Li metal anodes. The role of unique surface chemistry developed in solutions containing fluorinated organic Co-solvents

Doron Aurbach, Elena Markevich, Gregory Salitra

To date, lithium ion batteries are considered as a leading energy storage and conversion technology, ensuring a combination of high energy and power densities and prolonged cycle life. A critical point for elaboration of high energy density secondary Li batteries is the use of high specific capacity positive and negative electrodes. Among anode materials, Li metal anodes are considerably superior due to having the highest theoretical specific capacity (3860 mAh g–1) and lowest negative redox potential (−3.040 V vs a standard hydrogen electrode). Combination of Li metal anodes with Li[NiCoM]O2-layered cathodes with a high stable specific capacity of about 200 up to 250 mAh g–1 is particularly attractive. The development of advanced electrolyte solutions which ensure effective passivation of the electrodes’ surfaces is of critical importance. Considerable efforts have been focused on fluorinated organic co …

Show more

Nov 2021 • Journal of The Electrochemical Society

Toward high performance all solid-state na batteries: investigation of electrolytes comprising NaPF6, Poly (Ethylene Oxide) and TiO2

Gayathri Peta, Shaul Bublil, Hadas Alon-Yehezkel, Ortal Breuer, Yuval Elias, Nethanel Shpigel, Miryam Fayena-Greenstein, Diana Golodnitsky, Doron Aurbach

Solid electrolytes based on polyethylene oxide (PEO) have been studied for decades, owing to their facile and low-cost processing, good electrochemical stability, and excellent complexation with alkali metal salts. Complexes of PEO with appropriate sodium salts are well known for ionic conduction. Here, pristine NaPF 6: P (EO) 16 and a composite solid electrolyte containing TiO 2 nanowires were investigated as candidates for rechargeable solid-state sodium batteries. Comprehensive electrochemical characterizations were carried out, including ionic conductivity, transference number, and structural stability. At elevated temperatures, the specific capacity of an all-solid-state Na 3 Ti 2 (PO 4) 3 (Na/NTP) sodium battery was 110 mAh g− 1, higher than room-temperature cells with liquid electrolyte solutions. We attribute this behavior to increased conductivity of the polymer electrolyte, induced by the ceramic …

Show more

Nov 2021 • Nanotechnology

Nanopatterning of oxide 2-dimensional electron systems using low-temperature ion milling

M D’Antuono, A Kalaboukhov, R Caruso, S Wissberg, S Weitz Sobelman, B Kalisky, G Ausanio, M Salluzzo, D Stornaiuolo

We present a'top-down'patterning technique based on ion milling performed at low-temperature, for the realization of oxide two-dimensional electron system devices with dimensions down to 160 nm. Using electrical transport and scanning Superconducting QUantum Interference Device measurements we demonstrate that the low-temperature ion milling process does not damage the 2DES properties nor creates oxygen vacancies-related conducting paths in the STO substrate. As opposed to other procedures used to realize oxide 2DES devices, the one we propose gives lateral access to the 2DES along the in-plane directions, finally opening the way to coupling with other materials, including superconductors.

Show more

Nov 2021 • Nature Machine Intelligence

The immuneML ecosystem for machine learning analysis of adaptive immune receptor repertoires

Milena Pavlović, Lonneke Scheffer, Keshav Motwani, Chakravarthi Kanduri, Radmila Kompova, Nikolay Vazov, Knut Waagan, Fabian LM Bernal, Alexandre Almeida Costa, Brian Corrie, Rahmad Akbar, Ghadi S Al Hajj, Gabriel Balaban, Todd M Brusko, Maria Chernigovskaya, Scott Christley, Lindsay G Cowell, Robert Frank, Ivar Grytten, Sveinung Gundersen, Ingrid Hobæk Haff, Eivind Hovig, Ping-Han Hsieh, Günter Klambauer, Marieke L Kuijjer, Christin Lund-Andersen, Antonio Martini, Thomas Minotto, Johan Pensar, Knut Rand, Enrico Riccardi, Philippe A Robert, Artur Rocha, Andrei Slabodkin, Igor Snapkov, Ludvig M Sollid, Dmytro Titov, Cédric R Weber, Michael Widrich, Gur Yaari, Victor Greiff, Geir Kjetil Sandve

Adaptive immune receptor repertoires (AIRR) are key targets for biomedical research as they record past and ongoing adaptive immune responses. The capacity of machine learning (ML) to identify complex discriminative sequence patterns renders it an ideal approach for AIRR-based diagnostic and therapeutic discovery. So far, widespread adoption of AIRR ML has been inhibited by a lack of reproducibility, transparency and interoperability. immuneML (immuneml. uio. no) addresses these concerns by implementing each step of the AIRR ML process in an extensible, open-source software ecosystem that is based on fully specified and shareable workflows. To facilitate widespread user adoption, immuneML is available as a command-line tool and through an intuitive Galaxy web interface, and extensive documentation of workflows is provided. We demonstrate the broad applicability of immuneML by (1 …

Show more

Nov 2021 • arXiv preprint arXiv:2111.12078

Spatial symmetry breaking by non-local Kerr-lensing in mode-locked lasers

Idan Parshani, Leon Bello, Mallachi-Elia Meller, Avi Pe'er

Kerr-lens mode-locking (KLM) is the work-horse mechanism for generation of ultrashort pulses, where a non-linear lens forms an effective ultrafast saturable absorber within the laser cavity. According to standard theory, the pulse in the cavity is a soliton, with a temporal profile and power determined by the non-linearity to exactly counteract diffraction and dispersion, resulting in pulses, whose power and shape are fixed across a wide range of pump powers. We show numerically and demonstrate experimentally that the non-local effect of the Kerr lens in a linear cavity allows the laser to deviate from the soliton model by breaking the spatial symmetry in the cavity between the forward and backward halves of the round-trip, and hence to extract more power in a single pulse, while maintaining stable cavity propagation. We confirm this prediction experimentally in a mode-locked Ti:Sapphire laser with a quantitative agreement to the simulation results. Our numerical tool opens new avenues to optimization and enhancement of the mode-locking performance based on direct examination of the Kerr medium and the spatio-temporal dynamics within it, which is difficult (or even impossible) to observe experimentally.

Show more

Nov 2021 • Advanced Materials Interfaces

Photopolymerized thin coating of polypyrrole/graphene nanofiber/iron oxide onto nonpolar plastic for flexible electromagnetic radiation shielding, strain sensing, and non …

Sayan Ganguly, Naftali Kanovsky, Poushali Das, Aharon Gedanken, Shlomo Margel

The current work presents the fabrication of micrometer‐thick single‐side‐coated surface‐engineered polypropylene (PP) film for versatile flexible electronics applications. Herein, the authors report, for the first time, photopolymerized thin coating of graphene nanofibers (GNFs) and iron oxide nanoparticles (IONPs) onto non‐polar plastic via surface chemistry. The fabrication is achieved by adopting three consecutive steps; initially corona treated PP films are treated with silane for thin layer silica coating. Then, the silylated PP films are brushed up by pyrrole/GNFs/IONPs mixture, followed by UV exposure. The coated films show surface conductivity in the range of ≈20 S cm−1 at room temperature. Moreover, ≈15 microns of the coated film is tested against electromagnetic waves in the X‐band region (8.2–12.4 GHz) and its shielding behavior (≈24 dB) is confirmed. To demonstrate its wide range of versatility, the …

Show more

Nov 2021 • ChemSusChem

Cover feature: AZ31 magnesium alloy foils as thin anodes for rechargeable magnesium batteries (ChemSusChem 21/2021)

Ananya Maddegalla, Ayan Mukherjee, J Alberto Blázquez, Eneko Azaceta, Olatz Leonet, Aroa R Mainar, Aleksey Kovalevsky, Daniel Sharon, Jean‐Frédéric Martin, Dane Sotta, Yair Ein‐Eli, Doron Aurbach, Malachi Noked

The Cover Feature shows the electrochemical performance of 25 μm AZ31 alloy as anode, in a full magnesium cell with Chevrel phase as cathode, in 0.25 m APC as electrolyte. The use of low concentration of foreign elements in magnesium AZ31 alloy (Al 3%, Zn 1%), increases the mechanical strength and ductility along with resistance to corrosion and weldability, giving similar electrochemical performance compared to 100 μm pure Magnesium metal foil. More information can be found in the Full Paper by A. Maddegalla et al.

Show more

Nov 2021 • ACS Applied Materials & Interfaces

Evaluation of Mg[B(HFIP)4]2-Based Electrolyte Solutions for Rechargeable Mg Batteries

Ben Dlugatch, Meera Mohankumar, Ran Attias, Balasubramoniam Murali Krishna, Yuval Elias, Yosef Gofer, David Zitoun, Doron Aurbach

One of the greatest challenges toward rechargeable magnesium batteries is the development of noncorrosive electrolyte solutions with high anodic stability that can support reversible Mg deposition/dissolution. In the last few years, magnesium electrolyte solutions based on Cl-free fluorinated alkoxyborates were investigated for Mg batteries due to their high anodic stability and ionic conductivity and the possibility of reversible deposition/dissolution in ethereal solvents. Here, the electrochemical performance of Mg[B(hexafluoroisopropanol)4]2/dimethoxyethane (Mg[B(HFIP)4]2/DME) solutions was examined. These electrolyte solutions require a special “conditioning” pretreatment that removes undesirable active moieties. Such a process was developed and explored, and basic scientific issues related to the mechanism by which it affects Mg deposition/dissolution were addressed. The chemical changes that occur …

Show more

Nov 2021 • Elsevier BV, 2021

Double gas treatment

S Maiti, H Sclar, J Grinblat, M Talianker, M Tkachev, M Tsubery, X Wu, M Noked, B Markovsky, D Aurbach

Herein, a systematic surface modification approach via double gas (SO2 and NH3) treatment at elevated temperatures is described, aimed to achieve a stable electrochemical performance of Li and Mn-rich NCM cathode materials of a typical composition 0.33Li2MnO3·0.67LiNi0.4Co0.2Mn0.4O2 (HE-NCM). Partial surface reduction of Mn4+ and the formation of a modified interface comprising Li-ions conductive nano-sized Li2SO4/Li2SO3 phases are established. Li-coin cells’ prolonged cycling performance demonstrated significantly improved capacity retention (∼2.2 times higher than untreated cathode materials) for the double-gas-treated cathodes after 400 cycles at a 1.0 C rate. Stable discharge potential and lower voltage hysteresis during cycling were also achieved through the double gas treatment. Comparative electrochemical studies in full-pouch cells [vs. Graphite anodes] also demonstrated considerably …

Show more

Nov 2021 • Progress in retinal and eye research, 101029, 2021

Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities

Nina Schneider, Yogapriya Sundaresan, Prakadeeswari Gopalakrishnan, Avigail Beryozkin, Mor Hanany, Erez Y Levanon, Eyal Banin, Shay Ben-Aroya, Dror Sharon

Inherited retinal diseases (IRDs) are a clinically complex and heterogenous group of visual impairment phenotypes caused by pathogenic variants in at least 277 nuclear and mitochondrial genes, affecting different retinal regions, and depleting the vision of affected individuals. Genes that cause IRDs when mutated are unique by possessing differing genotype-phenotype correlations, varying inheritance patterns, hypomorphic alleles, and modifier genes thus complicating genetic interpretation. Next-generation sequencing has greatly advanced the identification of novel IRD-related genes and pathogenic variants in the last decade. For this review, we performed an in-depth literature search which allowed for compilation of the Global Retinal Inherited Disease (GRID) dataset containing 4798 discrete variants and 17,299 alleles published in 31 papers, showing a wide range of frequencies and complexities among …

Show more

Nov 2021 • ChemSusChem

Cover Feature: AZ31 Magnesium Alloy Foils as Thin Anodes for Rechargeable Magnesium Batteries (ChemSusChem 21/2021)

Ananya Maddegalla, Ayan Mukherjee, J Alberto Blázquez, Eneko Azaceta, Olatz Leonet, Aroa R Mainar, Aleksey Kovalevsky, Daniel Sharon, Jean‐Frédéric Martin, Dane Sotta, Yair Ein‐Eli, Doron Aurbach, Malachi Noked

The Cover Feature shows the electrochemical performance of 25 μm AZ31 alloy as anode, in a full magnesium cell with Chevrel phase as cathode, in 0.25 m APC as electrolyte. The use of low concentration of foreign elements in magnesium AZ31 alloy (Al 3%, Zn 1%), increases the mechanical strength and ductility along with resistance to corrosion and weldability, giving similar electrochemical performance compared to 100 μm pure Magnesium metal foil. More information can be found in the Full Paper by A. Maddegalla et al.

Show more

Nov 2021

Targeted Expansion Sequencing Protocols

Anubhav Sinha, Yi Cui, Shahar Alon, Fei Chen, Asmamaw T Wassie, Ed Boyden

This protocol collection accompanies accompanies Expansion Sequencing (ExSeq), covering the four key steps of a targeted Expansion Sequencing (targeted ExSeq) experiment:(1) Padlock probe design;(2) tissue preparation and expansion;(3) library preparation; and (4) in situ sequencing with the Illumina chemistry.

Show more

Nov 2021 • arXiv preprint arXiv:2111.09709

Generalized equipartition for nonlinear multiplicative Langevin dynamics: application to laser-cooled atoms

Gianmaria Falasco, Eli Barkai, Marco Baiesi

The virial theorem, and the equipartition theorem in the case of quadratic degrees of freedom, are handy constraints on the statistics of equilibrium systems. Their violation is instrumental in determining how far from equilibrium a driven system might be. We extend the virial theorem to nonequilibrium conditions for Langevin dynamics with nonlinear friction and multiplicative noise. In particular, we generalize the equipartition theorem for confined laser-cooled atoms in the semi-classical regime. The resulting relation between the lowest moments of the atom position and velocity allows to measure in experiments how dissipative the cooling mechanism is. Moreover, its violation can reveal the departure from a strictly harmonic confinement or from the semi-classical regime.

Show more

Nov 2021 • Journal of the American Chemical Society 143 (50), 21161-21176, 2021

High Energy Density Rechargeable Batteries Based on Li Metal Anodes. The Role of Unique Surface Chemistry Developed in Solutions Containing Fluorinated Organic Co-solvents

Doron Aurbach, Elena Markevich, Gregory Salitra

To date, lithium ion batteries are considered as a leading energy storage and conversion technology, ensuring a combination of high energy and power densities and prolonged cycle life. A critical point for elaboration of high energy density secondary Li batteries is the use of high specific capacity positive and negative electrodes. Among anode materials, Li metal anodes are considerably superior due to having the highest theoretical specific capacity (3860 mAh g–1) and lowest negative redox potential (−3.040 V vs a standard hydrogen electrode). Combination of Li metal anodes with Li[NiCoM]O2-layered cathodes with a high stable specific capacity of about 200 up to 250 mAh g–1 is particularly attractive. The development of advanced electrolyte solutions which ensure effective passivation of the electrodes’ surfaces is of critical importance. Considerable efforts have been focused on fluorinated organic co …

Show more

Nov 2021 • Nanotechnology

Nanopatterning of oxide 2-dimensional electron systems using low-temperature ion milling

Maria D'Antuono, Alexey Kalaboukhov, Roberta Caruso, Shai Wissberg, Sapir Weitz Sobelman, Beena Kalisky, Giovanni Ausanio, Marco Salluzzo, Daniela Stornaiuolo

We present a "top-down" patterning technique based on ion milling performed at low- temperature, for the realization of oxide two-dimensional electron system (2DES) devices with dimensions down to 160 nm. Using electrical transport and scanning SQUID measurements we demonstrate that the low-temperature ion milling process does not damage the 2DES properties nor creates oxygen vacancies-related conducting paths in the STO substrate. As opposed to other procedures used to realize oxide 2DES devices, the one we propose gives lateral access to the 2DES along the in-plane directions, finally opening the way to coupling with other materials, including superconductors.

Show more

Nov 2021 • Journal of The Electrochemical Society

In Situ Stress Measurements on Thin Film Au Positive Electrode during the First Discharge of Li-O2 Batteries

Hannah Dykes, Daniel Sharon, Malachi Noked, Omer Ozgur Capraz

The formation and growth of the Li2O2 discharge product impacts the reversibility of the oxygen evolution and reduction reactions in Li-O2 batteries which may lead to a shorter cycle life. A clear understanding of the surface reactions and the growth mechanism of Li2O2 requires probing dynamic changes on the surface of the positive electrodes in situ during the discharge of a Li-O2 battery. To investigate this, we establish an experimental system by adopting a multi-beam optical sensor (MOS) and developing a custom-made battery cell. First, the accuracy and reliability of the system was demonstrated by analyzing the stress accumulation on the Au negative electrode during Li plating/stripping, and the results were consistent with an earlier single-beam scanning deflectometry report. Then, the Li-O2 battery was discharged in LiNO3 in diglyme electrolyte by applying either linear sweep voltammetry or by applying …

Show more

logo
Articali

Powered by Articali

TermsPrivacy