BINA

3964 articles

77 publishers

Join mailing list

Feb 2023 • arXiv preprint arXiv:2302.00726

Quantum Engines and Refrigerators

Loris Maria Cangemi, Chitrak Bhadra, Amikam Levy

Engines are systems and devices that convert one form of energy into another, typically into a more useful form that can perform work. In the classical setup, physical, chemical, and biological engines largely involve the conversion of heat into work. This energy conversion is at the core of thermodynamic laws and principles and is codified in textbook material. In the quantum regime, however, the principles of energy conversion become ambiguous, since quantum phenomena come into play. As with classical thermodynamics, fundamental principles can be explored through engines and refrigerators, but, in the quantum case, these devices are miniaturized and their operations involve uniquely quantum effects. Our work provides a broad overview of this active field of quantum engines and refrigerators, reviewing the latest theoretical proposals and experimental realizations. We cover myriad aspects of these devices, starting with the basic concepts of quantum analogs to the classical thermodynamic cycle and continuing with different quantum features of energy conversion that span many branches of quantum mechanics. These features include quantum fluctuations that become dominant in the microscale, non-thermal resources that fuel the engines, and the possibility of scaling up the working medium's size, to account for collective phenomena in many-body heat engines. Furthermore, we review studies of quantum engines operating in the strong system-bath coupling regime and those that include non-Markovian phenomena. Recent advances in thermoelectric devices and quantum information perspectives, including quantum measurement …

Show more

Feb 2023 • Results in Surfaces and Interfaces

In-situ design of hierarchical durable silica-based coatings on polypropylene films with superhydrophilic, superhydrophobic and self-cleaning properties

Naftali Kanovsky, Taly Iline-Vul, Shlomo Margel

Superhydrophobic surfaces are receiving increasing attention due to their real-world applications. However, these surfaces suffer from a lack of durability and complicated synthetic processes. This research uses a combination of a simple in-situ coating process between oxygen-activated polypropylene films and unreacted silane monomers. The in-situ process uses a modified Stöber method with the addition of the surfactant cetyltrimethylammonium bromide (CTAB) which aggregates silica (SiO 2) particles in a basic aqueous solution. This resulted in a layer of covalently bonded hierarchical coating of individual and aggregated SiO 2 “flakes” and particles. These coatings were found to have at least double the surface roughness than samples prepared without CTAB with superhydrophilic properties due to their high surface roughness and hydrophilic surface chemical groups. A second layer of fluorocarbon silane …

Show more

Feb 2023 • arXiv preprint arXiv:2302.05487

Cryogenic nano-imaging of second-order moir\'e superlattices

Niels CH Hesp, Sergi Batlle-Porro, Roshan Krishna Kumar, Hitesh Agarwal, David Barcons-Ruiz, Hanan Herzig Sheinfux, Kenji Watanabe, Takashi Taniguchi, Petr Stepanov, Frank HL Koppens

Second-order superlattices form when moir\'e superlattices of similar dimensions interfere with each other, leading to even larger superlattice periodicities. These crystalline structures have been engineered utilizing two-dimensional (2D) materials such as graphene and hexagonal boron nitride (hBN) under specific alignment conditions. Such specific alignment has shown to play a crucial role in facilitating correlation-driven topological phases featuring the quantized anomalous Hall effect. While signatures of second-order superlattices have been found in transport experiments, any real-space visualization is lacking to date. In this work, we present cryogenic nanoscale photovoltage (PV) measurements that reveal a second-order superlattice in magic-angle twisted bilayer graphene (MATBG) closely aligned to hBN. This is evidenced by long-range periodic photovoltage modulations across the entire sample backed by corresponding electronic transport features. Our theoretical framework shows that small strain- or twist-angle variations can lead to a drastic shift between a local one-dimensional, square or triangular superlattices. Our real-space observations shed new light on the mechanisms responsible for breaking spatial symmetries in TBG and pave an avenue to engineer long-range superlattice structures in 2D materials.

Show more

Feb 2023 • Biomass Conversion and Biorefinery

Biomass-derived Carbon dots and their coated surface as a potential antimicrobial agent

R Blessy Pricilla, Moorthy Maruthapandi, Arulappan Durairaj, Ivo Kuritka, John HT Luong, Aharon Gedanken

Carbon dots (CDs) with an average diameter of 6.3 nm were synthesized from the medicinal seed extract of Syzygium cumini L. using one-pot hydrothermal synthesis. The prepared CDs exhibited excitation-dependent emission characteristics with photoluminescence (PL) emission maxima at an excitation of 340 nm. The CDs at 500 µg/mL displayed antimicrobial activities against four common pathogens. Both Staphylococcus aureus and S. epidermidis were completely eradicated by CDs within 12 h, compared to 24 h for Escherichia coli and Klebsiella pneumonia. The release of various oxygen species (ROS) was postulated to play a critical role in bacterial eradication. The CDs decorated on cotton fabric by ultrasonication also displayed good antibacterial activities against the above bacteria. The finding opens a plausible use of CDs in biomedical textiles with potent antimicrobial properties against both Gram …

Show more

Feb 2023 • Nanophotonics

Digital laser-induced printing of MoS2

Adamantia Logotheti, Adi Levi, Doron Naveh, Leonidas Tsetseris, Ioanna Zergioti

Due to their atomic-scale thickness, handling and processing of two-dimensional (2D) materials often require multistep techniques whose complexity hampers their large-scale integration in modern device applications. Here we demonstrate that the laser-induced forward transfer (LIFT) method can achieve the one-step, nondestructive printing of the prototypical 2D material MoS2. By selecting the optimal LIFT experimental conditions, we were able to transfer arrays of MoS2 pixels from a metal donor substrate to a dielectric receiver substrate. A combination of various characterization techniques has confirmed that the transfer of intact MoS2 monolayers is not only feasible, but it can also happen without incurring significant defect damage during the process. The successful transfer of MoS2 shows the broad potential the LIFT technique has in the emerging field of printed electronics, including printed devices based …

Show more

Feb 2023 • arXiv preprint arXiv:2302.00650

Multipartite entanglement detection via correlation minor norm

Rain Lenny, Amit Te'eni, Bar Y Peled, Avishy Carmi, Eliahu Cohen

Entanglement is a uniquely quantum resource giving rise to many quantum technologies. It is therefore important to detect and characterize entangled states, but this is known to be a challenging task, especially for multipartite mixed states. The correlation minor norm (CMN) was recently suggested as a bipartite entanglement detector employing bounds on the quantum correlation matrix. In this paper we explore generalizations of the CMN to multipartite systems based on matricizations of the correlation tensor. It is shown that the CMN is able to detect and differentiate classes of multipartite entangled states. We further analyze the correlations within the reduced density matrices and show their significance for entanglement detection. Finally, we employ matricizations of the correlation tensor for introducing a measure of global quantum discord.

Show more

Feb 2023 • The Journal of Physical Chemistry B

Experimental data confirm carrier-cascade model for solid-state conductance across proteins

Eszter Papp, Gábor Vattay, Carlos Romero-Muñiz, Linda A Zotti, Jerry A Fereiro, Mordechai Sheves, David Cahen

The finding that electronic conductance across ultrathin protein films between metallic electrodes remains nearly constant from room temperature to just a few degrees Kelvin has posed a challenge. We show that a model based on a generalized Landauer formula explains the nearly constant conductance and predicts an Arrhenius-like dependence for low temperatures. A critical aspect of the model is that the relevant activation energy for conductance is either the difference between the HOMO and HOMO–1 or the LUMO+1 and LUMO energies instead of the HOMO–LUMO gap of the proteins. Analysis of experimental data confirms the Arrhenius-like law and allows us to extract the activation energies. We then calculate the energy differences with advanced DFT methods for proteins used in the experiments. Our main result is that the experimental and theoretical activation energies for these three different proteins …

Show more

Feb 2023 • Journal of Power Sources

Lignin-derived bimetallic platinum group metal-free oxygen reduction reaction electrocatalysts for acid and alkaline fuel cells

Mohsin Muhyuddin, Ariel Friedman, Federico Poli, Elisabetta Petri, Hilah Honig, Francesco Basile, Andrea Fasolini, Roberto Lorenzi, Enrico Berretti, Marco Bellini, Alessandro Lavacchi, Lior Elbaz, Carlo Santoro, Francesca Soavi

Metal-nitrogen-carbons (M-N-Cs) as a reliable substitution for platinum-group-metals (PGMs) for oxygen reduction reaction (ORR) are emerging candidates to rationalize the technology of fuel cells. The development of M-N-Cs can further be economized by consuming waste biomass as an inexpensive carbon source for the electrocatalyst support. Herein, we report the simple fabrication and in-depth characterization of electrocatalysts using lignin-derived activated char. The activated char (LAC) was functionalized with metal phthalocyanine (FePc and MnPc) via atmosphere-controlled pyrolysis to produce monometallic M-N-Cs (L_Mn and L_Fe) and bimetallic M1-M2-N-Cs (L_FeMn) electrocatalysts. Raman spectroscopy and transmission electron microscopy (TEM) revealed a defect-rich architecture. XPS confirmed the coexistence of various nitrogen-containing active moieties. L_Fe and L_FeMn demonstrated …

Show more

Feb 2023 • The Journal of Physical Chemistry C

Conductive Ytterbium Metal–Organic Framework Composite: A Lanthanide-Based Complex ORR Catalyst

Shmuel Gonen, Oran Lori, Noam Zion, Lior Elbaz

Extensive research work has been invested in the past decade in finding replacements for platinum-based electrocatalysts for the oxygen reduction reaction in fuel cells. The majority of these alternative electrocatalysts are based on transition-metal ions coordinated by organic ligands. Different from previously reported approaches for electrocatalysts, we describe here the synthesis, characterization, and oxygen reduction reaction activity of lanthanide complex electrocatalyst with ytterbium as the metal center. A metal–organic framework of Yb and benzene tricarboxylic acid as a ligand was synthesized on activated carbon (Yb(III)BTC@AC) to achieve electrical conductivity in a procedure similar to M-BTC@AC electrocatalysts with transition-metal centers. The Yb complex in activated carbon presents oxygen reduction reaction activity in alkaline solution with high onset potential relative to other nonpyrolyzed …

Show more

Feb 2023 • Cold Spring Harbor Protocols

Courtship conditioning/suppression assays in Drosophila

Anne C von Philipsborn, Galit Shohat-Ophir, Carolina Rezaval

Naive males court both virgin and mated females but learn through experience to discriminate between them, thus minimizing futile investments in nonreceptive female flies. In the laboratory, we can exploit the innate courtship enthusiasm of males and manipulate their behavior by placing them with a nonreceptive female (immature virgin females, decapitated mature virgin females, or mature mated females), termed as the courtship suppression/conditioning assay. Early studies showed that male flies that experience failure to mate upon interaction with nonreceptive previously mated females show decreased motivation to court (courtship suppression). Courtship suppression is an important experimental paradigm for studying genes and neuronal circuits that mediate short-and long-term memory. The anti-aphrodisiac male-specific pheromone 11-cis-vaccenyl-acetate plays a key role in this conditioned response, as …

Show more

Feb 2023 • Angewandte Chemie (International ed. in English)

Peptide Bond Formation in the Protonated Serine Dimer Following Vacuum UV Photon‐Induced Excitation

Ori Licht, Dario Barreiro-Lage, Patrick Rousseau, Alexandre Giuliani, Aleksandar Milosavljevic, Avinoam Isaak, Yitzhak Mastai, Amnon Albeck, Raj Singh, Vy Nguyen, Laurent Nahon, Lara Martinez, Sergio Díaz-Tendero, Yoni Toker

Possible routes for intra-cluster bond formation (ICBF) in protonated serine dimers have been studied. We found no evidence of ICBF following low energy collision induced dissociation (in correspondence with previous works), however, we do observe clear evidence for ICBF following photon absorption in the eV range. Moreover, the comparison of photon induced dissociation measurements of the protonated serine dimer to those of a protonated serine dipeptide provides evidence that ICBF, in this case, involves peptide bond formation (PBF). The experimental results are supported by {\it ab initio} molecular dynamics and exploration of several excited state potential energy surfaces, unravelling a pathway for PBF following photon absorption. The combination of experiments and theory provides insight into the PBF mechanisms in clusters of amino acids, and reveals the importance of electronic excited states reached upon UV/VUV light excitation.

Show more

Feb 2023 • Physical Review Research

Countering a fundamental law of attraction with quantum wave-packet engineering

Gal Amit, Yonathan Japha, Tomer Shushi, Ron Folman, Eliahu Cohen

Cold atoms hold much promise for the realization of quantum technologies, but still encounter many challenges. In this work we show how the fundamental Casimir-Polder force, by which atoms are attracted to a surface, may be temporarily suppressed by utilizing a specially designed quantum potential, which is familiar from the hydrodynamic or Bohmian reformulations of quantum mechanics. We show that when harnessing the quantum potential via suitable atomic wave-packet engineering, the absorption by the surface can be dramatically reduced. As a result, the probing time of the atoms as sensors can increase. This is proven both analytically and numerically. Furthermore, an experimental scheme is proposed for achieving the required shape for the atomic wave packet. All these may assist existing applications of cold atoms in metrology and sensing and may also enable prospective ones. Finally, these …

Show more

Feb 2023 • Biomass Conversion and Biorefinery

Biomass-derived Carbon dots and their coated surface as a potential antimicrobial agent

R Blessy Pricilla, Moorthy Maruthapandi, Arulappan Durairaj, Ivo Kuritka, John HT Luong, Aharon Gedanken

Carbon dots (CDs) with an average diameter of 6.3 nm were synthesized from the medicinal seed extract of Syzygium cumini L. using one-pot hydrothermal synthesis. The prepared CDs exhibited excitation-dependent emission characteristics with photoluminescence (PL) emission maxima at an excitation of 340 nm. The CDs at 500 µg/mL displayed antimicrobial activities against four common pathogens. Both Staphylococcus aureus and S. epidermidis were completely eradicated by CDs within 12 h, compared to 24 h for Escherichia coli and Klebsiella pneumonia. The release of various oxygen species (ROS) was postulated to play a critical role in bacterial eradication. The CDs decorated on cotton fabric by ultrasonication also displayed good antibacterial activities against the above bacteria. The finding opens a plausible use of CDs in biomedical textiles with potent antimicrobial properties against both Gram …

Show more

Feb 2023 • ImmunoInformatics

AIRR community curation and standardised representation for immunoglobulin and T cell receptor germline sets

William D Lees, Scott Christley, Ayelet Peres, Justin T Kos, Brian Corrie, Duncan Ralph, Felix Breden, Lindsay G Cowell, Gur Yaari, Martin Corcoran, Gunilla B Karlsson Hedestam, Mats Ohlin, Andrew M Collins, Corey T Watson, Christian E Busse, The AIRR Community

Analysis of an individual's immunoglobulin or T cell receptor gene repertoire can provide important insights into immune function. High-quality analysis of adaptive immune receptor repertoire sequencing data depends upon accurate and relatively complete germline sets, but current sets are known to be incomplete. Established processes for the review and systematic naming of receptor germline genes and alleles require specific evidence and data types, but the discovery landscape is rapidly changing. To exploit the potential of emerging data, and to provide the field with improved state-of-the-art germline sets, an intermediate approach is needed that will allow the rapid publication of consolidated sets derived from these emerging sources. These sets must use a consistent naming scheme and allow refinement and consolidation into genes as new information emerges. Name changes should be minimised, but …

Show more

Feb 2023 • Nano-Structures & Nano-Objects

Nano-apertures vs. nano-barriers: Surface scanning through obstacles and super-resolution in AFM-NSOM dual-mode

Jérémy Belhassen, David Glukhov, Matityahu Karelits, Zeev Zalevsky, Avi Karsenty

As part of the performance characterization of a combined and enhanced new AFM-NSOM tip-photo-detector, diffraction limitations were studied on two complementary samples: a nano-barrier embedded between two nano-apertures and one nano-aperture embedded between two nano-barriers. These consecutive multiple-obstacle scanning paths are part of this challenging specifications study of a new conical-shaped and drilled tip-photodetector, sharing a subwavelength aperture. A super-resolution algorithm feature was added in order to overcome possible obstacles, while scanning the same object with several small angles. The new multi-mode system includes scanning topography, optical imaging and an obstacle-overcoming algorithm. The present article study emphasizes the complexity of nano-scanning multiple-apertures/barriers. Both complementary analytical (Python) and numerical (Comsol …

Show more

Feb 2023 • Results in Surfaces and Interfaces

In-situ design of hierarchical durable silica-based coatings on polypropylene films with superhydrophilic, superhydrophobic and self-cleaning properties

Naftali Kanovsky, Taly Iline-Vul, Shlomo Margel

Superhydrophobic surfaces are receiving increasing attention due to their real-world applications. However, these surfaces suffer from a lack of durability and complicated synthetic processes. This research uses a combination of a simple in-situ coating process between oxygen-activated polypropylene films and unreacted silane monomers. The in-situ process uses a modified Stöber method with the addition of the surfactant cetyltrimethylammonium bromide (CTAB) which aggregates silica (SiO 2) particles in a basic aqueous solution. This resulted in a layer of covalently bonded hierarchical coating of individual and aggregated SiO 2 “flakes” and particles. These coatings were found to have at least double the surface roughness than samples prepared without CTAB with superhydrophilic properties due to their high surface roughness and hydrophilic surface chemical groups. A second layer of fluorocarbon silane …

Show more

Feb 2023 • Cold Spring Harbor Protocols

Measurement of Drosophila Reproductive Behaviors

Anne C von Philipsborn, Galit Shohat-Ophir, Carolina Rezaval

Courtship behaviors in Drosophila melanogaster are innate and contain highly stereotyped but also experience-and state-dependent elements. They have been the subject of intense study for more than 100 years. The power of Drosophila as a genetic experimental system has allowed the dissection of reproductive behaviors at a molecular, cellular, and physiological level. As a result, we know a great deal about how flies perceive sensory cues from potential mates, how this information is integrated in higher brain centers to execute reproductive decisions, and how state and social contexts modulate these responses. The simplicity of the assay has allowed for its broad application. Here, we introduce methods for studying male and female innate reproductive behaviors as well as their plastic responses.

Show more

Feb 2023 • Nature Communications

Phonon-driven intra-exciton Rabi oscillations in CsPbBr3 halide perovskites

Xuan Trung Nguyen, Katrin Winte, Daniel Timmer, Yevgeny Rakita, Davide Raffaele Ceratti, Sigalit Aharon, Muhammad Sufyan Ramzan, Caterina Cocchi, Michael Lorke, Frank Jahnke, David Cahen, Christoph Lienau, Antonietta De Sio

Coupling electromagnetic radiation with matter, e.g., by resonant light fields in external optical cavities, is highly promising for tailoring the optoelectronic properties of functional materials on the nanoscale. Here, we demonstrate that even internal fields induced by coherent lattice motions can be used to control the transient excitonic optical response in CsPbBr3 halide perovskite crystals. Upon resonant photoexcitation, two-dimensional electronic spectroscopy reveals an excitonic peak structure oscillating persistently with a 100-fs period for up to ~2 ps which does not match the frequency of any phonon modes of the crystals. Only at later times, beyond 2 ps, two low-frequency phonons of the lead-bromide lattice dominate the dynamics. We rationalize these findings by an unusual exciton-phonon coupling inducing off-resonant 100-fs Rabi oscillations between 1s and 2p excitons driven by the low-frequency …

Show more

Feb 2023 • arXiv preprint arXiv:2302.00726

Quantum engines and refrigerators

Loris Maria Cangemi, Chitrak Bhadra, Amikam Levy

Engines are systems and devices that convert one form of energy into another, typically into a more useful form that can perform work. In the classical setup, physical, chemical, and biological engines largely involve the conversion of heat into work. This energy conversion is at the core of thermodynamic laws and principles and is codified in textbook material. In the quantum regime, however, the principles of energy conversion become ambiguous, since quantum phenomena come into play. As with classical thermodynamics, fundamental principles can be explored through engines and refrigerators, but, in the quantum case, these devices are miniaturized and their operations involve uniquely quantum effects. Our work provides a broad overview of this active field of quantum engines and refrigerators, reviewing the latest theoretical proposals and experimental realizations. We cover myriad aspects of these devices, starting with the basic concepts of quantum analogs to the classical thermodynamic cycle and continuing with different quantum features of energy conversion that span many branches of quantum mechanics. These features include quantum fluctuations that become dominant in the microscale, non-thermal resources that fuel the engines, and the possibility of scaling up the working medium's size, to account for collective phenomena in many-body heat engines. Furthermore, we review studies of quantum engines operating in the strong system-bath coupling regime and those that include non-Markovian phenomena. Recent advances in thermoelectric devices and quantum information perspectives, including quantum measurement …

Show more

Feb 2023 • Nature communications

Phonon-driven intra-exciton Rabi oscillations in CsPbBr3 halide perovskites

Xuan Trung Nguyen, Katrin Winte, Daniel Timmer, Yevgeny Rakita, Davide Raffaele Ceratti, Sigalit Aharon, Muhammad Sufyan Ramzan, Caterina Cocchi, Michael Lorke, Frank Jahnke, David Cahen, Christoph Lienau, Antonietta De Sio

Coupling electromagnetic radiation with matter, e.g., by resonant light fields in external optical cavities, is highly promising for tailoring the optoelectronic properties of functional materials on the nanoscale. Here, we demonstrate that even internal fields induced by coherent lattice motions can be used to control the transient excitonic optical response in CsPbBr3 halide perovskite crystals. Upon resonant photoexcitation, two-dimensional electronic spectroscopy reveals an excitonic peak structure oscillating persistently with a 100-fs period for up to ~2 ps which does not match the frequency of any phonon modes of the crystals. Only at later times, beyond 2 ps, two low-frequency phonons of the lead-bromide lattice dominate the dynamics. We rationalize these findings by an unusual exciton-phonon coupling inducing off-resonant 100-fs Rabi oscillations between 1s and 2p excitons driven by the low-frequency …

Show more

Feb 2023 • Physical Review E

Brownian particles in periodic potentials: Coarse-graining versus fine structure

Lucianno Defaveri, Eli Barkai, David A Kessler

We study the motion of an overdamped particle connected to a thermal heat bath in the presence of an external periodic potential in one dimension. When we coarse-grain, ie, bin the particle positions using bin sizes that are larger than the periodicity of the potential, the packet of spreading particles, all starting from a common origin, converges to a normal distribution centered at the origin with a mean-squared displacement that grows as 2 D* t, with an effective diffusion constant that is smaller than that of a freely diffusing particle. We examine the interplay between this coarse-grained description and the fine structure of the density, which is given by the Boltzmann-Gibbs (BG) factor e− V (x)/k B T, the latter being nonnormalizable. We explain this result and construct a theory of observables using the Fokker-Planck equation. These observables are classified as those that are related to the BG fine structure, like the …

Show more

logo
Articali

Powered by Articali

TermsPrivacy