BINA

3765 articles

75 publishers

Join mailing list

2023 • Sustainable Energy & Fuels

A bifunctional electrocatalyst for alkaline seawater splitting using ruthenium doped nickel molybdenum phosphide nanosheets

Hari Krishna Sadhanala, Akanksha Gupta, Aharon Gedanken

Because of the abundance and availability of natural sea water resources, electrolysis of sea water is regarded as a most appealing and promising approach for the generation of hydrogen green energy, and even it lowers the cost of hydrogen production. However, for seawater electrolysis, highly efficient and robust electrocatalysts that can withstand chloride corrosion on electrodes, particularly the anode, are required. Here, we present the synthesis of nickel molybdenum phosphide engineered with ruthenium supported on nickel foam (Ru22NiMoP2/NF) by hydrothermal technique and followed reactions under autogenic pressure at elevated temperatures (RAPET) in Swagelok, which demonstrated excellent electrocatalytic activity in alkaline sea water. For hydrogen evolution reaction (HER), Ru22NiMoP2/NF requires low overpotentials of 60 and 52 mV to achieve a current density of 10 mAcm-2 than commercial …

Show more

2023 • bioRxiv

A highly conserved A-to-I RNA editing event within the glutamate-gated chloride channel GluClα is necessary for olfactory-based behaviors in Drosophila

Galit Shohat-Ophir

A-to-I RNA editing is an important cellular process that modifies genomically encoded information during transcription, to generate various RNA isoforms from a single DNA sequence. It involves the conversion of specific adenosines in the RNA sequence to inosines by ADAR proteins, resulting in their recognition as guanosines by cellular machinery, and as such plays a vital role in neuronal and immune functions. Given the widespread occurrence of A-to-I RNA editing events across the animal kingdom, with thousands to millions of editing sites found in the transcriptomes of organisms such as flies and humans, identifying the critical sites and understanding their in-vivo functions remains a challenging task. Here we show for the first time the physiological importance of a single editing site, found within the extracellular domain of the glutamate-gated chloride channel (GluClα), and bridge the gap between its evolutionary conservation across Drosophila species and its function in shaping the behavior of adult flies. We used genomic editing to ablate editing at this specific site, such that the endogenous channel harbors only the unedited version and used a battery of behavioral paradigms to analyze the effects on various features of adult behavior. We provide evidence that GluClαunedited flies exhibit reduced olfactory responses to both appetitive and aversive odors, as well as impaired pheromone-dependent social interactions, and that editing of this site is required for proper processing of olfactory information in olfactory projection neurons. Our findings demonstrate that evolutionary conservation is a useful criterion to pinpoint which of the many …

Show more

2023 • bioRxiv

AIRR-C Human IG Reference Sets: curated sets of immunoglobulin heavy and light chain germline genes

Andrew M Collins, Mats Ohlin, Martin Corcoran, James M Heather, Duncan Ralph, Mansun Law, Jesus Martinez-Barnetche, Jian Ye, Eve Richardson, William S Gibson, Oscar L Rodriguez, Ayelet Peres, Gur Yaari, Corey T Watson, William D Lees

Analysis of an individual's immunoglobulin (IG) gene repertoire requires the use of high-quality germline gene Reference Sets. The Adaptive Immune Receptor Repertoire-Community (AIRR-C) Reference Sets have been developed to include only human IG heavy and light chain alleles that have been confirmed by evidence from multiple high-quality sources. By including only those alleles with a high level of support, including some new sequences that currently lack official names, AIRR-seq analysis will have greater accuracy and studies of the evolution of immunoglobulin genes, their allelic variants and the expressed immune repertoire will be facilitated. Although containing less than half the previously recognised IG alleles (e.g. just 198 IGHV sequences), the Reference Sets eliminated erroneous calls and provided excellent coverage when tested on a set of repertoires from 99 individuals comprising over 4 million V(D)J rearrangements. To improve AIRR-seq analysis, some alleles have been extended to deal with short 3' or 5' truncations that can lead them to be overlooked by alignment utilities. To avoid other challenges for analysis programs, exact paralogs (e.g. IGHV1-69*01 and IGHV1-69D*01) are only represented once in each set, though alternative sequence names are noted in accompanying metadata. The Reference Sets also include novel alleles: 8 IGHV alleles, 2 IGKV alleles and 5 IGLV alleles. The version-tracked AIRR-C Reference Sets are freely available at the OGRDB website (https://ogrdb.airr-community.org/germline_sets/Human) and will be regularly updated to include newly-observed and previously-reported …

Show more

2023 • Advanced Materials Interfaces

Scanning SQUID Imaging of Reduced Superconductivity Due to the Effect of Chiral Molecule Islands Adsorbed on Nb

Meital Ozeri, TR Devidas, Hen Alpern, Eylon Persky, Anders V Bjorlig, Nir Sukenik, Shira Yochelis, Angelo Di Bernardo, Beena Kalisky, Oded Millo, Yossi Paltiel

Unconventional superconductivity was realized in systems comprising a monolayer of magnetic adatoms adsorbed on conventional superconductors, forming Shiba‐bands. Another approach to induce unconventional superconductivity and 2D Shiba‐bands was recently introduced, namely, by adsorbing chiral molecules (ChMs) on conventional superconductors, which act in a similar way to magnetic impurities as verified by conductance spectroscopy. However, the fundamental effect ChMs have on the strength of superconductivity has not yet been directly observed and mapped. In this work, local magnetic susceptometry is applied on heterostructures comprising islands of ChMs (α‐helix L‐polyalanine) monolayers adsorbed on Nb. It is found that the ChMs alter the superconducting landscape, resulting in spatially‐modulated weaker superconductivity. Surprisingly, the reduced diamagnetic response is located …

Show more

2023

Projective measurements can probe non-classical work extraction and time-correlations

Santiago Hernández-Gómez, Stefano Gherardini, Alessio Belenchia, Matteo Lostaglio, Amikam Levy, Nicole Fabbri

We demonstrate an experimental technique to characterize genuinely nonclassical multi-time correlations using projective measurements with no ancillae. We implement the scheme in a nitrogen-vacancy center in diamond undergoing a unitary quantum work protocol. We reconstruct quantum-mechanical time correlations encoded in the Margenau-Hills quasiprobabilities. We observe work extraction peaks five times those of sequential projective energy measurement schemes and in violation of newly-derived stochastic bounds. We interpret the phenomenon via anomalous energy exchanges due to the underlying negativity of the quasiprobability distribution.

Show more

2023 • Laser & Photonics Reviews

Ray engineering from chaos to order in 2D optical cavities

Chenni Xu, Li‐Gang Wang, Patrick Sebbah

Chaos, namely exponential sensitivity to initial conditions, is generally considered a nuisance, inasmuch as it prevents long‐term predictions in physical systems. Here, an easily accessible approach to undo deterministic chaos and tailor ray trajectories in arbitrary 2D optical billiards by introducing spatially varying refractive index therein is presented. A new refractive index landscape is obtained by a conformal mapping, which makes the trajectories of the chaotic billiard fully predictable and the billiard fully integrable. Moreover, trajectory rectification can be pushed a step further by relating chaotic billiards with non‐Euclidean geometries. Two examples are illustrated by projecting billiards built on a sphere as well as the deformed spacetime outside a Schwarzschild black hole, which respectively lead to all periodic orbits and spiraling trajectories remaining away from the boundaries of the transformed 2D billiards …

Show more

2023 • SusMat, 2023

Design of advanced aerogel structures for oxygen reduction reaction electrocatalysis

Leigh Peles‐Strahl, Yeela Persky, Lior Elbaz

Oxygen reduction reaction (ORR) is considered the bottleneck reaction in fuel cells. Its sluggish kinetics requires the use of scarce and expensive platinum group metal (PGM) catalysts. Significant efforts have been invested in trying to find a PGM‐free catalyst to replace Pt for this reaction or reduce its loadings. One interesting family of materials that has shown great promise in doing so is aerogels, which are based on covalent frameworks. The aerogels’ high surface area and porosity enable good mass transport and high catalyst utilization that is expected to lower PGM loadings or replacing them completely. This review summarizes recent research in this field, introducing methods of using aerogels as cathodes for ORR, from carbon to metal aerogels. The catalytic sites vary from nanoparticles to atomically dispersed metal ions embedded in carbon aerogels that form all‐in‐one platform which can serve as both …

Show more

2023 • medRxiv

Supplementation with short-chain fatty acids and the prebiotic 2FL improves clinical outcome in PD

Tobias Hegelmaier, Duscha Alexander, Chrsitane Desel, Sarbina Fuchs, Michal Shapira, Qihao Shan, Gabriele Stangl, Frank Hirche, Stefan Kempa, Andras Maifeld, Lisa Marie Wuertele, Jana Peplinski, Diana Jauck, Claudia Dumitru, Svein Olaf Hustvedt, Ute Obermueller-Jevic, Nina Timmesfeld, Ralf Gold, Antonia Zapf, Ibrahim Erol sandalcioglu, Sanaz Mostaghim, Horst Przuntek, Eran Segal, Nissan Yissachar, Aiden Haghikia

Background Parkinson disease (PD) is associated with dysbiosis, proinflammatory gut microbiome, disruptions to intestinal barrier functions, and immunological imbalance. Microbiota-produced short-chain fatty acids promote gut barrier integrity and immune regulation, but their impact on PD pathology remains mostly unknown. Objectives To evaluate supplementation with short-chain fatty acids as an add-on intervention in PD. Methods In a randomized double-blind prospective study, 72 PD patients received short-chain fatty acids and/or the prebiotic fiber 2-fucosyllactose supplementation over 6 months. Results We observed improvement in motor and nonmotor symptoms, in addition to modulation of peripheral immunity and improved mitochondrial respiration in immunocytes. The supplementation had no effect on microbiome diversity or composition. Finally, multiobjective analysis and comprehensive immunophenotyping revealed parameters associated with an optimal response to short-chain fatty acids and/or 2-fucosyllactose supplementation. Conclusion Short-chain fatty acids ameliorate clinical symptoms in Parkinson disease patients and modulate mitochondrial function and peripheral immunity.

Show more

2023 • Journal of Materials Chemistry A

Stabilizing Ni-rich high energy cathodes for advanced lithium-ion batteries: the case of LiNi 0.9 Co 0.1 O 2

Francis Amalraj Susai, Amreen Bano, Sandipan Maiti, Judith Grinblat, Arup Chakraborty, Hadar Sclar, Tatyana Kravchuk, Aleksandr Kondrakov, Maria Tkachev, Michael Talianker, Dan Thomas Major, Boris Markovsky, Doron Aurbach

Lithiated oxides like Li[NixCoyMnz]O2 (x + y + z = 1) with high nickel content (x ≥ 0.8) can possess high specific capacity ≥200 mA h g−1 and have attracted extensive attention as perspective cathode materials for advanced lithium-ion batteries. In this work, we synthesized LiNi0.9Co0.1O2 (NC90) materials and studied their structural characteristics, electrochemical performance, and thermal behavior in Li-cells. We developed modified cationic-doped NC90 samples with greatly improved properties due to doping with Mo6+ and B3+ and dual doping via simultaneous modification with these dopants. The main results of the current study are significantly higher capacity retention, greatly reduced voltage hysteresis, and considerably decreased charge-transfer resistance of the Mo and Mo–B doped electrodes compared to the undoped ones upon prolonged cycling. We also revealed remarkable microstructural …

Show more

2023 • Laser & Photonics Reviews

Ray Engineering from Chaos to Order in 2D Optical Cavities

Chenni Xu, Li‐Gang Wang, Patrick Sebbah

Chaos, namely exponential sensitivity to initial conditions, is generally considered a nuisance, inasmuch as it prevents long‐term predictions in physical systems. Here, an easily accessible approach to undo deterministic chaos and tailor ray trajectories in arbitrary 2D optical billiards by introducing spatially varying refractive index therein is presented. A new refractive index landscape is obtained by a conformal mapping, which makes the trajectories of the chaotic billiard fully predictable and the billiard fully integrable. Moreover, trajectory rectification can be pushed a step further by relating chaotic billiards with non‐Euclidean geometries. Two examples are illustrated by projecting billiards built on a sphere as well as the deformed spacetime outside a Schwarzschild black hole, which respectively lead to all periodic orbits and spiraling trajectories remaining away from the boundaries of the transformed 2D billiards …

Show more

2023 • Energy & Environmental Science

A practical perspective on the potential of rechargeable Mg batteries

J Alberto Blázquez, Rudi R Maça, Olatz Leonet, Eneko Azaceta, Ayan Mukherjee, Zhirong Zhao-Karger, Zhenyou Li, Aleksey Kovalevsky, Ana Fernández-Barquín, Aroa R Mainar, Piotr Jankowski, Laurin Rademacher, Sunita Dey, Siân E Dutton, Clare P Grey, Janina Drews, Joachim Häcker, Timo Danner, Arnulf Latz, Dane Sotta, M Rosa Palacin, Jean-Frédéric Martin, Juan Maria García Lastra, Maximilian Fichtner, Sumana Kundu, Alexander Kraytsberg, Yair Ein-Eli, Malachi Noked, Doron Aurbach

Emerging energy storage systems based on abundant and cost-effective materials are key to overcome the global energy and climate crisis of the 21st century. Rechargeable Magnesium Batteries (RMB), based on Earth-abundant magnesium, can provide a cheap and environmentally responsible alternative to the benchmark Li-ion technology, especially for large energy storage applications. Currently, RMB technology is the subject of intense research efforts at laboratory scale. However, these emerging approaches must be placed in a real-world perspective to ensure that they satisfy key technological requirements. In an attempt to bridge the gap between laboratory advancements and industrial development demands, herein, we report the first non-aqueous multilayer RMB pouch cell prototypes and propose a roadmap for a new advanced RMB chemistry. Through this work, we aim to show the great unrealized …

Show more

2023 • Carbon Energy

Single‐atom Pt on carbon nanotubes for selective electrocatalysis

Samuel S Hardisty, Xiaoqian Lin, Anthony RJ Kucernak, David Zitoun

Utilizing supported single atoms as catalysts presents an opportunity to reduce the usage of critical raw materials such as platinum, which are essential for electrochemical reactions such as hydrogen oxidation reaction (HOR). Herein, we describe the synthesis of a Pt single electrocatalyst inside single‐walled carbon nanotubes (SWCNTs) via a redox reaction. Characterizations via electron microscopy, X‐ray photoelectron microscopy, and X‐ray absorption spectroscopy show the single‐atom nature of the Pt. The electrochemical behavior of the sample to hydrogen and oxygen was investigated using the advanced floating electrode technique, which minimizes mass transport limitations and gives a thorough insight into the activity of the electrocatalyst. The single‐atom samples showed higher HOR activity than state‐of‐the‐art 30% Pt/C while almost no oxygen reduction reaction activity in the proton exchange …

Show more

2023 • Frontiers in Oncology

A predictive model for personalization of nanotechnology-based phototherapy in cancer treatment

Eli Varon, Gaddi Blumrosen, Orit Shefi

Cancer remains a leading cause of death globally (1). The conventional methods of treatment offered are radiation (2), chemotherapy (3), immunotherapy (4), surgery, and recently nanotechnology (nanomedicine and nano-processes)(5). Every cancer treatment can be defined and evaluated based on its efficiency, selectivity, side effects, and economic cost (6). However, combining predictive models and advanced machine learning methods with these cancer therapies may enhance their overall efficiency and selectivity, as well as the safety of the patient.Radiation Therapy (RT), also known as radiotherapy, is a non-surgical intervention frequently used in cancer treatment (2). This method is based on a high-level focused dose of radiation directed toward the tumor. This deposit of highenergy radiation kills cancer cells or decelerates their growth by damaging their DNA (2). Nevertheless, the challenges of RT include damage to tumor-proximate normal cells, the inability to radiate minor tumors out of scope of the imaging scans, patient movement, and low oxygen supply (7, 8). Therefore, many researchers are working on the development of targeted radiation methods to deliver a higher dose of radiation to the tumor with improved selectivity. Recently, the combination of nanotechnology with laser radiation has been demonstrated to represent a safe set of modalities for tumor destruction with high specificity (9). In particular, this involves the use of light-controlled nanoparticles (NPs) that can be activated via a light of a specific wavelength to form highly efficient and selective systems in the nanometer range (10). These NPs accumulate specifically …

Show more

2023 • Advanced Energy Materials, 2203154, 2023

Elucidation of the Charging Mechanisms and the Coupled Structural–Mechanical Behavior of Ti3C2Tx (MXenes) Electrodes by In Situ Techniques

Gil Bergman, Elad Ballas, Qiang Gao, Amey Nimkar, Bar Gavriel, Mikhael D Levi, Daniel Sharon, Fyodor Malchik, Xuehang Wang, Netanel Shpigel, Daniel Mandler, Doron Aurbach

The discovery of the Ti3C2Tx compounds (MXenes) a decade ago opened new research directions and valuable opportunities for high‐rate energy storage applications. The unique ability of the MXenes to host various mono‐ and multivalent cations and their high stability in different electrolyte environments including aqueous, organic, and ionic liquid solutions, promoted the rapid development of advanced MXene‐based electrodes for a large variety of applications. Unlike the vast majority of typical intercalation compounds, the electrochemical performance of MXene electrodes is strongly influenced by the presence of co‐inserted solvent molecules, which cannot be detected by conventional current/potential electrochemical measurements. Furthermore, the electrochemical insertion of ions into MXene interspaces results in strong coupling with the intercalation‐induced structural, dimensional, and viscoelastic …

Show more

2023 • EPJ Web of Conferences

Nanoporous metallic networks: Growth process and optical properties

Mohamed Hamode, Racheli Ron, Alon Krause, Adi Salomon

Nanoporous metallic systems exhibit a new generation of advanced materials with potential in a wide variety of technological fields among them catalysis, photonics, optoelectronics and sensors.Their high surface-to-volume ratio, multimodal nanoscale moieties, ability to host guest materials, and inhomogeneous surface at the submicron scale distinct them from both bulk metals and conventional plasmonic materials as well as meta-surfaces. Those structures can be prepared through different fabrication and synthesis strategies including chemical dealloying, assembly of pre-synthesized metallic nanoparticles, and via templating. In a sharp contrast with these preparation strategies, we have demonstrated one can fabricate a macroscopic nanopourus metallic networks by using physical vapor deposition in a short single-step process. These materials are highly pure, and they show very unique linear and non-linear …

Show more

2023 • Industrial Chemistry & Materials

Introduction to the themed issue on frontiers of hydrogen energy and fuel cells

Lior Elbaz, Minhua Shao, Jianglan Shui, Carlo Santoro

Climate change calls for a change in the way we use and produce energy, and carbon-free has become the future direction of energy production and utilization. To obtain this, we must rely on sustainable energy sources such as wind and sun, but their intermittence limits the production of clean energy to only a few hours a day. To overcome this issue, energy storage and production technologies must be developed. Although several technologies have been proposed, the only viable scheme that could allow short-to-long-term storage and efficient energy transportation at-scale is the hydrogen economy, which relies on three pillars of technology: electrolyzers, hydrogen storage and fuel cells. In recent years, there have been rapid technological advances in hydrogen production, new hydrogen storage materials, and high-performance hydrogen fuel cells, etc. However, there are still numerous technological difficulties …

Show more

2023 • Chemical Communications

An in-cell spin-labelling methodology provides structural information on cytoplasmic proteins in bacteria

Yulia Shenberger, Lada Gevorkyan Aiapetov, Melanie Hirsch, Lukas Hofmann, Sharon Ruthstein

EPR in-cell spin-labeling was applied to CueR in E. coli. The methodology employed a Cu(II)-NTA complexed with dHis. High resolved in-cell distance distributions were obtained revealing minor differences between in-vitro and in-cell data. This methodology allows to study structural changes of any protein in-cell, independent of size or cellular system

Show more

2023 • bioRxiv

AIRR-C Human IG Reference Sets: curated sets of immunoglobulin heavy and light chain germline genes

Andrew M Collins, Mats Ohlin, Martin Corcoran, James M Heather, Duncan Ralph, Mansun Law, Jesus Martinez-Barnetche, Jian Ye, Eve Richardson, William S Gibson, Oscar L Rodriguez, Ayelet Peres, Gur Yaari, Corey T Watson, William D Lees

Analysis of an individual's immunoglobulin (IG) gene repertoire requires the use of high-quality germline gene Reference Sets. The Adaptive Immune Receptor Repertoire-Community (AIRR-C) Reference Sets have been developed to include only human IG heavy and light chain alleles that have been confirmed by evidence from multiple high-quality sources. By including only those alleles with a high level of support, including some new sequences that currently lack official names, AIRR-seq analysis will have greater accuracy and studies of the evolution of immunoglobulin genes, their allelic variants and the expressed immune repertoire will be facilitated. Although containing less than half the previously recognised IG alleles (e.g. just 198 IGHV sequences), the Reference Sets eliminated erroneous calls and provided excellent coverage when tested on a set of repertoires from 99 individuals comprising over 4 million V(D)J rearrangements. To improve AIRR-seq analysis, some alleles have been extended to deal with short 3' or 5' truncations that can lead them to be overlooked by alignment utilities. To avoid other challenges for analysis programs, exact paralogs (e.g. IGHV1-69*01 and IGHV1-69D*01) are only represented once in each set, though alternative sequence names are noted in accompanying metadata. The Reference Sets also include novel alleles: 8 IGHV alleles, 2 IGKV alleles and 5 IGLV alleles. The version-tracked AIRR-C Reference Sets are freely available at the OGRDB website (https://ogrdb.airr-community.org/germline_sets/Human) and will be regularly updated to include newly-observed and previously-reported …

Show more

2023 • Chemical Communications

Anodic instability of carbon in non-alkaline Zn–air batteries

Roman R Kapaev, Malachi Noked

Although non-alkaline rechargeable Zn-air batteries (RZABs) are promising for energy storage, their chemistry is still underdeveloped and unclear. It was suggested that using Zn(OAc)2 or Zn(OTf)2 aqueous solutions as electrolytes enables reversible, corrosion-free charge-discharge proccesses, but anodic stability of carbon in these cells has remained poorly studied. We report that CO2 evolution is manifested during oxygen evolution reaction in non-alkaline RZABs, which is associated with corrosion of carbon scaffolds. This corrosion is observed for different electrolyte compositions, such as Zn(OAc)2, ZnSO4 and Zn(OTf)2 solutions of various concentrations. The corrosion rate decreases when the overpotentials during oxygen evolution reaction are lower. This study underlines the importance of addressing the anodic instability of carbon in non-alkaline RZABs.

Show more

2023 • Batteries & Supercaps

Biopolymer‐assisted Synthesis of P‐doped TiO2 Nanoparticles for High‐performance Lithium‐ion Batteries: A Comprehensive Study

Nabil El Halya, Mohamed Aqil, Karim El Ouardi, Amreen Bano, Ayoub El Bendali, Loubna Hdidou, Rachid Amine, Seoung‐Bum Son, Fouad Ghamouss, Dan Thomas Major, Khalil Amine, Jones Alami, Mouad Dahbi

TiO2 material has gained significant attention for large‐scale energy storage due to its abundant, low‐cost, and environmentally friendly properties, as well as the availability of various nanostructures. Phosphorus doping has been established as an effective technique for improving electronic conductivity and managing the slow ionic diffusion kinetics of TiO2. In this study, non‐doped and phosphorus doped TiO2 materials were synthesized using sodium alginate biopolymer as chelating agent. The prepared materials were evaluated as anode materials for lithium‐ion batteries (LIBs). The electrodes exhibit remarkable electrochemical performance, including a high reversible capacity of 235 mAh g−1 at 0.1 C and excellent first coulombic efficiency of 99 %. An integrated approach, combining operando XRD and ex‐situ XAS, comprehensively investigates the relationship between phosphorus doping, material …

Show more

2023 • Energy & Fuels

Enhanced electrochemical performance of CuO Capsules@ CDs composites for solid-state hybrid supercapacitor

Sengodan Prabhu, Moorthy Maruthapandi, Arulappan Durairaj, John HT Luong, Aharon Gedanken

Capsule-like CuO/CDs (CuO@CDs) with a surface area of 33.12 m2 g–1 were synthesized by the hydrothermal treatment, compared to 19.02 m2 g–1 for pristine CuO. An anode was then fabricated from capsule-like CuO@CDs to form a hybrid solid-state supercapacitor (HSSC) with the activated carbon (AC) cathode and PVA/1M KOH as an electrolyte. Three electrode system offered 1208.88 F/g (specific capacitance at 2 A/g current density) and unveiled a remarkable life cycle (retention) and Coulombic efficiency (CF): 93 and 98% after 5000 charge–discharge cycles at 10 A/g. In terms of performance, the HSSC delivered 1.5 V and 102.60 F/g (50.74 C/g) at 2 A/g, 8437.50 W/kg (power density), and 36.90 Wh/kg (energy density). The HSSC still retained 92% of cyclic stability and 83% of CF after 10,000 cycles.

Show more

logo
Articali

Powered by Articali

TermsPrivacy