Jan 2024 • PLoS genetics
Julia Ryvkin, Liora Omesi, Yong-Kyu Kim, Mali Levi, Hadar Pozeilov, Lital Barak-Buchris, Bella Agranovich, Ifat Abramovich, Eyal Gottlieb, Avi Jacob, Dick R Nässel, Ulrike Heberlein, Galit Shohat-Ophir
Living in dynamic environments such as the social domain, where interaction with others determines the reproductive success of individuals, requires the ability to recognize opportunities to obtain natural rewards and cope with challenges that are associated with achieving them. As such, actions that promote survival and reproduction are reinforced by the brain reward system, whereas coping with the challenges associated with obtaining these rewards is mediated by stress-response pathways, the activation of which can impair health and shorten lifespan. While much research has been devoted to understanding mechanisms underlying the way by which natural rewards are processed by the reward system, less attention has been given to the consequences of failure to obtain a desirable reward. As a model system to study the impact of failure to obtain a natural reward, we used the well-established courtship suppression paradigm in Drosophila melanogaster as means to induce repeated failures to obtain sexual reward in male flies. We discovered that beyond the known reduction in courtship actions caused by interaction with non-receptive females, repeated failures to mate induce a stress response characterized by persistent motivation to obtain the sexual reward, reduced male-male social interaction, and enhanced aggression. This frustrative-like state caused by the conflict between high motivation to obtain sexual reward and the inability to fulfill their mating drive impairs the capacity of rejected males to tolerate stressors such as starvation and oxidative stress. We further show that sensitivity to starvation and enhanced social arousal is …
Show moreJan 2024 • Results in Physics
Binyamin Kusnetz, Jeremy Belhassen, Denis E Tranca, Stefan G Stanciu, Stefan-Razvan Anton, Zeev Zalevsky, George A Stanciu, Avi Karsenty
A wide palette of nanoscale imaging techniques operating in the near-field regime has been reported to date, enabling an important number of scientific breakthroughs. While the tuning and benchmarking of near-field microscopes represent a very important step for optimizing the outputs of the imaging sessions, no generally acknowledged standards exist yet in terms of calibration of near-field microscopes, which would play an important role in fully exploiting the potential of these instruments. With this work, we aim to contribute to filling in this gap, by introducing a prototypical sample, that holds potential for becoming a benchmark with respect to comparing the performances of diverse near-field measurement techniques, including traditional, aperture based, scanning near field microscopy (SNOM), or apertureless variants, such as scattering-type scanning nearfield optical microscopy (s-SNOM). The proposed …
Show moreJan 2024 • Proc. of SPIE Vol
Dror Fixler, Sebastian Wachsmann-Hogiu
Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XXI Page 1 PROGRESS IN BIOMEDICAL OPTICS AND IMAGING Vol. 25 No. 43 Volume 12858 Proceedings of SPIE, 1605-7422, V. 12858 SPIE is an international society advancing an interdisciplinary approach to the science and application of light. Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XXI Dror Fixler Sebastian Wachsmann-Hogiu Editors 28 January 2024 San Francisco, California, United States Sponsored by SPIE Cosponsored by Prizmatix Ltd. (Israel) Published by SPIE Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XXI, edited by Dror Fixler, Sebastian Wachsmann-Hogiu, Proc. of SPIE Vol. 12858, 1285801 © 2024 SPIE · 1605-7422 · doi: 10.1117/12.3030104 Proc. of SPIE Vol. 12858 1285801-1 Page 2 The papers in this volume were part of the technical conference cited on the …
Show moreJan 2024 • Surfaces and Interfaces
Arumugam Saravanan, Poushali Das, Moorthy Maruthapandi, Saurav Aryal, Shulamit Michaeli, Yitzhak Mastai, John HT Luong, Aharon Gedanken
The development of new nanoparticle-based antibiotics with biocompatible properties is an emerging advance in nanotechnology. This study advocated the development of carbon dots (CDs) doped with nitrogen, nitrogen with sulfur, and nitrogen with boron (N, NS, and NB-CDs). This led to changes in the properties of the CDs, both chemically and biologically. A facile hydrothermal technique was used to synthesize CDs and the formation of CDs was confirmed through various analytical techniques. The CDs had sizes ranging from 3.2 – 4.8 nm and ζ-potential values of +13 to 27 mV. The doped CDs exhibited moderate changes in fluorescence behaviors depending on the excitation wavelength (λex). The N- and NB-doped CDs were effective at eliminating gram-negative pathogens (E. coli and K. pneumoniae), with minimum inhibitory concentrations (MIC) of 300 µg/mL and 400 µg/mL, respectively. The …
Show more2024 • Journal of Materials Chemistry A
Sankalpita Chakrabarty, Javeed Ahmad Dar, Akanksha Joshi, Arad Paperni, Sarah Taragin, Ananya Maddegalla, Gopalakrishnan Sai Gautam, Ayan Mukherjee, Malachi Noked
Tunnel-type Na0.44MnO2 (tt-NMO) is a promising cathode for sodium ion battery having excellent structural stability, diffusion kinetics, and low cost. However, this cathode is reported to suffer from low initial charge capacity (e.g., ≤60 mA h g−1) due to the limited accessibility of sodium ion extraction (0.22–0.24 Na+ per formula unit) from the structure, which hinders the practical viability of this material in a full battery cell. In this study, we report a tailored tt-NMO structure, synthesized using a two-step facile and scalable process, with >95% yield. Our tt-NMO demonstrated a 1st charge capacity of 110 mA h g−1, followed by a discharge capacity of 115 mA h g−1 within the potential window of 4–1.7 V versus Na/Na+. The long-term cycling performance at 0.5C rate and 1C rate (1C = 120 mA h g−1) shows excellent structural integrity for over 400 cycles with >75% capacity retention. We show experimentally and support it …
Show more2024 • Journal of Materials Chemistry B
Pradip Paik, Kirti Wasnik, Premshankar Gupta, Gurmeet Singh, Somedutta Maity, Sukanya Patra, Divya Pareek, Sandeep Kumar, Vipin Rai, Ravi Prakash, Arbind Acharya, Pralay Maiti, Sudip Mukherjee, Yitzhak Mastai
Traumatic injuries, neurodegenerative diseases and oxidative stress serve as the early biomarkers for neuronal damages, impedes angiogenesis and subsequently neuronal growth. In this line, the present work is aimed to develop angiogenesis/neurogenesis properties imprinted poly(N-acryloylglycine)-co-(acrylamide)-co-(N-acryloylglutamate) hydrogel [p(NAG-Ac-NAE)]. As constituents of this polymer to modulate the vital role in biological functions, inhibitory neurotransmitter glycine regulates neuronal homeostasis, and glutamatergic signalling regulates angiogenesis. The p(NAG-Ac-NAE) is highly-branched, biodegradable and shows pH-responsive with very high swelling behavior upto 6188%. Mechanical stability (G’, 2.3-2.7kPa) of this hydrogel is commendable in differentiation of the mature neurons. This hydrogel is biocompatible in HUVEC cells and proliferative in PC12 cells (152.7±13.7 %), whereas …
Show more2024 • Journal of Materials Chemistry A
Prasant Kumar Nayak, Yuvashri Jayamkondan, Boris Markovsky, Doron Aurbach
Currently, layered Ni-rich oxides cathodes of LiNi1-xMnyCozO2 (x ≥ 0.8) have gained a major attention for the high energy density Li-ion batteries (LIBs), due to their high specific capacity of ~200 mAh g-1 within the limited voltage. However, the large-scale use of these cathodes is severely limited by the poor structural stability, high surface reactivity, and severe capacity fade resulting from the intergranular micro cracks triggered by large volume changes and formation of rock salts at highly de-lithiated state. Knowing the demand for high specific capacity and high cycling stability, a core-shell oxide material 0.8LiNi0.85Mn0.10Co0.05O2-0.2Li1.2Ni0.16Mn0.56Co0.08O2 (NR-CS) with a core Ni-rich oxide, LiNi0.85Mn0.10Co0.05O2 (NMC85) and an outer shell of Mn-based Li-rich Li1.2Ni0.16Mn0.56Co0.08O2 oxide is synthesized, which delivers an initial discharge capacity of 212 mAh g-1 when cycled at 20 mA g -1 …
Show more2024 • Journal of Materials Chemistry A
Gil Bergman, Netta Spanier, Omer Blumen, Noam Levy, Sara Harpaz, Fyodor Malchik, Langyuan Wu, Masato Sonoo, Munseok S Chae, Guoxiu Wang, Daniel Mandler, Doron Aurbach, Yong Zhang, Netanel Shpigel, Daniel Sharon
Zinc metal, with its high theoretical capacity and low cost, stands out as a promising anode material for affordable high energy-density storage technologies in rechargeable batteries. However, obtaining a high level of reversibility in zinc electrodeposition, which is pivotal for the success of rechargeable zinc-metal-based batteries, remains a significant challenge. A critical factor in this regard is the physicochemical characteristics of the electrolyte solution. Previous studies have indicated that adjusting the electrolyte solutions’ composition with additives or co-solvents, along with fine-tuning concentrations and pH levels, can enhance the reversibility and kinetics of Zn deposition/stripping. However, the precise impact of Zn salts counter anions in the electrolyte solutions on these processes is not fully understood yet. Aiming to focus on the key fundamental aspects related to the electrolytes’ influences on the Zn …
Show more2024 • EPJ Web of Conferences
Kaitlin Szederkenyi, Carine Julien, Bruno Lagarde, Ilya Olevsko, Adi Salomon, Martin Oheim
Simultaneous field- and aperture-plane (back-focal plane, BFP) imaging enriches the information content of fluorescence microscopy. In addition to the usual density and concentration maps of sample-plane images, BFP images provide information on the surface proximity and orientation of molecular fluorophores. They also give access to the refractive index of the fluorophore-embedding medium. However, in the high-NA, wide-field detection geometry commonly used in single-molecule localisation microscopies, such measurements are averaged over all fluorophores present in the objective’s field of view, thus limiting spatial resolution and specificity. We here solve this problem and demonstrate how an oblique, variable-angle, coherent ring illumination can be used to generate a Bessel beam that - for supercritical excitation angles - produces an evanescent needle of light. Scanning the sample through the this …
Show more2024
Anna Kremen, Hagit Aviv, Yaakov Raphael Tischler, Amos Sharoni
Coupling superconducting (SC) contacts to light-emitting layers can lead to remarkable effects, as seen in inorganic quantum-well LEDs with superconducting contacts, where an enhancement in radiative recombination was observed. Additional dramatic effects were theorized if both electrodes are SC, such as correlated emission and 2-photon entanglement. Motivated by this and by the question if proximity induced SC is possible in organic light emitting materials, we studied the electronic properties of stacked SC-organic-SC devices. Our structures consisted of Nb (bottom) and NbN (top) SC electrodes and a spin-coated light emitting semiconductor polymer, MEH-PPV. Sputtering the SC directly on the polymer causes pinhole, which we prevent by ultra-slow deposition of a 5 nm aluminum film, before depositing the top SC in-situ. The Al protects the organic film from damage and pinhole formation, while preserving SC in the top electrodes due to proximity effect between Al and NbN. Electrical transport measurements of the completed junctions indicate that indeed, the top and bottom contacts are superconducting and the protected MEH-PPV layer is pinholefree, as supported by HR-TEM and EDS. Most important, we find that as the temperature is decreased below the critical temperature of the SCs, the device shows evidence for proximity effect in the MEH-PPV and for a Josephson effect in the device.
Show more2024 • bioRxiv
Esther Shmidov, Alexis Villani, Senen D Mendoza, Ellay Avihu, Ilana Lebenthal-Loinger, Sarit Karako-Lampert, Sivan Shoshani, Chang Ye, Yiding Wang, Hao Yan, Weixin Tang, Joseph Bondy-Denomy, Ehud Banin
Restriction-modification (R-M) systems, present in most bacterial genomes, protect against phage infection by detecting and degrading invading foreign DNA. However, like many prokaryotic anti-phage systems, R-M systems pose a significant risk of auto-immunity, exacerbated by the presence of hundreds to thousands of potential cleavage sites in the bacterial genome. In Pseudomonas aeruginosa, restriction inactivation upon growth at high temperatures was previously described, however, which system is being inactivated, the underlying mechanism, as well as the timing of recovery, remain unknown. Here, we report that P. aeruginosa Type I methyltransferase (HsdMS) and restriction endonuclease (HsdR) components are degraded by two Lon-like proteases when replicating above 41 °C, which induces partial genome hypomethylation and simultaneously prevents self-targeting, respectively. Interestingly, upon return to 37 °C, methyltransferase activity returns gradually, with restriction activity not fully recovering for over 60 bacterial generations, representing the longest bacterial memory to our knowledge. Forced expression of HsdR over the first 45 generations is toxic, demonstrating the fitness benefit of HsdR inactivation. Our findings demonstrate that type I R-M is tightly regulated post-translationally with a remarkable memory effect to ensure genomic stability and emphasize the importance of mitigating auto-toxicity for bacterial defense systems.
Show more2024 • Journal of Materials Chemistry C
Michal Poplinger, Dimitris Kaltsas, Chen Stern, Pilkhaz Nanikashvili, Adi Levi, Rajesh K Yadav, Sukanta Nandi, Yuxiao Wu, Avinash Patsha, Ariel Ismach, Ashwin Ramasubramaniam, Amaia Pesquera, Amaia Zurutuza, Ioanna Zergioti, Leonidas Tsetseris, Tomer Lewi, Doron Naveh
Topological insulators, a class of materials possessing bulk bandgap and metallic surface states with a topological nontrivial symmetry, are considered promising candidates for emerging quantum and optoelectronic applications. However, achieving scalable growth and control over the parameters including thickness, carrier density, bulk bandgap, and defect density remains a challenge in realizing such applications. In this work, we show the scalable growth of topological insulator alloys Bi2Se(3−x)Sx and demonstrate composition-tunable bandgap, using chemical vapor deposition (CVD). A bandgap increase of up to ∼40% at a sulfur concentration of ∼15% is demonstrated. Correspondingly, the real part (n) of the refractive index is reduced in the alloy by ∼25% relative to that of Bi2Se3. Additionally, electronic transport measurements indicate a bulk p-type doping and field-effect tunable metallic surface states …
Show more2024 • Journal of Materials Chemistry C
Michal Poplinger, Dimitrios Kaltsas, Chen Stern, Pilkhaz Nanikashvili, Adi Levi, Rajesh Kumar Yadav, Sukanta Nandi, Yuxiao Wu, Avinash Patsha, Ariel Ismach, Ashwin Ramasubramaniam, Amaia Pesquera, Amaia Zurutuza, Ioanna Zergiot, Leonidas Tsetseris, Tomer Lewi, Doron Naveh
Topological insulators, a class of materials possessing bulk bandgap and metallic surface states with a topological nontrivial symmetry, are considered promising candidates for emerging quantum and optoelectronic applications. However, achieving scalable growth and control over parameters including thickness, carrier density, bulk bandgap, and defect density remains a challenge in realizing such applications. In this work, we show the scalable growth of topological insulator alloys Bi2Se(3-x)Sx and demonstrate composition-tunable bandgap, using chemical vapor deposition (CVD). A bandgap increase of up to ~40% at a sulfur concentration of ~15% is demonstrated. Correspondingly, the real part (n) of the refractive index is reduced in the alloy by ~25% relative to that of Bi2Se3. Additionally, electronic transport measurements indicate a bulk p-type doping and field-effect tunable metallic surface states of the …
Show more2024
SHIRAN LEVY, NATHALIE LANDER GOWER, SILVIA PIPERNO, SADHVIKAS J ADDAMANE, JOHN L RENO, ASAF ALBO
Analyzing the effect of doping concentration in split-well resonant-phonon terahertz quantum cascade lasers: supplement Page 1 Supplemental Document Analyzing the effect of doping concentration in split-well resonant-phonon terahertz quantum cascade lasers: supplement SHIRAN LEVY,1,2,† NATHALIE LANDER GOWER,1,2,† SILVIA PIPERNO,1,2 SADHVIKAS J. ADDAMANE,3 JOHN L. RENO,3 AND ASAF ALBO 1,2,∗ 1Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel 2The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel 3Center for Integrated Nanotechnologies, Sandia National Laboratories, MS 1303, Albuquerque, New Mexico 87185-1303, USA †These authors contributed equally to this work ∗ asafalbo@gmail.com This supplement published with Optica Publishing Group on 18 March 2024 by The Authors under the terms of the …
Show more2024 • Journal of Materials Chemistry A
Gil Bergman, Netta Bruchiel-Spanier, Omer Bluman, Noam Levi, Sara Harpaz, Fyodor Malchick, Langyuan Wu, Masato Sonoo, Munseok S Chae, Guoxiu Wang, Daniel Mandler, Doron Aurbach, Yong Zhang, Netanel Shpigel, Daniel Sharon
Zinc metal, with its high theoretical capacity and low cost, stands out as a promising anode material for affordable high energy-density storage technologies in rechargeable batteries. However, obtaining a high level of reversibility in zinc electrodeposition, which is pivotal for the success of rechargeable zinc-metal-based batteries, remains a significant challenge. A critical factor in this regard is the physicochemical characteristics of the electrolyte solution. Previous studies have indicated that adjusting the electrolyte solutions' composition with additives or co-solvents, along with fine-tuning concentrations and pH levels, can enhance the reversibility and kinetics of Zn deposition/stripping. However, the precise impact of Zn salts counter anions in the electrolyte solutions on these processes is not fully understood yet. Aiming to focus on the key fundamental aspects related to the electrolytes' influences on the Zn …
Show more2024 • ACS Energy Letters
Hyungjin Lee, Amey Nimkar, Netanel Shpigel, Daniel Sharon, Seung-Tae Hong, Doron Aurbach, Munseok S Chae
Rechargeable manganese batteries hold promise for large-scale energy storage due to the abundance and eco-friendly nature of manganese. A key challenge is developing cathode materials capable of reversibly inserting Mn ions with a high specific capacity. Here, we demonstrate that perylene-3,4,9,10-tetracarboxylic dianhydride electrodes efficiently and reversibly insert Mn2+ ions in 3 M MnCl2 aqueous electrolyte solutions. Leveraging the carbonyl groups and the π-electron configuration, such compounds can serve as robust redox centers, facilitating reversible interactions with divalent ions such as Mn2+. Through comprehensive studies involving electrochemistry, elemental analyses, spectroscopy, and structural analysis, we explored these systems and found them as promising anode materials for Mn batteries. Demonstrating excellent Mn storage capabilities, such molecules could attain a reversible …
Show more2024
Anna Kremen, Hagit Aviv, Yaakov Raphael Tischler, Amos Sharoni
Coupling superconducting (SC) contacts to light-emitting layers can lead to remarkable effects, as seen in inorganic quantum-well LEDs with superconducting contacts, where an enhancement in radiative recombination was observed. Additional dramatic effects were theorized if both electrodes are SC, such as correlated emission and 2-photon entanglement. Motivated by this and by the question if proximity induced SC is possible in organic light emitting materials, we studied the electronic properties of stacked SC-organic-SC devices. Our structures consisted of Nb (bottom) and NbN (top) SC electrodes and a spin-coated light emitting semiconductor polymer, MEH-PPV. Sputtering the SC directly on the polymer causes pinhole, which we prevent by ultra-slow deposition of a 5 nm aluminum film, before depositing the top SC in-situ. The Al protects the organic film from damage and pinhole formation, while preserving SC in the top electrodes due to proximity effect between Al and NbN. Electrical transport measurements of the completed junctions indicate that indeed, the top and bottom contacts are superconducting and the protected MEH-PPV layer is pinholefree, as supported by HR-TEM and EDS. Most important, we find that as the temperature is decreased below the critical temperature of the SCs, the device shows evidence for proximity effect in the MEH-PPV and for a Josephson effect in the device.
Show more2024 • Nanoscale
Yeela Persky, Yan Yurko, Rifael Z Snitkoff-Sol, Noam Zion, Lior Elbaz
Fe–N–C catalysts are currently the leading candidates to replace Pt-based catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. To maximize their activity, it is necessary to optimize their structure to allow high active site density on one hand, and hierarchical porous structure that will allow good mass transport of reactants and products to and from the active sites on the other hand. Hence, the hierarchical structure of the catalyst plays an important role in the balance between the electrochemical active site density and the mass transport resistance. Aerogels were synthesized in this work to study the interplay between these two parameters. Aerogels are covalent organic frameworks with ultra-low density, high porosity, and large surface area. The relative ease of tuning the composition and pore structure of aerogels make them prominent candidates for catalysis. Herein, we report on a …
Show more2024 • Nanoscale
Hilah C Honig, Silvia Mostoni, Yan Presman, Rifael Z Snitkoff-Sol, Paolo Valagussa, Massimiliano D'Arienzo, Roberto Scotti, Carlo Santoro, Mohsin Muhyuddin, Lior Elbaz
This study delves into the critical role of customized materials design and synthesis methods in influencing the performance of electrocatalysts for the oxygen reduction reaction (ORR) in anion exchange membrane fuel cells (AEMFCs). It introduces a novel approach to obtain platinum-free (PGM-free) electrocatalysts based on the controlled integration of iron active sites onto the surface of silica nanoparticles (NPs) by using nitrogen-based surface ligands. These NPs are used as hard templates to form tailored nanostructured electrocatalysts with an improved iron dispersion into the carbon matrix. By utilizing a wide array of analytical techniques including infrared and X-ray photoelectron spectroscopy techniques, X-ray diffraction and surface area measurements, this work provides insight into the physical parameters that are critical for ORR electrocatalysis with PGM-free electrocatalysts. The new catalysts showed a …
Show more2024 • Environmental Science: Nano
Mohamed Riad Hamode, Alon Krause, Tchiya Zar, Iddo Pinkas, David Zitoun, Adi Salomon
Pharmaceutical waste and contaminants pose a significant global concern for water and food safety. The detection of piperidine, a common residue in drug and supplement synthesis, is critical due to its toxic nature to both humans and animals. In this study, we develop a plasmonic-based detector for surface enhanced Raman scattering (SERS) measurements. The plasmonic device is composed of triangular cavities, milled in silver thin film and protected by 5 nm of SiO2 layer. Due to the confined and enhanced electromagnetic field, remarkable sensitivity to piperidine with concentration of 10-8M in water is achieved. Despite the relative small polarizability of piperidine, high sensitivity is observed even when using a low numerical aperture of 0.3., attributing to the directional scattring from our plasmonic device. Thus, It offers a cost-effective alternative to traditional high numerical aperture used in SERS, and the …
Show more2024 • Energy Advances
Vineesh Thazhe Veettil, Manoj Shanmugasundaram, David Zitoun