Aug 2023 • Membranes
Raphael Flack, Anna Aixalà-Perelló, Alessandro Pedico, Kobby Saadi, Andrea Lamberti, David Zitoun
Permselectivity of a membrane is central for the development of electrochemical energy storage devices with two redox couples, such as redox flow batteries (RFBs). In RFBs, Br 3−/Br− couple is often used as a catholyte which can cross over to the anolyte, limiting the battery’s lifetime. Naturally, the development of permselective membranes is essential to the success of RFBs since state-of-the-art perfluorosulfonic acid (PFSA) is too costly. This study investigates membranes of graphene oxide (GO), polyvinylpyrrolidone (PVP), and imidazole (Im) as binder and linker, respectively. The GO membranes are compared to a standard PFSA membrane in terms of ionic conductivity (Na+) and permselectivity (exclusion of Br−). The ionic conduction is evaluated from electrochemical impedance spectroscopy and the permselectivity from two-compartment diffusion cells in a four-electrode system. Our findings suggest that the GO membranes reach conductivity and permselectivity comparable with standard PFSA membranes.
Show moreAug 2023 • arXiv preprint arXiv:2308.14801
Xi Wang, Anirban Kundu, Bochao Xu, Sajna Hameed, Ilya Sochnikov, Damjan Pelc, Martin Greven, Avraham Klein, Beena Kalisky
A major challenge in the development of quantum technologies is to induce additional types of ferroic orders into materials that exhibit other useful quantum properties. Various techniques have been applied to this end, such as elastically straining, doping, or interfacing a compound with other materials. Plastic deformation introduces permanent topological defects and large local strains into a material, which can give rise to qualitatively new functionality. Here we show via local magnetic imaging that plastic deformation induces robust magnetism in the quantum paraelectric SrTiO3, in both conducting and insulating samples. Our analysis indicates that the magnetic order is localized along dislocation walls and coexists with polar order along the walls. The magnetic signals can be switched on and off in a controllable manner with external stress, which demonstrates that plastically deformed SrTiO3 is a quantum multiferroic. These results establish plastic deformation as a versatile platform for quantum materials engineering.
Show moreAug 2023 • arXiv preprint arXiv:2308.09777
Sukanta Nandi, Shany Z Cohen, Danveer Singh, Michal Poplinger, Pilkhaz Nanikashvili, Doron Naveh, Tomer Lewi
Topological insulators (TIs) are a class of materials characterized by an insulting bulk and high mobility topologically protected surface states, making them promising candidates for future optoelectronic and quantum devices. Although their electronic and transport properties have been extensively studied, their optical properties and prospective photonic capabilities have not been fully uncovered. Here, we use a combination of far-field and near-field nanoscale imaging and spectroscopy, to study CVD grown Bi2Se3 nanobeams (NBs). We first extract the mid-infrared (MIR) optical constants of Bi2Se3, revealing refractive index values as high as n ~6.4, and demonstrate that the NBs support Mie-resonances across the MIR. Local near-field reflection phase mapping reveals domains of various phase shifts, providing information on the local optical properties of the NBs. We experimentally measure up to 2{\pi} phase-shift across the resonance, in excellent agreement with FDTD simulations. This work highlights the potential of TI Bi2Se3 for quantum circuitry, non-linear generation, high-Q metaphotonics, and IR photodetection.
Show moreAug 2023 • Physica C: Superconductivity and its Applications
Yosi Yeshurun
This article describes the effect of Alex Muller's discoveries on my own career and memories of him during his visit to Bar-Ilan University where he received an honorary doctorate.
Show moreAug 2023 • Journal of Biomedical Optics
Deep Pal, Amitesh Kumar, Nave Avraham, Yoram Eisenbach, Yevgeny Beiderman, Sergey Agdarov, Yafim Beiderman, Zeev Zalevsky
SignificanceDiabetes is a prevalent disease worldwide that can cause severe health problems. Accurate blood glucose detection is crucial for diabetes management, and noninvasive methods can be more convenient and less painful than traditional finger-prick methods.AimWe aim to report a noncontact speckle-based blood glucose measurement system that utilizes artificial intelligence (AI) data processing to improve glucose detection accuracy. The study also explores the influence of an alternating current (AC) induced magnetic field on the sensitivity and selectivity of blood glucose detection.ApproachThe proposed blood glucose sensor consists of a digital camera, an AC-generated magnetic field source, a laser illuminating the subject’s finger, and a computer. A magnetic field is applied to the finger, and a camera records the speckle patterns generated by the laser light reflected from the finger. The acquired …
Show moreAug 2023 • Computational Optical Sensing and Imaging, JM1B. 4, 2023
Nadav Shabairou, Zeev Zalevsky, Moshe Sinvani
In this work, we demonstrate the focusing of a Gaussian laser beam, in silicon, by a vortex-shaped beam where both beams are at a wavelength of 775nm, which can sharpen the beam's PSF to improve the resolution in laser scanning microscopy.
Show moreAug 2023 • IEEE Journal of Quantum Electronics
Mallachi-Elia Meller, Idan Parshani, Leon Bello, David Goldovsky, Amir Kahana, Avi Pe’er
Broad area laser diodes are attractive for the high optical power they can produce. Unfortunately, this high power normally comes at the cost of severely reduced spatial coherence since the wide area of the diode wave-guide is inherently spatially multi-mode along the slow axis. We demonstrate a method to significantly improve the spatial coherence of a high-power broad-area diode by placing it in an external cavity that is mode selective. We design the cavity, such that the diode aperture acts as its own spatial filter, obviating the need for an intra-cavity slit-filter, and optimally utilizing the entire gain medium. We demonstrate this soft filtering method using wide diodes of and widths and compare its power-efficiency to the standard approach of hard-filtering with a slit. We obtain high-gain operation in a pure single-mode, demonstrating up to 1.5 W CW power at 1064 nm with excellent beam quality …
Show moreAug 2023 • Neurotrauma Reports
Luise Schlotterose, Megane Beldjilali-Labro, Mario Hagel, Moran Yadid, Carina Flaxer, Eli Flaxer, A Ronny Barnea, Kirsten Hattermann, Esther Shohami, Yael Leichtmann-Bardoogo, Ben M Maoz
Traumatic brain injury (TBI), which is characterized by damage to the brain resulting from a sudden traumatic event, is a major cause of death and disability worldwide. It has short- and long-term effects, including neuroinflammation, cognitive deficits, and depression. TBI consists of multiple steps that may sometimes have opposing effects or mechanisms, making it challenging to investigate and translate new knowledge into effective therapies. In order to better understand and address the underlying mechanisms of TBI, we have developed an in vitro platform that allows dynamic simulation of TBI conditions by applying external magnetic forces to induce acceleration and deceleration injury, which is often observed in human TBI. Endothelial and neuron-like cells were successfully grown on magnetic gels and applied to the platform. Both cell types showed an instant response to the TBI model, but the endothelial cells …
Show moreAug 2023 • Journal of Biological Engineering
Gal Shpun, Nairouz Farah, Yoav Chemla, Amos Markus, Tamar Azrad Leibovitch, Erel Lasnoy, Doron Gerber, Zeev Zalevsky, Yossi Mandel
BackgroundTissue-integrated micro-electronic devices for neural stimulation hold great potential in restoring the functionality of degenerated organs, specifically, retinal prostheses, which are aimed at vision restoration. The fabrication process of 3D polymer-metal devices with high resolution and a high aspect-ratio (AR) is very complex and faces many challenges that impair its functionality.ApproachHere we describe the optimization of the fabrication process of a bio-functionalized 3D high-resolution 1mm circular subretinal implant composed of SU-8 polymer integrated with dense gold microelectrodes (23μm pitch) passivated with 3D micro-well-like structures (20μm diameter, 3μm resolution). The main challenges were overcome by step-by-step planning and optimization while utilizing a two-step bi-layer lift-off process; bio-functionalization was carried out by N2 plasma treatment and the addition of a bio …
Show moreAug 2023 • 2023 IEEE 18th Conference on Industrial Electronics and Applications (ICIEA …, 2023
Eran Gur, Zeev Zalevsky
Aug 2023 • ACS Catalysis
Hyunah Kwon, Hannah-Noa Barad, Alex Ricardo Silva Olaya, Mariana Alarcón-Correa, Kersten Hahn, Gunther Richter, Gunther Wittstock, Peer Fischer
Nanoporous gold (Au) films are self-supported structures that possess a large surface area and extraordinary catalytic activity. Generally, nanoporous gold is obtained by solution-based dealloying where the less noble metal, often silver (Ag), is etched out. However, the residual amounts of the sacrificial metal are not well controlled, the impure samples show restructuring, and the residual metal prevents the study of the catalytic role of Au alone. Here, we fabricate impurity-free nanoporous gold films by a plasma-enabled dry synthetic route. The scheme does not include sacrificial metals or solution processing and is much more general. It is used to obtain self-supported ultra-pure nanoporous gold films with controllable pore sizes. The impurity-free nanoporous gold films possess highly curved ligaments, are remarkably robust, and stable over hundreds of electrochemical cycles. Furthermore, they contain many …
Show moreAug 2023 • Nanophotonics
Shany Zrihan Cohen, Danveer Singh, Sukanta Nandi, Tomer Lewi
Thermal effects are well known to influence the electronic and optical properties of materials through several physical mechanisms and are the basis for various optoelectronic devices. The thermo-optic (TO) effect, the refractive index variation with temperature (dn/dT), is one of the most common mechanisms used for tunable optical devices, including integrated optical components, metasurfaces, and nano-antennas. However, when a static and fixed operation is required, i.e., temperature invariant performance – this effect becomes a drawback and may lead to undesirable behavior through drifting of the resonance frequency, amplitude, or phase, as the operating temperature varies over time. In this work, we present a systematic approach to mitigate thermally induced optical fluctuations in nanophotonic devices. By using hybrid subwavelength resonators composed from two materials with opposite TO dispersions …
Show moreAug 2023 • Preprints, 2023
Indra Neel Pulidindi, Aharon Gedanken
The purpose of the review is to provide new insight into the potential of surface modification of carbon fibers for enhancing the application of the carbon fibers many a fold. To this end a total of 429 papers on the subject of surface modication of carbon fibers by a variety of chemical and electrochemical methods published during the period from 2010-2022 have been reviewed. Astounding results of surface funcationalization of carbon fibers by a variety of state of the art methods resulting in the unconventional applications of the resulting modified carbon fibers are summarized in a nut-shell in schemes from 1-6 towards the end of the review. Surface modifica-tion induces functionality to carbon fibers (CFs). The vitality of CF surface modification reac-tions could only be compared to the life process of respiration that sustains the multi functional-ity of living cells. Applicability of CFs can be drastically enhanced in incomprehensible ways by surface modification. Upon surface modification, inert and non-reactive CF surface becomes chemically active and functional with utility in diverse fields, namely, health, energy, environ-ment, defense, catalysis, smart materials and many others. Surface modification methods can be broadly classified into chemical, electrochemical and physical methods. By these surface modi-fication methods, the inert FC surface becomes polar. Surface properties like roughness, wetta-bility and energy are enhanced. Modification processes like sizing, oxidation, amination, si-lanization, polymerization, nanoarchitecture induces multifunctionality on CF surface. Modi-fied CFs when used as reinforcing material in carbon fiber …
Show moreAug 2023 • IEEE Journal of Quantum Electronics
Mallachi-Elia Meller, Idan Parshani, Leon Bello, David Goldovsky, Amir Kahana, Avi Pe’er
Broad area laser diodes are attractive for the high optical power they can produce. Unfortunately, this high power normally comes at the cost of severely reduced spatial coherence since the wide area of the diode wave-guide is inherently spatially multi-mode along the slow axis. We demonstrate a method to significantly improve the spatial coherence of a high-power broad-area diode by placing it in an external cavity that is mode selective. We design the cavity, such that the diode aperture acts as its own spatial filter, obviating the need for an intra-cavity slit-filter, and optimally utilizing the entire gain medium. We demonstrate this soft filtering method using wide diodes of and widths and compare its power-efficiency to the standard approach of hard-filtering with a slit. We obtain high-gain operation in a pure single-mode, demonstrating up to 1.5 W CW power at 1064 nm with excellent beam quality …
Show moreAug 2023 • Cell reports
Miriam I Rosenberg, Erez Greenstein, Martin Buchkovich, Ayelet Peres, Eric Santoni-Rugiu, Lei Yang, Martin Mikl, Zalman Vaksman, David L Gibbs, Dan Reshef, Amy Salovin, Meredith S Irwin, Arlene Naranjo, Igor Ulitsky, Pedro A de Alarcon, Katherine K Matthay, Victor Weigman, Gur Yaari, Jessica A Panzer, Nir Friedman, John M Maris
Neuroblastoma is a lethal childhood solid tumor of developing peripheral nerves. Two percent of children with neuroblastoma develop opsoclonus myoclonus ataxia syndrome (OMAS), a paraneoplastic disease characterized by cerebellar and brainstem-directed autoimmunity but typically with outstanding cancer-related outcomes. We compared tumor transcriptomes and tumor-infiltrating T and B cell repertoires from 38 OMAS subjects with neuroblastoma to 26 non-OMAS-associated neuroblastomas. We found greater B and T cell infiltration in OMAS-associated tumors compared to controls and showed that both were polyclonal expansions. Tertiary lymphoid structures (TLSs) were enriched in OMAS-associated tumors. We identified significant enrichment of the major histocompatibility complex (MHC) class II allele HLA-DOB∗01:01 in OMAS patients. OMAS severity scores were associated with the expression of …
Show moreJul 2023 • Laser & Photonics Reviews
Singh, D., Nandi, S., Fleger, Y., Cohen, S. Z., Lewi, T.
In nanophotonics, small mode volumes, high‐quality factor resonances, and large field enhancements without metals fundamentally scale with the refractive index and are key for many implementations involving light‐matter interactions. Topological insulators (TIs) are a class of insulating materials that host topologically protected surface states, some of which exhibit extraordinarily high permittivity values. Here, the optical properties of TI bismuth telluride (Bi2Te3) single crystals are studied. It is found that both the bulk and surface states contribute to the extremely large optical constants, with the real part of the refractive index peaking at n ≈ 11. Utilizing these ultra‐high index values, it is demonstrated that Bi2Te3 metasurfaces are capable of squeezing light in deep‐subwavelength structures, with the fundamental magnetic dipole (MD) resonance confined in unit cell sizes smaller than λ/10. It is further shown that …
Show moreJul 2023 • Membranes
Raphael Flack, Anna Aixalà-Perelló, Alessandro Pedico, Kobby Saadi, Andrea Lamberti, David Zitoun
Permselectivity of a membrane is central for the development of electrochemical energy storage devices with two redox couples, such as redox flow batteries (RFBs). In RFBs, Br3−/Br− couple is often used as a catholyte which can cross over to the anolyte, limiting the battery’s lifetime. Naturally, the development of permselective membranes is essential to the success of RFBs since state-of-the-art perfluorosulfonic acid (PFSA) is too costly. This study investigates membranes of graphene oxide (GO), polyvinylpyrrolidone (PVP), and imidazole (Im) as binder and linker, respectively. The GO membranes are compared to a standard PFSA membrane in terms of ionic conductivity (Na+) and permselectivity (exclusion of Br−). The ionic conduction is evaluated from electrochemical impedance spectroscopy and the permselectivity from two-compartment diffusion cells in a four-electrode system. Our findings suggest that the GO membranes reach conductivity and permselectivity comparable with standard PFSA membranes.
Show moreJul 2023 • Solid State Nuclear Magnetic Resonance 126, 101885, 2023
G Goobes, PK Madhu, A Goldbourt
This special issue is dedicated to the memory of Shimon Vega (1943–2021) with contributions from former students, postdocs, and other close colleagues. Shimon had seminal contributions in magnetic resonance, including in the areas of nuclear quadrupole resonance (NQR), solid-state NMR, and dynamic nuclear polarization (DNP). While dedicating a major effort to the development of NMR theory, he always made direct connections to experiments and relevant applications and was a gifted educator and teacher. The content of this special issue is a manifestation of these various facets in his personality.Matysik highlights, in his paper, the educational spirit of Shimon by describing the “Vega diagrams”; block representations of Hamiltonians and density matrices with pathways directing the reader to the relevant physics. On the theoretical side, the work of Sajith et al. extracts effective Hamiltonians and key …
Show moreJul 2023 • ACS Applied Nano Materials
Itai Carmeli, Ibrahim Tanriover, Tirupathi Malavath, Chanoch Carmeli, Moshik Cohen, Yossi Abulafia, Olga Girshevitz, Shachar Richter, Koray Aydin, Zeev Zalevsky
Localized surface plasmon resonance (LSPR) holds great promise for the next generation of fast nanoscale optoelectronic devices, as silicon-based electronic devices approach fundamental speed and scaling limitations. However, in order to fully exploit the potential of plasmonics, devices and material systems capable of actively controlling and manipulating plasmonic response are essential. Here, we demonstrate active control of the electric field distribution of a microantenna by coupling LSPRs to a photosynthetic protein with outstanding optoelectronic properties and a long-range and efficient exciton transfer ability. The hybrid biosolid state active platform is able to tune and modulate the optical activity of a microplasmonic antenna via the interaction of the bioactive material with plasmon oscillations occurring in the antennae. In addition, we demonstrate that the effect of the coupling can be further enhanced …
Show moreJul 2023 • Cells
Rephael Nizar, Simona Cazacu, Cunli Xiang, Matan Krasner, Efrat Barbiro-Michaely, Doron Gerber, Jonathan Schwartz, Iris Fried, Shira Yuval, Aharon Brodie, Gila Kazimirsky, Naama Amos, Ron Unger, Stephen Brown, Lisa Rogers, Donald H Penning, Chaya Brodie
Jul 2023 • The Journal of Chemical Physics
Seif Alwan, Subhajit Sarkar, Amos Sharoni, Yonatan Dubi
The temperature-dependence of the chirality-induced spin selectivity (CISS) effect can be used to discriminate between different theoretical proposals for the mechanism of the CISS effect. Here, we briefly review key experimental results and discuss the effect of temperature in different models for the CISS effect. We then focus on the recently suggested spinterface mechanism and describe the different possible effects temperature can have within this model. Finally, we analyze in detail recent experimental results presented in the work of Qian et al.[Nature 606, 902–908 (2022)] and demonstrate that, contrary to the original interpretation by the authors, these data actually indicate that the CISS effect increases with decreasing temperature. Finally, we show how the spinterface model can accurately reproduce these experimental results.
Show more