BINA

3964 articles

77 publishers

Join mailing list

Mar 2023 • Ultrasonics Sonochemistry 95, 106364, 2023

Sonochemistry of molten gallium

Vijay Bhooshan Kumar, Aharon Gedanken, Ze'ev Porat

This review article summarizes the comprehensive work that was done in our laboratory in recent years, as-well-as other reports, on the various aspects of sonochemistry of molten gallium. The low mp (29.8 °C) of gallium enables its melting in warm water, aqueous solutions and organic liquids. This opened a new research direction that focused on the chemical and physical properties of gallium particles that were formed in such media. It includes their interactions with water and with organic and inorganic solutes in aqueous solutions and with carbon nanoparticles. Formation of nanoparticles of liquid gallium alloys was also reported.

Show more

Mar 2023 • Bulletin of the American Physical Society

Phase Diagram of the ν= 2 quantum Hall phase in bilayer graphene

Efrat Shimshoni, Udit Khanna, Ke Huang, Ganpathy Murthy, Herb Fertig, Jun Zhu

A19. 00006: Phase Diagram of the ν= 2 quantum Hall phase in bilayer graphene*

Show more

Mar 2023 • arXiv preprint arXiv:2303.04755

Unfolding a composed ensemble of energy spectra using singular value decomposition

Richard Berkovits

In comparing the behavior of an energy spectrum to the predictions of random matrix theory one must transform the spectrum such that the averaged level spacing is constant, a procedure known as unfolding. Once energy spectrums belong to an ensemble where there are large realization-to-realization fluctuations the canonical methods for unfolding fail. Here we show that singular value decomposition can be used even for the challenging situations where the ensemble is composed out of realizations originating from a different range of parameters resulting in a non-monotonous local density of states. This can be useful in experimental situations for which the physical parameters can not be tightly controlled, of for situations for which the local density of states is strongly fluctuating.

Show more

Mar 2023 • Quantum Sensing, Imaging, and Precision Metrology, PC1244715, 2023

Temporal SU (1, 1) interferometer

Sara Meir, Eliahu Cohen, Moti Fridman

Quantum interferometers are able to improve the sensitivity of classical interferometers beyond the shot-noise limit. This is done by employing squeezed states of light and destructive interference of the noise in the system. We developed a quantum SU(1,1) interferometer in the time domain. Our nonlinear quantum interferometer creates interference of the input signals at different times and frequencies. We can control the time and frequency differences for investigating the full temporal and spectral structure of the signal. This quantum interferometer can be utilized for sensing ultrafast phase changes, quantum imaging, temporal mode encoding, and studying the temporal structure of entangled photons.

Show more

Mar 2023 • arXiv preprint arXiv:2303.04787

Single-pair measurement of the Bell parameter

Salvatore Virzì, Enrico Rebufello, Francesco Atzori, Alessio Avella, Fabrizio Piacentini, Rudi Lussana, Iris Cusini, Francesca Madonini, Federica Villa, Marco Gramegna, Eliahu Cohen, Ivo Pietro Degiovanni, Marco Genovese

Bell inequalities are one of the cornerstones of quantum foundations, and fundamental tools for quantum technologies. Recently, the scientific community worldwide has put a lot of effort towards them, which culminated with loophole-free experiments. Nonetheless, none of the experimental tests so far was able to extract information on the full inequality from each entangled pair, since the wave function collapse forbids performing, on the same quantum state, all the measurements needed for evaluating the entire Bell parameter. We present here the first single-pair Bell inequality test, able to obtain a Bell parameter value for every entangled pair detected. This is made possible by exploiting sequential weak measurements, allowing to measure non-commuting observables in sequence on the same state, on each entangled particle. Such an approach not only grants unprecedented measurement capability, but also removes the need to choose between different measurement bases, intrinsically eliminating the freedom-of-choice loophole and stretching the concept of counterfactual-definiteness (since it allows measuring in the otherwise not-chosen bases). We also demonstrate how, after the Bell parameter measurement, the pair under test still presents a noteworthy amount of entanglement, providing evidence of the absence of (complete) wave function collapse and allowing to exploit this quantum resource for further protocols.

Show more

Mar 2023 • arXiv preprint arXiv:2303.00701

Time-symmetry and topology of the Aharonov-Bohm effect

Yakir Aharonov, Ismael L Paiva, Zohar Schwartzman-Nowik, Avshalom C Elitzur, Eliahu Cohen

The Aharonov-Bohm (AB) effect has been highly influential in fundamental and applied physics. Its topological nature commonly implies that an electron encircling a magnetic flux source in a field-free region must close the loop in order to generate an observable effect. In this Letter, we study a variant of the AB effect that apparently challenges this concept. The significance of weak values and nonlocal equations of motion is discussed as part of the analysis, shedding light on and connecting all these fundamental concepts.

Show more

Mar 2023

Nonaromatic benzocorroles

Łukasz Kielesiński, Francesco Summa, Jeanet Conradie, Hilah Honig, Ariel Friedman, Gugliemo Monaco, Lior Elbaz, Abhik Ghosh, Daniel Gryko

Introduced here are new hybrid benzocorrole ligands, displaying both the cavity size of corroles and the dianionic character of porphyrins. Nonaromatic and yet sporting deceptively porphyrin-like optical spectra, they are readily accessible via a simple three-step synthetic protocol.

Show more

Mar 2023 • Physical Review Research

Majorana-Weyl cones in ferroelectric superconductors

Hennadii Yerzhakov, Roni Ilan, Efrat Shimshoni, Jonathan Ruhman

Topological superconductors are predicted to exhibit outstanding phenomena, including non-Abelian anyon excitations, heat-carrying edge states, and topological nodes in the Bogoliubov spectra. Nonetheless, and despite major experimental efforts, we are still lacking unambiguous signatures of such exotic phenomena. In this context, the recent discovery of coexisting superconductivity and ferroelectricity in lightly doped and ultraclean SrTiO 3 opens new opportunities. Indeed, a promising route to engineer topological superconductivity is the combination of strong spin-orbit coupling and inversion-symmetry breaking. Here we study a three-dimensional parabolic band minimum with Rashba spin-orbit coupling, whose axis is aligned by the direction of a ferroelectric moment. We show that all of the aforementioned phenomena naturally emerge in this model when a magnetic field is applied. Above a critical Zeeman …

Show more

Mar 2023 • High Contrast Metastructures XII, PC124320D, 2023

Deep subwavelength light localization in ultra-high index topological insulator nanostructures

Tomer Lewi

In nanophotonic, small mode volumes, narrow resonance linewidths and field enhancements, fundamentally scales with refractive index values and are key for many implementations involving light-matter interactions. Topological insulators (TI) are a class of insulating materials that host topologically protected surface states, some of which exhibit very high permittivity values. In this talk, I will discuss our latest results on Bi2Te3 and Bi2Se3 TI nanostructures. Using polarized far-field and near field nanospectroscopy we reveal that Bi2Se3 nanobeams exhibit mid-infrared resonant modes with 2π phase shifts across the resonance. We further demonstrate that Bi2Te3 metasurfaces exhibit deep subwavelength resonant modes utilizing their record high index value peaking at n~11.

Show more

Mar 2023 • Nanoscale and Quantum Materials: From Synthesis and Laser Processing to …, 2023

Laser induced transfer of 2D materials for optoelectronic applications

I Cheliotis, A Logotheti, F Zacharatos, A Pesquera, A Zurutuza, D Naveh, L Tsetseris, I Zergioti

The advent of functional devices based on two-dimensional (2D) materials has further intensified the interest in the latter. However, the fabrication of structures using layered materials remains a key challenge. Recently, we proposed the so-called “Laser-Induced Transfer” method (LIT), as a digital and solvent-free approach for the high-resolution and intact transfer of 2D materials’ pixels. Here, we will further highlight the versatility of LIT by reporting results on the high-quality digital transfer of graphene and MoS2. These materials have emerged in the field of nanoelectronics, sensors and photonics due to their unique optoelectronic properties, but their high-quality transfer remains a hurdle. The quality of the transferred films has been confirmed with systematic characterization based on Scanning Electron Microscopy and Raman spectroscopy, as well as mobility’s extraction. Then we will present how the laser …

Show more

Mar 2023 • Journal of Biophotonics

Fluorescence attenuated by a thick scattering medium: Theory, Simulations and Experiments

Yitzchak Weber, Hamootal Duadi, Pavitra Sokke Rudraiah, Inbar Yariv, Gilad Yahav, Dror Fixler, Rinat Ankri

Fluorescence‐based imaging has an enormous impact on our understanding of biological systems. However, in vivo fluorescence imaging is greatly influenced by tissue scattering. A better understanding of this dependance can improve the potential of non‐invasive in vivo fluorescence imaging. In this paper we present a diffusion model, based on an existing master‐slave model, of isotropic point sources imbedded in a scattering slab, representing fluorophores within a tissue. The model was compared to Monte Carlo simulations and measurements of a fluorescent slide measured through tissue‐like phantoms with different reduced scattering coefficients (0.5 to 2.5mm‐1) and thicknesses(0.5 to 5mm). Results show a good correlation between our suggested theory, simulations and experiments; while the fluorescence intensity decays as the slab's scattering and thickness increase, the decay rate decreases as the …

Show more

Mar 2023 • Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XX …, 2023

Bioimaging, pH sensing, and fluorescence lifetime imaging microscopy using polyethyleneimine coated carbon dots and gold nanoparticles

Shweta Pawar, Hamootal Duadi, Dror Fixler

The unique fluorescent nanomaterials known as carbon dots (CDs) are highly resistant to photobleaching, have low toxicity, and are well soluble in water. Polyethyleneimine (PEI) coated CDs are a novel fluorophore with good biocompatibility and pH sensing ability. Here, p-phenylenediamine (p-PD) is used as a carbon source and hyperbranched PEI is used as a surface passivation agent in a simple, one-step hydrothermal synthesis process. The CDs optical characteristics are pH-responsive due to the presence of different amine groups on PEI, which is functional polycationic polymer. The limits of techniques based on fluorescence intensity can be overcome by fluorescent lifetime imaging microscopy (FLIM), a very sensitive method for detecting a microenvironment. In this study, FLIM was used to measure pH with pH-sensitive CDs. These molecules are nontoxic to the cells, and the positively charged CDs have …

Show more

Mar 2023 • Bulletin of the American Physical Society

Measurement induced entanglement phase transitions in monitored 1D spin chains

Monalisa Singh Roy, Jonathan Ruhman, Emanuele Dalla Torre, Efrat Shimshoni

Entanglement phase transitions have attracted immense attention in recent years, especially in the context of monitored quantum circuits. In such systems, the dynamics due to unitary evolution competes with the localizing effects of measurements. The phase transition of a quantum system between a trivial volume-law phase of entanglement entropy–in case of weak monitoring, into a quantum Zeno-like phase for frequent and/or strong measurements where the entanglement entropy obeys area-law, is well known in many integrable models with unitary dynamics. However recently a critical phase with a logarithmic scaling of the entanglement entropy in a class of integrable models has been identified, in the presence of dissipation.We explore such a critical transition in a monitored one-dimensional quantum spin chain, the transverse field Ising model (TFIM), in presence of integrability-breaking field and dissipation …

Show more

Mar 2023 • Optics Express

Persistent dynamics in coupled non-degenerate parametric oscillators: pump saturation prevents mode competition

Shai Ben-Ami, Igal Aharonovich, Avi Pe’er

The coherent dynamics in networks of coupled oscillators is of great interest in wave-physics since the coupling produces various dynamical effects, such as coherent energy exchange (beats) between the oscillators. However, it is common wisdom that these coherent dynamics are transients that quickly decay in active oscillators (e.g. lasers) since pump saturation causes mode competition that results, for homogeneous gain, in the prevalence of the single winning mode. We observe that pump saturation in coupled parametric oscillators counter-intuitively encourages the multi-mode dynamics of beating and indefinitely preserves it, despite the existence of mode competition. We explore in detail the coherent dynamics of a pair of coupled parametric oscillators with a shared pump and arbitrary coupling in a radio frequency (RF) experiment, as well as in simulation. Specifically, we realize two parametric oscillators as …

Show more

Mar 2023 • Microsystems & Nanoengineering

Femtosecond laser-assisted fabrication of piezoelectrically actuated crystalline quartz-based MEMS resonators

John Linden, Neta Melech, Igor Sakaev, Ofer Fogel, Slava Krylov, David Nuttman, Zeev Zalevsky, Marina Sirota

A novel technology for the precise fabrication of quartz resonators for MEMS applications is introduced. This approach is based on the laser-induced chemical etching of quartz. The main processing steps include femtosecond UV laser treatment of a Cr-Au-coated Z-cut alpha quartz wafer, followed by wet etching. The laser-patterned Cr-Au coating serves as an etch mask and is used to form electrodes for piezoelectric actuation. This fabrication approach does not alter the quartz’s crystalline structure or its piezo-electric properties. The formation of defects, which is common in laser micromachined quartz, is prevented by optimized process parameters and by controlling the temporal behavior of the laser-matter interactions. The process does not involve any lithography and allows for high geometric design flexibility. Several configurations of piezoelectrically actuated beam-type resonators were fabricated using …

Show more

Mar 2023 • arXiv preprint arXiv:2303.09107

Leggett-Garg-like Inequalities from a Correlation Matrix Construction

Dana Ben Porath, Eliahu Cohen

The Leggett-Garg Inequality (LGI) constrains, under certain fundamental assumptions, the correlations between measurements of a quantity Q at different times. Here we analyze the LGI, and propose similar but somewhat more elaborate inequalities, employing a technique that utilizes the mathematical properties of correlation matrices, which was recently proposed in the context of nonlocal correlations. We also find that this technique can be applied to inequalities that combine correlations between different times (as in LGI) and correlations between different locations (as in Bell inequalities). All the proposed bounds include additional correlations compared to the original ones and also lead to a particular form of complementarity. A possible experimental realization and some applications are briefly discussed.

Show more

Mar 2023 • Dynamics and Fluctuations in Biomedical Photonics XX, PC123780D, 2023

Optical super-resolved imaging

Zeev Zalevsky

Imaging systems, including human vision, have a limited capability to separate spatial features, and these can also only be extracted over a limited depth range. The limits are related to the effect of diffraction and caused by the finite dimensions of the imaging optics and the geometry of the sensor. In my talk I will present novel photonic approaches to exceed the normal resolution and depth of focus limitations and show how those concepts can be applied in practical applications such as in microscopy, biomedical sensing, and ophthalmic devices to correct visual deficiencies.

Show more

Mar 2023 • Real-time Measurements, Rogue Phenomena, and Single-Shot Applications VIII …, 2023

Dynamics of modal self-cleaning

Yuval Tamir, Moti Fridman

Sending an ultrafast pulse in multimode fiber can lead to nonlinear interactions between the modes. When sending such a pulse in graded-index fibers there are cases where all the energy is transferring from the high-order modes into the lowest one. This effect is called modal self-cleaning. We developed a multimode time-lens, which measures the temporal and spatial dynamics of ultrafast signals in multimode fibers. With our system, we can detect the dynamics of each mode in time with high temporal resolution, and identify which mode is coupled to which and how the energy transfers between them. In this talk, We will present our measurement system in details and describe our novel results on modal self-cleaning. We will also comment on other multimode effects which our system can measure for the first time.

Show more

Mar 2023 • Proc. of SPIE Vol 12394, 1239408-1, 2023

pH sensing, bioimaging, and Fluorescence lifetime imaging microscopy using polyethyleneimine coated carbon dots and gold nanoparticles

Shweta Pawar, Hamootal Duadi, Dror Fixler

The unique fluorescent nanomaterials known as carbon dots (CDs) are highly resistant to photobleaching, have low toxicity, and are well soluble in water. Polyethyleneimine (PEI) coated CDs are a novel fluorophore with good biocompatibility and pH sensing ability. Here, p-phenylenediamine (p-PD) is used as a carbon source and hyperbranched PEI is used as a surface passivation agent in a simple, one-step hydrothermal synthesis process. The CDs optical characteristics are pH-responsive due to the presence of different amine groups on PEI, which is functional polycationic polymer. The limits of techniques based on fluorescence intensity can be overcome by fluorescent lifetime imaging microscopy (FLIM), a very sensitive method for detecting a microenvironment. In this study, FLIM was used to measure pH with pH-sensitive CDs. These molecules are nontoxic to the cells, and the positively charged CDs have …

Show more

Mar 2023 • arXiv preprint arXiv:2303.04787

Single-pair measurement of the Bell parameter

Salvatore Virzì, Enrico Rebufello, Francesco Atzori, Alessio Avella, Fabrizio Piacentini, Rudi Lussana, Iris Cusini, Francesca Madonini, Federica Villa, Marco Gramegna, Eliahu Cohen, Ivo Pietro Degiovanni, Marco Genovese

Bell inequalities are one of the cornerstones of quantum foundations, and fundamental tools for quantum technologies. Recently, the scientific community worldwide has put a lot of effort towards them, which culminated with loophole-free experiments. Nonetheless, none of the experimental tests so far was able to extract information on the full inequality from each entangled pair, since the wave function collapse forbids performing, on the same quantum state, all the measurements needed for evaluating the entire Bell parameter. We present here the first single-pair Bell inequality test, able to obtain a Bell parameter value for every entangled pair detected. This is made possible by exploiting sequential weak measurements, allowing to measure non-commuting observables in sequence on the same state, on each entangled particle. Such an approach not only grants unprecedented measurement capability, but also removes the need to choose between different measurement bases, intrinsically eliminating the freedom-of-choice loophole and stretching the concept of counterfactual-definiteness (since it allows measuring in the otherwise not-chosen bases). We also demonstrate how, after the Bell parameter measurement, the pair under test still presents a noteworthy amount of entanglement, providing evidence of the absence of (complete) wave function collapse and allowing to exploit this quantum resource for further protocols.

Show more

Mar 2023 • ACS Omega

In Situ Coatings of Polymeric Films with Core Polystyrene, Core–Shell Polystyrene/SiO2, and Hollow SiO2 Micro/Nanoparticles and Potential Applications

Sharon Hayne, Shlomo Margel

In many industrial settings, films of polymers such as polypropylene (PP) and polyethylene terephthalate (PET) require surface treatment due to poor wettability and low surface energy. Here, a simple process is presented to prepare durable thin coatings composed of polystyrene (PS) core, PS/SiO2 core–shell, and hollow SiO2 micro/nanoparticles onto PP and PET films as a platform for various potential applications. Corona-treated films were coated with a monolayer of PS microparticles by in situ dispersion polymerization of styrene in ethanol/2-methoxy ethanol with polyvinylpyrrolidone as stabilizer. A similar process on untreated polymeric films did not yield a coating. PS/SiO2 core–shell coated microparticles were produced by in situ polymerization of Si(OEt)4 in ethanol/water onto a PS-coated film, creating a raspberry-like morphology with a hierarchical structure. Hollow porous SiO2-coated microparticles onto …

Show more

logo
Articali

Powered by Articali

TermsPrivacy