BINA

4431 articles

77 publishers

Join mailing list

Nov 2023 • Physical Review B

Periodically driven open quantum systems with vibronic interaction: Resonance effects and vibrationally mediated decoupling

Jakob Bätge, Yu Wang, Amikam Levy, Wenjie Dou, Michael Thoss

Periodic driving and Floquet engineering have emerged as invaluable tools for controlling and uncovering novel phenomena in quantum systems. In this study, we adopt these methods to manipulate nonequilibrium processes within electronic-vibronic open quantum systems. Through resonance mechanisms and by focusing on the limit-cycle dynamics and quantum thermodynamic properties, we illustrate the intricate interplay between the driving field and vibronic states and its overall influence on the electronic system. Specifically, we observe an effective decoupling of the electronic system from the periodic driving at specific frequencies, a phenomenon that is mediated by the vibrational mode interaction. Additionally, we engineer the driving field to obtain a partial removal of the Franck-Condon blockade. These insights hold promise for efficient charge current control. Our results are obtained from numerically …

Show more

Nov 2023 • Micromachines 14 (12), 2173, 2023

Fabrication and applications of magnetic polymer composites for soft robotics

Sayan Ganguly, Shlomo Margel

The emergence of magnetic polymer composites has had a transformative impact on the field of soft robotics. This overview will examine the various methods by which innovative materials can be synthesized and utilized. The advancement of soft robotic systems has been significantly enhanced by the utilization of magnetic polymer composites, which amalgamate the pliability of polymers with the reactivity of magnetic materials. This study extensively examines the production methodologies involved in dispersing magnetic particles within polymer matrices and controlling their spatial distribution. The objective is to gain insights into the strategies required to attain the desired mechanical and magnetic properties. Additionally, this study delves into the potential applications of these composites in the field of soft robotics, encompassing various devices such as soft actuators, grippers, and wearable gadgets. The study emphasizes the transformative capabilities of magnetic polymer composites, which offer a novel framework for the advancement of biocompatible, versatile soft robotic systems that utilize magnetic actuation.

Show more

Nov 2023 • medRxiv

Supplementation with short-chain fatty acids and the prebiotic 2FL improves clinical outcome in PD

Tobias Hegelmaier, Alexander Duscha, Christiane Desel, Sabrina Fuchs, Michal Shapira, Qihao Shan, Gabriele I Stangl, Frank Hirche, Stefan Kempa, Andras Maifeld, Lisa-Marie Würtele, Jana Peplinski, Diana Jauk, Claudia A Dumitru, Ute Obermüller-Jevic, Svein-Olaf Hustvedt, Nina Timmesfeld, Ralf Gold, Antonia Zapf, Ibrahim E Sandalcioglu, Sanaz Mostaghim, Horst Przuntek, Eran Segal, Nissan Yissachar, Aiden Haghikia

BackgroundParkinson’s disease (PD) is associated with dysbiosis, proinflammatory gut microbiome, disruptions to intestinal barrier functions, and immunological imbalance. Microbiota-produced short-chain fatty acids promote gut barrier integrity and immune regulation, but their impact on PD pathology remains mostly unknown.ObjectivesTo evaluate supplementation with short-chain fatty acids as an add-on intervention in PD.MethodsIn a randomized double-blind prospective study, 72 PD patients received short-chain fatty acids and/or the prebiotic fiber 2′-fucosyllactose supplementation over 6 months.ResultsWe observed improvement in motor and nonmotor symptoms, in addition to modulation of peripheral immunity and improved mitochondrial respiration in immunocytes. The supplementation had no effect on microbiome diversity or composition. Finally, multiobjective analysis and comprehensive immunophenotyping revealed parameters associated with an optimal response to short-chain fatty acids and/or 2′-fucosyllactose supplementation.ConclusionShort-chain fatty acids ameliorate clinical symptoms in Parkinson’s disease patients and modulate mitochondrial function and peripheral immunity.

Show more

Nov 2023 • APL Photonics

Supercontinuum generation by saturated second-order nonlinear interactions

Marc Jankowski, Carsten Langrock, Boris Desiatov, Marko Lončar, MM Fejer

We propose a new approach to supercontinuum generation and carrier-envelope-offset detection based on saturated second-order nonlinear interactions in dispersion-engineered nanowaveguides. The technique developed here broadens the interacting harmonics by forming stable bifurcations of the pulse envelopes due to an interplay between phase-mismatch and pump depletion. We first present an intuitive heuristic model for spectral broadening by second-harmonic generation of femtosecond pulses and show that this model agrees well with experiments. Then, having established strong agreement between theory and experiment, we develop scaling laws that determine the energy required to generate an octave of bandwidth as a function of input pulse duration, device length, and input pulse chirp. These scaling laws suggest that future realization based on this approach could enable supercontinuum …

Show more

Nov 2023 • Ultrasonics Sonochemistry

Ultrasonic-assisted synthesis of lignin-capped Cu2O nanocomposite with antibiofilm properties

Moorthy Maruthapandi, Akanksha Gupta, Arumugam Saravanan, Gila Jacobi, Ehud Banin, John HT Luong, Aharon Gedanken

Under ultrasonication, cuprous oxide (Cu2O) microparticles (<5 µm) were fragmented into nanoparticles (NPs, ranging from 10 to 30 nm in diameter), and interacted strongly with alkali lignin (Mw= 10 kDa) to form a nanocomposite. The ultrasonic wave generates strong binding interaction between lignin and Cu2O. The L-Cu nanocomposite exhibited synergistic effects with enhanced antibiofilm activities against E. coli, multidrug-resistant (MDR) E. coli, S. aureus (SA), methicillin-resistant SA, and P. aeruginosa (PA). The lignin-Cu2O (L-Cu) nanocomposite also imparted notable eradication of such bacterial biofilms. Experimental evidence unraveled the destruction of bacterial cell walls by L-Cu, which interacted strongly with the bacterial membrane. After exposure to L-Cu, the bacterial cells lost the integrated structural morphology. The estimated MIC for biofilm inhibition for the five tested pathogens was 1 mg/mL L …

Show more

Nov 2023 • Journal of the American Chemical Society

Near-Temperature-Independent Electron Transport Well beyond Expected Quantum Tunneling Range via Bacteriorhodopsin Multilayers

Sudipta Bera, Jerry A Fereiro, Shailendra K Saxena, Domenikos Chryssikos, Koushik Majhi, Tatyana Bendikov, Lior Sepunaru, David Ehre, Marc Tornow, Israel Pecht, Ayelet Vilan, Mordechai Sheves, David Cahen

A key conundrum of biomolecular electronics is efficient electron transport (ETp) through solid-state junctions up to 10 nm, often without temperature activation. Such behavior challenges known charge transport mechanisms, especially via nonconjugated molecules such as proteins. Single-step, coherent quantum-mechanical tunneling proposed for ETp across small protein, 2–3 nm wide junctions, but it is problematic for larger proteins. Here we exploit the ability of bacteriorhodopsin (bR), a well-studied, 4–5 nm long membrane protein, to assemble into well-defined single and multiple bilayers, from ∼9 to 60 nm thick, to investigate ETp limits as a function of junction width. To ensure sufficient signal/noise, we use large area (∼10–3 cm2) Au–protein–Si junctions. Photoemission spectra indicate a wide energy separation between electrode Fermi and the nearest protein-energy levels, as expected for a polymer of …

Show more

Nov 2023 • Scientific Reports

Integration of high-resolution imaging through scattering medium into a disposable micro-endoscope via projection of 2D spots-array

Shimon Elkabetz, Oran Herman, Amihai Meiri, Asaf Shahmoon, Zeev Zalevsky

The objective of this research includes integration of high-resolution imaging through scattering medium, such as blood, into a disposable micro-endoscope. A fiber laser integrated into the micro-endoscope as part of its illumination channel, allows to project a tunable array of spots of light onto an object, that is located behind the scattering medium. We have a laser fiber as part of the illumination channel of a disposable micro-endoscope. By using proper optics, we convert the temporal modulation of the laser into spatial distribution. Thus, the result is generation of spatial spots when using a pulsed laser. The detection channel is a holographic recording of the collected back scattered light, that allows extraction of the electrical field. By time integrating the field we obtain the realization of the spatial array of illumination spots formed on top of the inspected object and behind the scattering medium. By changing the …

Show more

Nov 2023 • Nature Communications

A single pseudouridine on rRNA regulates ribosome structure and function in the mammalian parasite Trypanosoma brucei

K Shanmugha Rajan, Hava Madmoni, Anat Bashan, Masato Taoka, Saurav Aryal, Yuko Nobe, Tirza Doniger, Beathrice Galili Kostin, Amit Blumberg, Smadar Cohen-Chalamish, Schraga Schwartz, Andre Rivalta, Ella Zimmerman, Ron Unger, Toshiaki Isobe, Ada Yonath, Shulamit Michaeli

Trypanosomes are protozoan parasites that cycle between insect and mammalian hosts and are the causative agent of sleeping sickness. Here, we describe the changes of pseudouridine (Ψ) modification on rRNA in the two life stages of the parasite using four different genome-wide approaches. CRISPR-Cas9 knock-outs of all four snoRNAs guiding Ψ on helix 69 (H69) of the large rRNA subunit were lethal. A single knock-out of a snoRNA guiding Ψ530 on H69 altered the composition of the 80S monosome. These changes specifically affected the translation of only a subset of proteins. This study correlates a single site Ψ modification with changes in ribosomal protein stoichiometry, supported by a high-resolution cryo-EM structure. We propose that alteration in rRNA modifications could generate ribosomes preferentially translating state-beneficial proteins.

Show more

Nov 2023 • Advanced Sensor Research

Modular Droplet‐Based Fluidics for Large Volume Libraries of Individual Multiparametric Codes in Lab‐On‐Chip Systems (Adv. Sensor Res. 11/2023)

Julian Schütt, Hariharan Nhalil, Jürgen Fassbender, Lior Klein, Asaf Grosz, Denys Makarov

In article 2300101, Julian Schütt, Hariharan Nhalil, Jürgen Fassbender, Lior Klein, Asaf Grosz, and Denys Makarov propose a new concept of multiparametric coding in droplet-based fluidics relying on different sensing units and targeted tailoring of the fluidic circuit and its complexification. The possibility to prepare up to 3 million unique codes is demonstrated experimentally, which is relevant for pharmaceutical and biotechnological assays including drug discovery.

Show more

Nov 2023 • MDPI-Multidisciplinary Digital Publishing Institute, 2023

Acceleration of Biodiesel Production

Indra Neel Pulidindi, Aharon Gedanken

The development of renewable energy sources will help alleviate the twin problems of energy appetite and environmental pollution. Among such renewable sources, biofuels standout. Biodiesel is at the top of the list of biofuels that have the potential to substitute conventional fossil-based transportation fuels. The reprint comprises 11 chapters in total dealing with a variety of feedstock needed for the sustainable production of biodiesel, various catalysts that could be used for the accelerated production of biodiesel, and advances in reactor technology for the demand-based production of biodiesel. Indebtedness is due to various research groups, namely: Fahad Rehman and co-workers from Pakistan, Qatar, and the UK; Tao Lyu and co-workers from the UK, China, and Germany; Sandro L. Barbosa and co-workers from Brazil and the USA; Anita Salic and co-workers from Croatia; Fabrizio Roncaglia and co-workers …

Show more

Nov 2023 • Journal of Electronic Imaging 32 (6), 060101-060101, 2023

JEI Updates Research Topic Categories

Zeev Zalevsky, Jenny Benois-Pineau, Laura Boucheron, Atanas Gotchev, Walter G Kropatsch, Alexander C Loui

Editor-in-Chief Zeev Zalevsky and the journal’s team of senior editors introduce an updated slate of research topic categories appropriate for JEI.

Show more

Nov 2023 • Gels 9 (11), 895, 2023

Engineering of PVA/PVP hydrogels for agricultural applications

Eyal Malka, Shlomo Margel

Hydrogels have gained significant popularity in agricultural applications in terms of minimizing waste and mitigating the negative environmental impact of agrochemicals. This review specifically examines the utilization of environmentally friendly, shapable hydrogels composed of polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) in various casings for crop protection against different pests, fertilizing, and watering. To activate their effectiveness, PVA/PVP hydrogels were loaded with both hydrophilic and hydrophobic environmentally friendly pesticides, namely hydrogen peroxide (HP), the essential oil thymol, and urea as a fertilizer, either separately or in combination. This review covers various physical and chemical approaches used for loading, shaping, and controlling the release profiles of pesticides and fertilizers. Additionally, it explores the evaluation of the chemical composition, structure, classification, rheology, and morphology of the hydrogels as well as their impact on the thermal stability of the encapsulated pesticides and fertilizer, followed by biological tests. These hydrogels significantly contribute to the stabilization and controlled release of essential nutrients and biocides for plants, while maintaining excellent biocidal and fertilizing properties as well as sustainability characteristics. By shedding light on the latest insights into the concepts, applications, and results of these hydrogels, this review demonstrates their immense potential for widespread future use in agriculture.

Show more

Nov 2023 • Advanced Optical Materials

Optical Properties and Ultrafast Near‐Infrared Localized Surface Plasmon Dynamics in Naturally p‐Type Digenite Films

Andrea Villa, Madina Telkhozhayeva, Fabio Marangi, Eti Teblum, Aaron M Ross, Mirko Prato, Luca Andena, Roberto Frassine, Francesco Scotognella, Gilbert Daniel Nessim

Copper chalcogenides are materials characterized by intrinsic doping properties, allowing them to display high carrier concentrations due to their defect‐heavy structures, independent of the preparation method. Such high doping enables these materials to display plasmonic resonances, tunable by varying their stoichiometry. Here, plasmonic dynamics is studied in drop‐cast Cu9S5 (digenite) nanocrystals (NCs) film using ultrafast pump–probe spectroscopy. The NCs are synthesized by thermal annealing of copper foil using chemical vapor deposition (CVD), followed by sonication and drop‐casting of the isolated few‐layered flakes on different substrates. The samples display a broad localized surface plasmon resonance (LSPR) in the near‐infrared (NIR), peaking at 2100 nm. The free carrier response is further confirmed by fitting the linear absorption with a Drude–Lorentz effective medium approximation model …

Show more

Nov 2023 • ACS Applied Bio Materials

Zirconium-coated β-cyclodextrin nanomaterials for biofilm eradication

Akanksha Gupta, John HT Luong, Aharon Gedanken

Under alkaline treatment, zirconyl chloride (ZrOCl2.8H2O) became a zirconia gel and formed a stable complex with beta-cyclodextrin (βCD). This complex was highly active in reactive oxygen species (ROS) formation via H2O2 decomposition. Its surface with numerous hydroxyl groups acts as an ionic sponge to capture the charged reaction intermediates, including superoxide (O2–•) and the hydroxyl radical (•OH). ROS, especially •OH radicals, are harmful to living microorganisms because of their kinetic instability, high oxidation potential, and chemical nonselectivity. Therefore, •OH radicals can engage in fast reactions with virtually any adjacent biomolecule. With H2O2, the complex with cationic and hydrophobic moieties interacted with the anionic bacterial membrane of two Gram-positive (Staphylococcus aureus and S. epidermidis) and two Gram-negative (Escherichia coli and Klebsiella pneumoniae) strains …

Show more

Nov 2023 • Light, science & applications

Weak measurements and quantum-to-classical transitions in free electron-photon interactions

Yiming Pan, Eliahu Cohen, Ebrahim Karimi, Avraham Gover, Norbert Schönenberger, Tomáš Chlouba, Kangpeng Wang, Saar Nehemia, Peter Hommelhoff, Ido Kaminer, Yakir Aharonov

How does the quantum-to-classical transition of measurement occur? This question is vital for both foundations and applications of quantum mechanics. Here, we develop a new measurement-based framework for characterizing the classical and quantum free electron–photon interactions and then experimentally test it. We first analyze the transition from projective to weak measurement in generic light–matter interactions and show that any classical electron-laser-beam interaction can be represented as an outcome of weak measurement. In particular, the appearance of classical point-particle acceleration is an example of an amplified weak value resulting from weak measurement. A universal factor, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek …

Show more

Nov 2023 • Scientific Reports

Integration of high-resolution imaging through scattering medium into a disposable micro-endoscope via projection of 2D spots-array

Shimon Elkabetz, Oran Herman, Amihai Meiri, Asaf Shahmoon, Zeev Zalevsky

The objective of this research includes integration of high-resolution imaging through scattering medium, such as blood, into a disposable micro-endoscope. A fiber laser integrated into the micro-endoscope as part of its illumination channel, allows to project a tunable array of spots of light onto an object, that is located behind the scattering medium. We have a laser fiber as part of the illumination channel of a disposable micro-endoscope. By using proper optics, we convert the temporal modulation of the laser into spatial distribution. Thus, the result is generation of spatial spots when using a pulsed laser. The detection channel is a holographic recording of the collected back scattered light, that allows extraction of the electrical field. By time integrating the field we obtain the realization of the spatial array of illumination spots formed on top of the inspected object and behind the scattering medium. By changing the …

Show more

Nov 2023 • Light, science & applications

Weak measurements and quantum-to-classical transitions in free electron-photon interactions

Yiming Pan, Eliahu Cohen, Ebrahim Karimi, Avraham Gover, Norbert Schönenberger, Tomáš Chlouba, Kangpeng Wang, Saar Nehemia, Peter Hommelhoff, Ido Kaminer, Yakir Aharonov

How does the quantum-to-classical transition of measurement occur? This question is vital for both foundations and applications of quantum mechanics. Here, we develop a new measurement-based framework for characterizing the classical and quantum free electron–photon interactions and then experimentally test it. We first analyze the transition from projective to weak measurement in generic light–matter interactions and show that any classical electron-laser-beam interaction can be represented as an outcome of weak measurement. In particular, the appearance of classical point-particle acceleration is an example of an amplified weak value resulting from weak measurement. A universal factor, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek …

Show more

Nov 2023 • arXiv preprint arXiv:2311.13915

First passage times in compact domains exhibits bi-scaling

Talia Baravi, Eli Barkai

The study of first passage times for diffusing particles reaching target states is foundational in various practical applications, including diffusion-controlled reactions. In this work, we present a bi-scaling theory for the probability density function of first passage times in confined compact processes, applicable to both Euclidean and Fractal domains, diverse geometries, and scenarios with or without external force fields, accommodating Markovian and semi-Markovian random walks. In large systems, first passage time statistics exhibit a bi-scaling behavior, challenging the use of a single time scale. Our theory employs two distinct scaling functions: one for short times, capturing initial dynamics in unbounded systems, and the other for long times is sensitive to finite size effects. The combined framework provides a complete expression for first passage time statistics across all time scales.

Show more

Nov 2023 • arXiv preprint arXiv:2311.13164

Control of open quantum systems via dynamical invariants

Loris Maria Cangemi, Hilario Espinós, Ricardo Puebla, Erik Torrontegui, Amikam Levy

In this work, we confront the challenge of controlling quantum systems that are influenced by their environment, utilizing the theory of dynamical invariants. Our strategy involves a reverse engineering method for formulating control protocols like Shortcuts to Adiabaticity (STA), tailored to be resilient against environmental noise and dissipation. This technique offers two main advantages compared to other quantum control methods: firstly, it incorporates the time-varying aspect of the dissipation factor in the master equation, which arises from driving the system's Hamiltonian (the control fields). Secondly, our method eliminates the need for iterative propagation of the system state, a process that is typically resource-intensive. The efficacy and practicality of our approach are demonstrated through the application to two fundamental models: a two-level quantum system and a quantum harmonic oscillator, each interacting with a thermal bath.

Show more

Nov 2023 • ACS Applied Bio Materials

Zirconium-Coated β-Cyclodextrin Nanomaterials for Biofilm Eradication

Akanksha Gupta, John HT Luong, Aharon Gedanken

Under alkaline treatment, zirconyl chloride (ZrOCl2.8H2O) became a zirconia gel and formed a stable complex with beta-cyclodextrin (βCD). This complex was highly active in reactive oxygen species (ROS) formation via H2O2 decomposition. Its surface with numerous hydroxyl groups acts as an ionic sponge to capture the charged reaction intermediates, including superoxide (O2–•) and the hydroxyl radical (•OH). ROS, especially •OH radicals, are harmful to living microorganisms because of their kinetic instability, high oxidation potential, and chemical nonselectivity. Therefore, •OH radicals can engage in fast reactions with virtually any adjacent biomolecule. With H2O2, the complex with cationic and hydrophobic moieties interacted with the anionic bacterial membrane of two Gram-positive (Staphylococcus aureus and S. epidermidis) and two Gram-negative (Escherichia coli and Klebsiella pneumoniae) strains …

Show more

Nov 2023 • Entropy

Discrete-Time Quantum Walk on Multilayer Networks

Mahesh N Jayakody, Priodyuti Pradhan, Dana Ben Porath, Eliahu Cohen

A Multilayer network is a potent platform that paves the way for the study of the interactions among entities in various networks with multiple types of relationships. This study explores the dynamics of discrete-time quantum walks on a multilayer network. We derive a recurrence formula for the coefficients of the wave function of a quantum walker on an undirected graph with a finite number of nodes. By extending this formula to include extra layers, we develop a simulation model to describe the time evolution of the quantum walker on a multilayer network. The time-averaged probability and the return probability of the quantum walker are studied with Fourier, and Grover walks on multilayer networks. Furthermore, we analyze the impact of decoherence on quantum transport, shedding light on how environmental interactions may impact the behavior of quantum walkers on multilayer network structures.

Show more

logo
Articali

Powered by Articali

TermsPrivacy