Jan 2022 • ACS Energy Letters
Sandipan Maiti, Rajashree Konar, Hadar Sclar, Judith Grinblat, Michael Talianker, Maria Tkachev, Xiaohan Wu, Aleksandr Kondrakov, Gilbert Daniel Nessim, Doron Aurbach
Functional surface coatings were applied on high voltage spinel (LiNi0.5Mn1.5O4; LNMO) and Ni-rich (LiNi0.85Co0.1Mn0.05O2; NCM851005) NCM cathode materials using few-layered 2H tungsten diselenide (WSe2). Simple liquid-phase mixing with WSe2 in 2-propanol and low-temperature (130 °C) heat treatment in nitrogen flow dramatically improved electrochemical performance, including stable cycling, high-rate performance, and lower voltage hysteresis in Li coin cells at 30 and 55 °C. Significantly improved capacity retention at 30 °C [Q401/Q9 of 99% vs 38% for LNMO and Q322/Q23 of 64% vs 46% for NCM851005] indicated efficient functionality. TEM and XPS clarified the coating distribution and coordination with the cathode surface, while postcycling studies revealed its sustainability, enabling lower transition metal dissolution and minor morphological deformation/microcrack formation. A modified and …
Show moreJan 2022 • Cell Reports Physical Science
Meital Turgeman, Vered Wineman-Fisher, Fyodor Malchik, Arka Saha, Gil Bergman, Bar Gavriel, Tirupathi Rao Penki, Amey Nimkar, Valeriia Baranauskaite, Hagit Aviv, Mikhael D Levi, Malachi Noked, Dan Thomas Major, Netanel Shpigel, Doron Aurbach
Jan 2022 • ACS Catalysis
Wenjamin Moschkowitsch, Oran Lori, Lior Elbaz
The global energy demand is expected to rise continuously in the foreseeable future, and this demand cannot be fulfilled with fossil fuels if the ambitious goals for global reduction in greenhouse gas emissions are to be met. 1, 2 Therefore, it is necessary to switch to energy production from sustainable energy sources such as solar and wind. 3, 4 These sources suffer from intermittent production, producing a surplus of energy at certain hours and seasons and little to none at others. Hence, large energy storage solutions are necessary in order to store the excess energy in peak times and compensate at the lowand down-times. 4, 5One of the most promising energy storage solutions today is chemical, in the form of hydrogen, which can be used with fuel cells to generate electricity or burned to generate heat, as well as being used in the chemical industry for various applications. 5 It can be easily produced with various …
Show more2022 • Frontiers in Immunology
Katherine JL Jackson, Justin T Kos, William Lees, William S Gibson, Melissa Laird Smith, Ayelet Peres, Gur Yaari, Martin Corcoran, Christian E Busse, Mats Ohlin, Corey T Watson, Andrew M Collins
The immunoglobulin genes of inbred mouse strains that are commonly used in models of antibody-mediated human diseases are poorly characterized. This compromises data analysis. To infer the immunoglobulin genes of BALB/c mice, we used long-read SMRT sequencing to amplify VDJ-C sequences from F1 (BALB/cx C57BL/6) hybrid animals. Strain variations were identified in the Ighm and Ighg2b genes, and analysis of VDJ rearrangements led to the inference of 278 germline IGHV alleles. 169 alleles are not present in the C57BL/6 genome reference sequence. To establish a set of expressed BALB/c IGHV germline gene sequences, we computationally retrieved IGHV haplotypes from the IgM dataset. Haplotyping led to the confirmation of 162 BALB/c IGHV gene sequences. A musIGHV398 pseudogene variant also appears to be present in the BALB/cByJ substrain, while a functional musIGHV398 gene is …
Show more2022 • Energy & Environmental Science
Xiaomei Lian, Lijian Zuo, Bowen Chen, Biao Li, Haotian Wu, Shiqi Shan, Gang Wu, Xuegong Yu, Qi Chen, Liwei Chen, Deren Yang, David Cahen, Hongzheng Chen
Ion migration and subsequent accumulation at interfaces, driven by the built-in potential (Vbi), are intrinsic properties of halide perovskite solar cells (PVSCs), which mostly decrease the device performance. To address this issue, we constructed favorable ion accumulation in perovskite solar cells via illumination to improve the performance of the quasi-2D PVSCs. This design dramatically improves the photo-carrier collection and enables significant device performance improvement from 14.6% to 19.05%, one of the best results for quasi-2D PVSCs. We argue that the light-triggered favorable ion accumulation originates from (1) the photo-induced quasi-Fermi level splitting that compensates the Vbi, so as to avoid the ion accumulation that decreases Vbi, and (2) the light-intensity-distribution-induced uneven ion potential further drives the segregation of mobile ions towards favorable ion accumulation, decreasing any …
Show more2022 • Evolution, Biodiversity and a Reassessment of the Hygiene Hypothesis, 105-140, 2022
Hannah Partney, Nissan Yissachar
Constant exposure to diverse microorganisms has accompanied human evolution and continues to shape immunological development throughout life. In mucosal tissues, both innate and adaptive arms of the immune system are required to support healthy mutualistic interactions with the resident microbiota, while aggressively fighting pathogenic infections. Technological breakthroughs over the past decade facilitated groundbreaking discoveries that transformed our understanding of intestinal immunology and established the gut microbiota as a critical factor that shapes immunological development and function. Indeed, alterations to microbiota composition (dysbiosis) are associated with a wide array of human diseases, including autoimmune diseases, chronic inflammation, the metabolic syndrome, and cancer. In this chapter, we discuss fundamental concepts that underlie microbiota-immune system crosstalks …
Show more2022 • Chemical Communications
Albert Kakkis, Eyal Golub, Tae Su Choi, F Akif Tezcan
Herein we describe a designed protein building block whose self-assembly behaviour is dually gated by the redox state of disulphide bonds and the identity of exogenous metal ions. This protein construct is shown – through extensive structural and biophysical characterization – to access five distinct oligomeric states, exemplifying how the complex interplay between hydrophobic, metal–ligand, and reversible covalent interactions could be harnessed to obtain multiple, responsive protein architectures from a single building block.
Show more2022 • Micro-and Nano-containers for Smart Applications, 127-153, 2022
Sayan Ganguly, Poushali Das, Shlomo Margel
Precise delivery of therapeutic cargos to the destined location is a medical demand for desirable physiological responses. In this discussion the synthetic approaches to prepare cargos and their mode of delivery have been addressed. The versatile synthesis and materialistic approaches have revealed by various scientists that besides carrying drugs/biomolecules the protection is also needed. The merits and demerits of those various architectural units also have been discussed in brief to assess their acceptability and mode of usages.
Show more2022 • Forward Brillouin Scattering in Standard Optical Fibers: Single-Mode …, 2022
Avi Zadok, Hilel Hagai Diamandi, Yosef London, Gil Bashan
The photoelastic perturbations to the dielectric tensor in standard single-mode fibers, due to the oscillations of guided acoustic modes, are studied and formulated. Material displacement of acoustic modes is associated with local strain in every point within the fiber cross section. Strain, in turn, gives rise to dielectric perturbations, which scale with the magnitude of the acoustic modal displacement. The photoelastic perturbations propagate along the fiber axis with the frequency and wavenumber of the acoustic wave and may scatter and modulate optical fields. The effect of the photoelastic perturbations on guided light depends on the spatial overlap between their transverse profile and that of the optical mode. The position-averaged perturbations associated with radial modes are scalar, and their effect on guided light is independent of polarization. Torsional-radial acoustic modes, on the other hand, induce …
Show more2022 • Forward Brillouin Scattering in Standard Optical Fibers: Single-Mode …, 2022
Avi Zadok, Hilel Hagai Diamandi, Yosef London, Gil Bashan
This chapter describes the experimental setups and measurement protocols used in the characterization of forward Brillouin scattering processes in optical fibers. The methods can be broadly classified in three categories: techniques in which forward Brillouin scattering is accumulated and integrated over the entire length of a fiber under test, point measurements at specific locations, and spatially distributed analysis of the scattering spectra as functions of position. Specific examples include the spontaneous scattering of probe waves within fiber interferometer loops, polarization rotation of probe waves, photoelastic perturbations of fiber Bragg gratings, coupling of power between forward Brillouin pump tones, and spatially distributed mapping of auxiliary backscattering processes such as Rayleigh or backward Brillouin. Lastly, the spatially distributed analysis of inter-modal scattering over polarization-maintaining …
Show more2022 • Laser & Photonics Reviews
Hilel Hagai Diamandi, Gil Bashan, Yosef London, Kavita Sharma, Keren Shemer, Avi Zadok
Forward stimulated Brillouin scattering in standard single‐mode fibers draws increasing interest toward sensing and signal processing applications. The process takes place through two classes of guided acoustic modes: purely radial ones and torsional‐radial modes with twofold azimuthal symmetry. The latter case cannot be described in terms of scalar models alone. In this work, the polarization attributes of forward stimulated Brillouin scattering in single‐mode fibers are investigated in analysis and experiment. Torsional‐radial acoustic modes are stimulated by orthogonally polarized pump tones, a first such report in standard single‐mode fibers. The scattering of optical probe waves by torsional‐radial modes may take up the form of phase modulation, cross‐polarization coupling, or a combination of both, depending on polarization. Lastly, this analysis predicts that circular and orthogonal pump tones may …
Show more2022 • Forward Brillouin Scattering in Standard Optical Fibers: Single-Mode …, 2022
Avi Zadok, Hilel Hagai Diamandi, Yosef London, Gil Bashan
The stimulation of the guided acoustic modes of standard single-mode fibers by co-propagating optical field components is formulated. Effective stimulation requires that the electrostrictive force induced by optical waves and the displacement of the acoustic mode share the same temporal frequency and axial wavenumber. These conditions, in turn, are satisfied at acoustic frequencies that are close to the modal cutoff. The frequency dependence of modal stimulation follows a Lorentzian line shape. The strengths of the modal stimulation scale with the beating power between two optical field components. In addition, the stimulation efficiency scales with the overlap integral between the transverse profiles of force and acoustic displacement. The transverse symmetry of the electrostrictive force restricts the stimulation to guided acoustic modes that are either purely radial or torsional-radial with twofold azimuthal …
Show more2022 • Methods
HJ Chung, YK Kang, PD Hsu, S Konermann, MH Porteus, A Hendel, J Clark, RO Bak, Ryan De, DJ Dellinger, R Kaiser, J Myerson, K Gagnon, M Damha, M Habibian, DT O’Reilly, Z Kartje
Recent patents relating to CRISPR methods and compositions for gene editing and therapeutic use.
Show more2022 • Forward Brillouin Scattering in Standard Optical Fibers: Single-Mode …, 2022
Avi Zadok, Hilel Hagai Diamandi, Yosef London, Gil Bashan
The final chapter of the book provides a brief recap of forward Brillouin scattering in standard optical fibers, directions for possible further research, and the prospects and challenges associated with technological applications of the effect.
Show more2022 • Nanoscale
Wenjamin Moschkowitsch, Bipasa Samanta, Noam Zion, Hilah Honig, David A Cullen, Maytal Caspary Toroker, Lior Elbaz
Aerogels are a very interesting group of materials owing to their unique physical and chemical properties. In the context of electrocatalysis, the focus has been on their physical properties, and they have been used primarily catalyst supports so far. In this work, we synthesized porphyrin aerogels containing Ni and NiFe mixed metal materials and studied them as catalysts for the oxygen evolution reaction (OER). Different Ni:Fe ratios were synthesized and studied in electrochemical cells, and DFT calculations were conducted in order to gain insight into their behavior. The activity trends were dependent on the metal ratios and differ from known NiFeOOH materials due to the change of the oxidation states of the metals to higher numbers. Herein, we show that Ni and Fe have a synergistic effect for OER, despite being structurally separated. They are connected electronically, though, through a large organic aromatic …
Show more2022 • Forward Brillouin Scattering in Standard Optical Fibers: Single-Mode …, 2022
Avi Zadok, Hilel Hagai Diamandi, Yosef London, Gil Bashan
This chapter studies spontaneous scattering of light in single-mode fibers, due to the photoelastic perturbations associated with the oscillations of guided acoustic modes. The acoustic modes, in this case, are not stimulated by the optical fields being observed. Instead, they may be of thermal origin or driven by other optical field components than those monitored. Scattering is formulated in terms of nonlinear polarization terms and nonlinear wave equations for the evolution of the spectral sidebands of an input optical field. In the case of radial guided acoustic modes, photoelastic scattering of the optical field results in its phase modulation. By contrast, torsional-radial acoustic modes may induce phase modulation, coupling to the orthogonal polarization, or a combination of both, depending on the state of polarization of the input optical field. The strength of modulation is quantified in terms of a nonlinear coefficient …
Show more2022 • Forward Brillouin Scattering in Standard Optical Fibers: Single-Mode …, 2022
Avi Zadok, Hilel Hagai Diamandi, Yosef London, Gil Bashan
The analysis of forward stimulated Brillouin scattering is extended to standard single-mode fibers with coating layers. The cutoff frequencies, linewidths, and transverse profiles of the guided acoustic modes are modified by the presence of the coating layer and by its mechanical properties. The solutions are generally more complex than those of bare, uncoated fibers. Nevertheless, the boundary conditions can be brought into the form of matrix coefficients and solved to obtain the guided modes of the coated fibers. The forward stimulated Brillouin scattering of coated fibers is highly sensitive of submicron variations in the thickness of the coating layer, due to interference effects. Some modes are more sensitive to such variations than others. In contrast to bare fibers, the forward Brillouin scattering linewidths of coated fibers do not maintain a one-to-one correspondence with the mechanical impedance of media outside …
Show more2022 • Advanced Materials Interfaces
Reut Yemini, Shalev Blanga, Hagit Aviv, Ilana Perelshtein, Eti Teblum, Shahar Dery, Elad Gross, Yitzhak Mastai, Malachi Noked, Ortal Lidor‐Shalev
Atomic and molecular layer deposition (ALD and MLD) are techniques based on surface‐directed self‐limiting reactions that afford deposition of films controlled at the monolayer level and with extreme conformality, even on ultra‐high‐aspect‐ratio and porous substrates. These methodologies are typically used to deposit thin films with desirable physical properties and functionality. Here, the MLD process is harnessed to demonstrate the growth of molecularly thin chiral films that inherit a desirable chemical property directly from the source precursor: using this innovative technique, enantioselective nanosurfaces are managed to be grown. Specifically, the formation of a Zn/Cysteine nanostructure by MLD is demonstrated for both the l‐ and d‐ enantiomers. The reaction and growth mechanism of these chiral hybrid inorganic‐organic nanosurfaces are studied via various experimental procedures; their …
Show more2022 • Proc. of SPIE Vol
Ariel Ashkenazy, Eliahu Cohen, Dror Fixler
Energy-time entangled photon pairs (EPPs), which are at the heart of numerous quantum light applications, are commonly generated in nonlinear crystals. Some highly sensitive quantum applications require the use of ultra-broadband entangled photons that cannot be generated in nonlinear crystals due to phase-matching requirements. Here, we investigate the possibility of using metallic nanoparticles (MNPs) as a means for generating entangled photons through spontaneous parametric down-conversion (SPDC). MNPs are known for their strong light-matter coupling at their localized surfaceplasmon resonance, and since the propagation length through them is negligible relative to optical wavelengths, we consider them as excellent candidates to serve as non-phase matched sources of ultra-broadband entangled photons.To that end, we report experimental results of classical-light second-harmonic generation …
Show more2022 • s Note: MDPI stays neutral with regard to jurisdictional claims in published …, 2022
H Pe’er-Nissan, H Ahdoot-Levi, O Betzer, PS Itzhak, N Shraga-Heled, I Gispan, M Motiei, A Doroshev, Y Anker, R Popovtzer
Recent research points to mesenchymal stem cells’ potential for treating neurological disorders, especially drug addiction. We examined the longitudinal effect of placenta-derived mesenchymal stromal-like cells (PLX-PAD) in a rat model for cocaine addiction. Sprague–Dawley male rats were trained to self-administer cocaine or saline daily until stable maintenance. Before the extinction phase, PLX-PAD cells were administered by intracerebroventricular or intranasal routes. Neurogenesis was evaluated, as was behavioral monitoring for craving. We labeled the PLX-PAD cells with gold nanoparticles and followed their longitudinal migration in the brain parallel to their infiltration of essential peripheral organs both by micro-CT and by inductively coupled plasmaoptical emission spectrometry. Cell locations in the brain were confirmed by immunohistochemistry. We found that PLX-PAD cells attenuated cocaine-seeking behavior through their capacity to migrate to specific mesolimbic regions, homed on the parenchyma in the dentate gyrus of the hippocampus, and restored neurogenesis. We believe that intranasal cell therapy is a safe and effective approach to treating addiction and may offer a novel and efficient approach to rehabilitation.
Show more2022 • Proc. of SPIE Vol
Valery V Tuchin, Walter C Blondel, Zeev Zalevsky
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary. org.
Show more