BINA

3707 articles

75 publishers

Join mailing list

Jan 2023 • Optics Express

Thermo-elastic gigahertz-frequency oscillator through surface acoustic wave-silicon photonics

Maayan Priel, Saawan Kumar Bag, Matan Slook, Leroy Dokhanian, Inbar Shafir, Mirit Hen, Moshe Katzman, Etai Grunwald, Dvir Munk, Moshe Feldberg, Tali Sharabani, Naor Inbar, Gil Bashan, Avi Zadok

Opto-electronic oscillators are sources of microwave-frequency tones that may reach very low noise levels. Much effort is being dedicated to the realization of oscillators based on photonic integrated devices. In this work, we propose and demonstrate a thermo-elastic opto-electronic oscillator at 2.213 GHz frequency based on a standard silicon-photonic integrated circuit. A microwave-frequency electrical signal modulates an optical pump wave carrier. The modulated waveform launches surface acoustic waves in a silicon-on-insulator substrate, through absorption in a metallic grating and thermo-elastic actuation. The waveform is reconverted to the optical domain through photoelastic modulation of an optical probe wave carrier in a standard racetrack resonator waveguide. Both the thermo-elastic actuation and the photoelastic modulation are radio-frequency selective. The output probe wave is detected, and the receiver voltage is amplified and fed back to modulate the optical pump input. Sufficient gain drives the loop into oscillations. The oscillator does not involve piezoelectricity and can be realized on any substrate. Long acoustic delays may be implemented in compact devices. The frequency of operation is scalable to tens of GHz. The principle may be useful in integrated microwave-photonic signal processing and in the elastic analysis of surfaces and thin layers.

Show more

Jan 2023 • Materials Reports: Energy 3 (1), 100178, 2023

Recent progress in C–N coupling for electrochemical CO2 reduction with inorganic nitrogenous species in aqueous solution

Shuxia Liu, Tanyuan Wang, Lior Elbaz, Qing Li

The electrocatalytic CO2 reduction in aqueous solution mainly involves bond cleavage and formation between C, H and O, and it is highly desirable to expand the bond formation reaction of C with other atoms to obtain novel and valuable chemicals. The electrochemical synthesis of N-containing organic chemicals in electrocatalytic CO2 reduction via introducing N sources is an effective strategy to expand the product scope, since chemicals containing C–N bonds (e.g. amides and amines) are important reactants/products for medicine, agriculture and industry. This article focuses on the research progress of C–N coupling from CO2 and inorganic nitrogenous species in aqueous solution. Firstly, the reaction pathways related to the reaction intermediates for urea, formamide, acetamide, methylamine and ethylamine are highlighted. Then, the electrocatalytic performance of different catalysts for these several N …

Show more

Jan 2023 • Nanomaterials 13 (3), 598, 2023

Recent Advances in the Spintronic Application of Carbon-Based Nanomaterials

Shweta Pawar, Hamootal Duadi, Dror Fixler

The term “carbon-based spintronics” mostly refers to the spin applications in carbon materials such as graphene, fullerene, carbon nitride, and carbon nanotubes. Carbon-based spintronics and their devices have undergone extraordinary development recently. The causes of spin relaxation and the characteristics of spin transport in carbon materials, namely for graphene and carbon nanotubes, have been the subject of several theoretical and experimental studies. This article gives a summary of the present state of research and technological advancements for spintronic applications in carbon-based materials. We discuss the benefits and challenges of several spin-enabled, carbon-based applications. The advantages include the fact that they are significantly less volatile than charge-based electronics. The challenge is in being able to scale up to mass production.

Show more

Jan 2023 • iScience

Temporal Synchronization Elicits Enhancement of Binocular Vision Functions

Auria Eisen-Enosh, Nairouz Farah, Uri Polat, Yossi Mandel

Integration of information over the central nervous system is an important neural process that affects our ability to perceive and react to the environment. The visual system is required to continuously integrate information arriving from two different sources (the eyes) to create a coherent percept with high spatiotemporal precision. Although this neural integration of information is assumed to be critical for visual performance, it can be impaired under some pathological or developmental conditions. Here we took advantage of a unique developmental condition, amblyopia (“lazy eye”), which is characterized by an impaired temporal synchronization between the two eyes, to meticulously study the effect of synchronization on the integration of binocular visual information. We measured the eyes’ asynchrony and compensated for it (with millisecond temporal resolution) by providing time-shifted stimuli to the eyes. We found …

Show more

Jan 2023 • arXiv preprint arXiv:2301.06100

Instability in the quantum restart problem

Ruoyu Yin, Eli Barkai

We study optimal restart times for the quantum first hitting time problem. Using a monitored one-dimensional lattice quantum walk with restarts, we find an instability absent in the corresponding classical problem. This instability implies that a small change in parameters can lead to a rather large change of the optimal restart time. We show that the optimal restart time versus a control parameter, exhibits sets of staircases and plunges. The plunges, are due to the mentioned instability, which in turn is related to the quantum oscillation of the first hitting time probability, in the absence of restarts. Furthermore, we prove that there are only two patterns of the staircase structures, dependent on the parity of the distance between the target and source in units of lattice constant.

Show more

Jan 2023 • bioRxiv

Ex vivo intestinal permeability assay (X-IPA) for tracking barrier function dynamics

Hadar Bootz-Maoz, Ariel Simon, Sara Del Mare-Roumani, Yifat Bennet, Danping Zheng, Sivan Amidror, Eran Elinav, Nissan Yissachar

The intestinal epithelial barrier facilitates homeostatic host-microbiota interactions and immunological tolerance. However, mechanistic dissections of barrier dynamics following luminal stimulation pose a substantial challenge. Here, we describe an ex-vivo intestinal permeability assay, X-IPA, for quantitative analysis of gut permeability dynamics at the whole-tissue level. We demonstrate that specific gut microbes and metabolites induce rapid, dose-dependent increases to gut permeability, thus providing a powerful approach for precise investigation of barrier functions.

Show more

Jan 2023 • arXiv e-prints

Temperature Invariant Metasurfaces

Shany Zrihan Cohen, Danveer Singh, Sukanta Nandi, Tomer Lewi

Thermal effects are well known to influence the electronic and optical properties of materials through several physical mechanisms and are the basis for various optoelectronic devices. The thermo-optic (TO) effect-the refractive index variation with temperature (dn/dT), is one of the common mechanisms used for tunable optical devices, including integrated optical components, metasurfaces and nano-antennas. However, when a static and fixed operation is required, ie, temperature invariant performance-this effect becomes a drawback and may lead to undesirable behavior through drifting of the resonance frequency, amplitude, or phase, as the operating temperature varies over time. In this work, we present a systematic approach to mitigate thermally induced optical fluctuations in nanophotonic devices. By using hybrid subwavelength resonators composed from two materials with opposite TO dispersions (dn/dT< 0 …

Show more

Jan 2023 • Biochemistry

Conformations and Local Dynamics of the CopY Metal Sensor Revealed by EPR Spectroscopy

Melanie Hirsch, Lukas Hofmann, Yulia Shenberger, Lada Gevorkyan-Airapetov, Sharon Ruthstein

Metal transcription factors regulate metal concentrations in eukaryotic and prokaryotic cells. Copper is a metal ion that is being tightly regulated, owing to its dual nature. Whereas copper is an essential nutrient for bacteria, it is also toxic at high concentrations. CopY is a metal-sensitive transcription factor belonging to the copper-responsive repressor family found in Gram-positive bacteria. CopY represses transcription in the presence of Zn(II) ions and initiates transcription in the presence of Cu(I) ions. The complete crystal structure of CopY has not been reported yet, therefore most of the structural information on this protein is based on its similarity to the well-studied MecI protein. In this study, electron paramagnetic resonance (EPR) spectroscopy was used to characterize structural and local dynamical changes in Streptococcus pneumoniae CopY as a function of Zn(II), Cu(I), and DNA binding. We detected different …

Show more

Jan 2023 • arXiv preprint arXiv:2301.00833

Hyperuniform disordered parametric loudspeaker array

Kun Tang, Yuqi Wang, Shaobo Wang, Da Gao, Haojie Li, Xindong Liang, Patrick Sebbah, Jin Zhang, Junhui Shi


Jan 2023 • Advanced Optical Materials

Optical Properties and Ultrafast Near‐Infrared Localized Surface Plasmon Dynamics in Naturally p‐Type Digenite Films

Andrea Villa, Madina Telkhozhayeva, Fabio Marangi, Eti Teblum, Aaron M Ross, Mirko Prato, Luca Andena, Roberto Frassine, Francesco Scotognella, Gilbert Daniel Nessim

Copper chalcogenides are materials characterized by intrinsic doping properties, allowing them to display high carrier concentrations due to their defect‐heavy structures, independent of the preparation method. Such high doping enables these materials to display plasmonic resonances, tunable by varying their stoichiometry. Here, plasmonic dynamics is studied in drop‐cast Cu9S5 (digenite) nanocrystals (NCs) film using ultrafast pump–probe spectroscopy. The NCs are synthesized by thermal annealing of copper foil using chemical vapor deposition (CVD), followed by sonication and drop‐casting of the isolated few‐layered flakes on different substrates. The samples display a broad localized surface plasmon resonance (LSPR) in the near‐infrared (NIR), peaking at 2100 nm. The free carrier response is further confirmed by fitting the linear absorption with a Drude–Lorentz effective medium approximation model …

Show more

Jan 2023 • arXiv preprint arXiv:2301.01581

Universal to Non-Universal Transition of the statistics of Rare Events During the Spread of Random Walks

RK Singh, Stanislav Burov

Particle hopping is a common feature in heterogeneous media. We explore such motion by using the widely applicable formalism of the continuous time random walk and focus on the statistics of rare events. Numerous experiments have shown that the decay of the positional probability density function P (X, t), describing the statistics of rare events, exhibits universal exponential decay. We show that such universality ceases to exist once the threshold of exponential distribution of particle hops is crossed. While the mean hop is not diverging and can attain a finite value; the transition itself is critical. The exponential universality of rare events arises due to the contribution of all the different states occupied during the process. Once the reported threshold is crossed, a single large event determines the statistics. In this realm, the big jump principle replaces the large deviation principle, and the spatial part of the decay is unaffected by the temporal properties of rare events.

Show more

Jan 2023 • arXiv preprint arXiv:2301.13086

Temperature invariant metasurfaces

Shany Zrihan Cohen, Danveer Singh, Sukanta Nandi, Tomer Lewi

Thermal effects are well known to influence the electronic and optical properties of materials through several physical mechanisms and are the basis for various optoelectronic devices. The thermo-optic (TO) effect - the refractive index variation with temperature (dn/dT), is one of the common mechanisms used for tunable optical devices, including integrated optical components, metasurfaces and nano-antennas. However, when a static and fixed operation is required, i.e., temperature invariant performance - this effect becomes a drawback and may lead to undesirable behavior through drifting of the resonance frequency, amplitude, or phase, as the operating temperature varies over time. In this work, we present a systematic approach to mitigate thermally induced optical fluctuations in nanophotonic devices. By using hybrid subwavelength resonators composed from two materials with opposite TO dispersions (dn/dT<0 and dn/dT>0), we are able to compensate for TO shifts and engineer meta-atoms and metasurfaces with zero effective TO coefficient (dn/dT~0). We demonstrate temperature invariant resonant frequency, amplitude, and phase response in meta-atoms and metasurfaces operating across a wide temperature range and broad spectral band. Our results highlight a path towards temperature invariant nanophotonics, which can provide constant and stable optical response across a wide range of temperatures and be applied to a plethora of optoelectronic devices. Controlling the sign and magnitude of TO dispersion extends the capabilities of light manipulation and adds another layer to the toolbox of optical engineering in nanophotonic …

Show more

Jan 2023 • ACS Applied Energy Materials

Performances of Co2+-Substituted NiMoO4 Nanorods in a Solid-State Hybrid Supercapacitor

Sengodan Prabhu, Moorthy Maruthapandi, Arulappan Durairaj, Srinivasan Arun Kumar, John HT Luong, Rajendran Ramesh, Aharon Gedanken

A hydrothermal method was conducted to synthesize Ni(1−α)Co(α)MoO4 (α = 0, 0.1, 0.3, and 0.5 M) nanorods, which were proven as excellent electrode materials in a hybrid supercapacitor. Their electrochemical properties were also dependent on the Ni/Co ratio as demonstrated by different electrochemical techniques. Ni0.5Co0.5MoO4 (α = 0.5 M) offered specific capacity (Qg) = 354 Cg–1@1 Ag–1, a remarkable specific capacity with a notable retention capacity of 92% after 8000 repeated cycles at 10 Ag–1. Ni0.5Co0.5MoO4 with a high surface area outperformed the mono-metallic (NiMoO4) and bimetallic (Ni0.9Co0.1MoO4 and Ni0.7Co0.3MoO4) nanostructures. The hybrid supercapacitor (Ni0.5Co0.5MoO4//activated carbon) delivered a maximum Qcell of 53 Cg–1 at 1 Ag–1 with an energy density of 16.2 Wh kg–1 and power density of 725 W kg–1.

Show more

Jan 2023 • arXiv preprint arXiv:2301.01581

Universal to nonuniversal transition of the statistics of rare events during the spread of random walks

RK Singh, Stanislav Burov

Particle hopping is a common feature in heterogeneous media. We explore such motion by using the widely applicable formalism of the continuous time random walk and focus on the statistics of rare events. Numerous experiments have shown that the decay of the positional probability density function P (X, t), describing the statistics of rare events, exhibits universal exponential decay. We show that such universality ceases to exist once the threshold of exponential distribution of particle hops is crossed. While the mean hop is not diverging and can attain a finite value; the transition itself is critical. The exponential universality of rare events arises due to the contribution of all the different states occupied during the process. Once the reported threshold is crossed, a single large event determines the statistics. In this realm, the big jump principle replaces the large deviation principle, and the spatial part of the decay is unaffected by the temporal properties of rare events.

Show more

Jan 2023 • Analysis & Sensing 3 (1), e202200053, 2023

Measurement of protein dynamics from site directed Cu (II) labeling

Kevin Singewald, Hannah Hunter, Timothy F Cunningham, Sharon Ruthstein, Sunil Saxena

This review describes the use of Electron Paramagnetic Resonance (EPR) to measure residue specific dynamics in proteins with a specific focus on Cu(II)‐based spin labels. First, we outline approaches used to measure protein motion by nitroxide‐based spin labels. Here, we describe conceptual details and outline challenges that limit the use of nitroxide spin labels to solvent‐exposed α‐helical sites. The bulk of this review showcases the use of newly developed Cu(II)‐based protein labels. In this approach, the strategic mutation of native residues on a protein to generate two neighboring Histidine residues (i.e., the dHis motif) is exploited to enable a rigid site‐selective binding of a Cu(II) complex. The chelation of the Cu(II) complex to dHis directly anchors the Cu(II) spin label to the protein backbone. The improvement in rigidity expands both the spin‐labeling toolkit as well as the resolution of many EPR …

Show more

Jan 2023 • Proc. of SPIE Vol

Frontiers in Biological Detection: From Nanosensors to Systems XV

Amos Danielli, Benjamin L Miller, Sharon M Weiss

PROCEEDINGS OF SPIE Page 1 PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Front Matter: Volume 12397 , "Front Matter: Volume 12397," Proc. SPIE 12397, Frontiers in Biological Detection: From Nanosensors to Systems XV, 1239701 (2 May 2023); doi: 10.1117/12.2679008 Event: SPIE BiOS, 2023, San Francisco, California, United States Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 04 May 2023 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Page 2 PROGRESS IN BIOMEDICAL OPTICS AND IMAGING Vol. 24 No. 46 Volume 12397 Proceedings of SPIE, 1605-7422, V. 12397 SPIE is an international society advancing an interdisciplinary approach to the science and application of light. Frontiers in Biological Detection: From Nanosensors to Systems XV Amos Danielli Benjamin L. Miller Sharon M. Weiss Editors 29 …

Show more

Jan 2023 • Journal of the American Chemical Society

Direct quinone fuel cells

Yan Yurko, Lior Elbaz

The increasing interest and need to shift to sustainable energy give rise to the utilization of fuel cell technologies in various applications. The challenging task of hydrogen storage and transport led to the development of liquid hydrogen carriers (LHCs) as fuels for direct LHC fuel cells, such as methanol in direct methanol fuel cells (DMFCs). Although simpler to handle, most direct LHC fuel cells suffer from durability and price issues derived from high catalysts’ loadings and byproducts of the oxidation reaction of the fuel. Herein, we report on the development of direct hydroquinone fuel cells (DQFCs) based on anthraquinone-2,7-disulfonic acid (AQDS) as an LHC. We have shown that DQFC can operate with a continuous flow of quinone as a hydrogen carrier, outperforming the incumbent state-of-the-art DMFC by a factor of 3 in peak power density while completely removing the need for any catalyst at the anode. In …

Show more

Jan 2023 • Langmuir

Biotin Binding Hardly Affects Electron Transport Efficiency across Streptavidin Solid-State Junctions

Sudipta Bera, Sharada Govinda, Jerry A Fereiro, Israel Pecht, Mordechai Sheves, David Cahen

The electron transport (ETp) efficiency of solid-state protein-mediated junctions is highly influenced by the presence of electron-rich organic cofactors or transition metal ions. Hence, we chose to investigate an interesting cofactor-free non-redox protein, streptavidin (STV), which has unmatched strong binding affinity for an organic small-molecule ligand, biotin, which lacks any electron-rich features. We describe for the first time meso-scale ETp via electrical junctions of STV monolayers and focus on the question of whether the rate of ETp across both native and thiolated STV monolayers is influenced by ligand binding, a process that we show to cause some structural conformation changes in the STV monolayers. Au nanowire-electrode–protein monolayer–microelectrode junctions, fabricated by modifying an earlier procedure to improve the yields of usable junctions, were employed for ETp measurements. Our …

Show more

Jan 2023 • Frontiers in Oncology

A predictive model for personalization of nanotechnology-based phototherapy in cancer treatment

Eli Varon, Gaddi Blumrosen, Orit Shefi

A major challenge in radiation oncology is predicting and optimizing a clinical response on a personalized manner. Recently, nanotechnology-based cancer treatments are being combined with photodynamic therapy (PDT) and photothermal therapy (PTT). Machine learning predictive models can be used to optimize the clinical setup configuration, such as: laser radiation intensity, treatment duration, and nanoparticles features. In this work we demonstrate a methodology to find the optimized treatment parameters for PDT and PTT by collecting data of in vitro cytotoxicity assay of PDT/PTT-induced cell death using a single nanocomplex. We examine three machine learning prediction models of regression, interpolation, and low degree analytical function to predict the laser radiation intensity and duration that maximize the treatment efficiency. To examine these prediction models accuracy, we built a dedicated dataset for PDT, PTT, and a combined treatment that is based on cell death measurements after light radiation treatment, divided to training and test sets. The preliminary results show that all models offer sufficient performance with death rate error of 0.09, 0.15, and 0.12 for the regression, interpolation, and analytical function fitting. Nevertheless, the analytical function due to its simple form has a clinical application advantage that can be used for further sensitivity analysis of the treatment parameters on the performance. In all, the results of this work form a baseline for a future machine learning base personal prediction model in combined nanotechnology-based phototherapy cancer treatment.

Show more

Jan 2023 • iScience

Temporal Synchronization Elicits Enhancement of Binocular Vision Functions

Auria Eisen-Enosh, Nairouz Farah, Uri Polat, Yossi Mandel

Integration of information over the central nervous system is an important neural process that affects our ability to perceive and react to the environment. The visual system is required to continuously integrate information arriving from two different sources (the eyes) to create a coherent percept with high spatiotemporal precision. Although this neural integration of information is assumed to be critical for visual performance, it can be impaired under some pathological or developmental conditions. Here we took advantage of a unique developmental condition, amblyopia (“lazy eye”), which is characterized by an impaired temporal synchronization between the two eyes, to meticulously study the effect of synchronization on the integration of binocular visual information. We measured the eyes’ asynchrony and compensated for it (with millisecond temporal resolution) by providing time-shifted stimuli to the eyes. We found …

Show more

Jan 2023 • Nano Letters

A RuCoBO Nanocomposite for Highly Efficient and Stable Electrocatalytic Seawater Splitting

Le-Wei Shen, Yong Wang, Jiang-Bo Chen, Ge Tian, Kang-Yi Xiong, Christoph Janiak, David Cahen, Xiao-Yu Yang

Efficient and stable electrocatalysts are critically needed for the development of practical overall seawater splitting. The nanocomposite of RuCoBO has been rationally engineered to be an electrocatalyst that fits these criteria. The study has shown that a calcinated RuCoBO-based nanocomposite (Ru2Co1BO-350) exhibits an extremely high catalytic activity for H2 and O2 production in alkaline seawater (overpotentials of 14 mV for H2 evolution and 219 mV for O2 evolution) as well as a record low cell voltage (1.466 V@10 mA cm–2) and long-term stability (230 h @50 mA cm–2 and @100 mA cm–2) for seawater splitting. The results show that surface reconstruction of Ru2Co1BO-350 occurs during hydrogen evolution reaction and oxygen evolution reaction, which leads to the high activity and stability of the catalyst. The reconstructed surface is highly resistant to Cl– corrosion. The investigation suggests that a new …

Show more

logo
Articali

Powered by Articali

TermsPrivacy