BINA

4313 articles

77 publishers

Join mailing list

Oct 2023 • Quantum

Kirkwood-Dirac quasiprobability approach to the statistics of incompatible observables

Matteo Lostaglio, Alessio Belenchia, Amikam Levy, Santiago Hernández-Gómez, Nicole Fabbri, Stefano Gherardini

Recent work has revealed the central role played by the Kirkwood-Dirac quasiprobability (KDQ) as a tool to properly account for non-classical features in the context of condensed matter physics (scrambling, dynamical phase transitions) metrology (standard and post-selected), thermodynamics (power output and fluctuation theorems), foundations (contextuality, anomalous weak values) and more. Given the growing relevance of the KDQ across the quantum sciences, our aim is two-fold: First, we highlight the role played by quasiprobabilities in characterizing the statistics of quantum observables and processes in the presence of measurement incompatibility. In this way, we show how the KDQ naturally underpins and unifies quantum correlators, quantum currents, Loschmidt echoes, and weak values. Second, we provide novel theoretical and experimental perspectives by discussing a wide variety of schemes to access the KDQ and its non-classicality features.

Show more

Oct 2023 • Physical Chemistry of Semiconductor Materials and Interfaces XXII, PC126500Q, 2023

All-optical photoacoustic measurement of localized chirality in crystal suspensions

Gil Otis, Matan Benyamin, Yitzhak Mastai, Zeev Zalevsky

In this research we present a novel method to measure local optical dichroism in opaque crystal powder suspensions using the photoacoustic effect. Our method is based upon the laser speckle contrast technique, a novel technique to perform photoacoustic measurements that do not require contact with the sample. The main novelty of our work is the development of a simple statistical approach for measuring the chirality of crystal suspensions using the photoacoustic effect, which does not require arranging the crystals with a specific orientation on surfaces. A model chiral system was used to demonstrate our method, we have used Cobalt doped L-Histidine crystals that are photoacoustic active and established our ability to measure their optical dichroism in solution under completely random orientation.

Show more

Oct 2023 • arXiv preprint arXiv:2310.17819

Multiplexed Processing of Quantum Information Across an Ultra-wide Optical Bandwidth

Alon Eldan, Ofek Gilon, Asher Lagimi, Elai Forman, Avi Pe'er

Quantum information processing is the foundation of quantum technology. Protocols of quantum information share secrets between two distant parties for secure communication (quantum key distribution), teleport quantum states, and stand at the heart of quantum computation. While various protocols of quantum communication have already been realized, and even commercialized, their communication speed is generally low, limited by the narrow electronic bandwidth of the measurement apparatus in the MHz-to-GHz range, which is orders-of-magnitude lower than the optical bandwidth of available quantum optical sources (10-100 THz). We present and demonstrate an efficient method to process quantum information with such broadband sources in parallel over multiplexed frequency channels using parametric homodyne detection for simultaneous measurement of all the channels. Specifically, we propose two basic protocols: A multiplexed Continuous-Variable Quantum Key Distribution (CV-QKD) and A multiplexed continuous-variable quantum teleportation protocol. We demonstrate the multiplexed CV-QKD protocol in a proof-of-principle experiment, where we successfully carry out QKD over 23 uncorrelated spectral channels and show the ability to detect eavesdropping in any of them. These multiplexed methods (and similar) will enable to carry out quantum processing in parallel over hundreds of channels, potentially increasing the throughput of quantum protocols by orders of magnitude

Show more

Oct 2023 • Physical Review E

Statistics of long-range force fields in random environments: Beyond Holtsmark

Avraham Samama, Eli Barkai

Since the times of Holtsmark (1911), statistics of fields in random environments have been widely studied, for example in astrophysics, active matter, and line-shape broadening. The power-law decay of the two-body interaction of the form , and assuming spatial uniformity of the medium particles exerting the forces, imply that the fields are fat-tailed distributed, and in general are described by stable Lévy distributions. With this widely used framework, the variance of the field diverges, which is nonphysical, due to finite size cutoffs. We find a complementary statistical law to the Lévy-Holtsmark distribution describing the large fields in the problem, which is related to the finite size of the tracer particle. We discover biscaling with a sharp statistical transition of the force moments taking place when the order of the moment is , where is the dimension. The high-order moments, including the variance, are described …

Show more

Oct 2023 • ACS nano

Triggering Gaussian-to-Exponential Transition of Displacement Distribution in Polymer Nanocomposites via Adsorption-Induced Trapping

Ming Hu, Hongbo Chen, Hongru Wang, Stanislav Burov, Eli Barkai, Dapeng Wang

In many disordered systems, the diffusion of classical particles is described by a displacement distribution P(x, t) that displays exponential tails instead of Gaussian statistics expected for Brownian motion. However, the experimental demonstration of control of this behavior by increasing the disorder strength has remained challenging. In this work, we explore the Gaussian-to-exponential transition by using diffusion of poly(ethylene glycol) (PEG) in attractive nanoparticle–polymer mixtures and controlling the volume fraction of the nanoparticles. In this work, we find “knobs”, namely nanoparticle concentration and interaction, which enable the change in the shape of P(x,t) in a well-defined way. The Gaussian-to-exponential transition is consistent with a modified large deviation approach for a continuous time random walk and also with Monte Carlo simulations involving a microscopic model of polymer trapping via …

Show more

Oct 2023 • 244th ECS Meeting (October 8-12, 2023)

(Energy Technology Division Walter van Schalkwijk Award in Sustainable Energy Technology Address) Exploring New Electrode Designs with Nanofibers

Peter N Pintauro, Xiaozong Fan, Krysta Waldrop, John Slack, Ethan Self, John Waugh, Ryszard Wycisk, Kobby Saadi, David Zitoun


Oct 2023 • ACS nano

ZnO quantum photoinitiators as an all-in-one solution for multifunctional photopolymer nanocomposites

Tom Naor, Shira Gigi, Nir Waiskopf, Gila Jacobi, Sivan Shoshani, Doron Kam, Shlomo Magdassi, Ehud Banin, Uri Banin


Oct 2023 • ACS Omega

Revealing the DNA Binding Modes of CsoR by EPR Spectroscopy

Yasmin Igbaria-Jaber, Lukas Hofmann, Lada Gevorkyan-Airapetov, Yulia Shenberger, Sharon Ruthstein

In pathogens, a unique class of metalloregulator proteins, called gene regulatory proteins, sense specific metal ions that initiate gene transcription of proteins that export metal ions from the cell, thereby preventing toxicity and cell death. CsoR is a metalloregulator protein found in various bacterial systems that “sense” Cu(I) ions with high affinity. Upon copper binding, CsoR dissociates from the DNA promoter region, resulting in initiation of gene transcription. Crystal structures of CsoR in the presence and absence of Cu(I) from various bacterial systems have been reported, suggesting either a dimeric or tetrameric structure of these helical proteins. However, structural information about the CsoR-DNA complex is missing. Here, we applied electron paramagnetic resonance (EPR) spectroscopy to follow the conformational and dynamical changes that Mycobacterium tuberculosis CsoR undergoes upon DNA binding in …

Show more

Oct 2023 • Physical Chemistry of Semiconductor Materials and Interfaces XXII, PC126500Q, 2023

All-optical photoacoustic measurement of localized chirality in crystal suspensions

Gil Otis, Matan Benyamin, Yitzhak Mastai, Zeev Zalevsky

In this research we present a novel method to measure local optical dichroism in opaque crystal powder suspensions using the photoacoustic effect. Our method is based upon the laser speckle contrast technique, a novel technique to perform photoacoustic measurements that do not require contact with the sample. The main novelty of our work is the development of a simple statistical approach for measuring the chirality of crystal suspensions using the photoacoustic effect, which does not require arranging the crystals with a specific orientation on surfaces. A model chiral system was used to demonstrate our method, we have used Cobalt doped L-Histidine crystals that are photoacoustic active and established our ability to measure their optical dichroism in solution under completely random orientation.

Show more

Oct 2023 • Electrochemical Society Meeting Abstracts 244, 2793-2793, 2023

(Keynote) Development of Advanced High Surface Area Metal Oxide Aerogels for Oxygen Evolution Reaction Electrocatalysis

Lior Elbaz, Petr Krtil


Oct 2023 • bioRxiv

Simulation of adaptive immune receptors and repertoires with complex immune information to guide the development and benchmarking of AIRR machine learning

Maria Chernigovskaya, Milena Pavlović, Chakravarthi Kanduri, Sofie Gielis, Philippe A Robert, Lonneke Scheffer, Andrei Slabodkin, Ingrid Hobæk Haff, Pieter Meysman, Gur Yaari, Geir Kjetil Sandve, Victor Greiff

Machine-learning methods (ML) have shown great potential in the adaptive immune receptor repertoire (AIRR) field. However, there is a lack of large-scale ground-truth experimental AIRR data suitable for AIRR-ML-based disease diagnostics and therapeutics discovery. Simulated ground-truth AIRR data are required to complement the development and benchmarking of robust and interpretable AIRR-ML approaches where experimental data is inaccessible or insufficient as of yet. The challenge for simulated data to be useful is the ability to incorporate key features observed in experimental repertoires. These features, such as complex antigen or disease-associated immune information, cause AIRR-ML problems to be challenging. Here, we introduce LIgO, a modular software suite, which simulates AIRR data for the development and benchmarking of AIRR-based machine learning. LIgO incorporates different types of immune information both on the receptor and the repertoire level and preserves native-like generation probability distribution. Additionally, LIgO assists users in determining the computational feasibility of their simulations. We show two examples where LIgO simulation supports the development and validation of AIRR-ML methods: (1) how individuals carrying out-of-distribution immune information impacts receptor-level prediction performance and (2) how immune information co-occurring in the same AIRs have an impact on the performance of conventional receptor-level encoding and repertoire-level classification approaches. The LIgO software guides the advancement and assessment of interpretable AIRR-ML methods.

Show more

Oct 2023 • Chemistry of Materials

Theoretical insights into high-entropy Ni-Rich layered oxide cathodes for low-strain li-ion batteries

Amreen Bano, Malachi Noked, Dan Thomas Major

Ni-rich, Co-free layered oxide cathode materials are promising candidates for next-generation Li-ion batteries due to their high energy density. However, these cathode materials suffer from rapid capacity fading during electrochemical cycling. To overcome this shortcoming, so-called high-entropy (HE) materials, which are obtained by incorporating multiple dopants, have been suggested. Recent experimental work has shown that HE Ni-rich cathode materials can offer excellent capacity retention on cycling, although a thorough rationale for this has yet to be provided. Here, we present classical and first-principles calculations to elucidate the salient features of HE layered oxides as cathode materials in Li-ion batteries. We suggest that a combination of five prime factors may be responsible for the enhanced performance of HE Ni-rich layered oxide cathode materials over other Ni-rich cathodes: (1) low crystal lattice …

Show more

Oct 2023 • ACS Catalysis

Modular Iron–Bipyridine-Based Conjugated Aerogels as Catalysts for Oxygen Reduction Reaction

Leigh Peles-Strahl, Hilah C Honig, Yeela Persky, David A Cullen, Adi Dahan, Lior Elbaz

Modular Iron–Bipyridine-Based Conjugated Aerogels as Catalysts for Oxygen Reduction Reaction | ACS Catalysis ACS ACS Publications C&EN CAS Find my institution Log In ACS Catalysis ACS Publications. Most Trusted. Most Cited. Most Read Share Share on Facebook Twitter WeChat Linked In Reddit Email ACS Catal. All Publications/Website OR SEARCH CITATIONS My Activity Recently Viewed Kinetics of Propylene Epoxidation over Extracrystalline Gold Active Sites on AU/TS-1 Catalysts Toward an Accurate Black-Box Tool for the Kinetics of Gas-Phase Reactions Involving Barrier-less Elementary Steps Construction of ZnIn2S4–In2O3 Hierarchical Tubular Heterostructures for Efficient CO2 Photoreduction Mitochondria Targeted Protein-Ruthenium Photosensitizer for Efficient Photodynamic Applications Cascaded Catalytic Copyrolysis of Microalgae and LDPE with Ni/Biochar and HZSM-5 for Improving High-…

Show more

Oct 2023 • Nature Nanotechnology

High-energy all-solid-state lithium batteries enabled by Co-free LiNiO2 cathodes with robust outside-in structures

Longlong Wang, Ayan Mukherjee, Chang-Yang Kuo, Sankalpita Chakrabarty, Reut Yemini, Arrelaine A Dameron, Jaime W DuMont, Sri Harsha Akella, Arka Saha, Sarah Taragin, Hagit Aviv, Doron Naveh, Daniel Sharon, Ting-Shan Chan, Hong-Ji Lin, Jyh-Fu Lee, Chien-Te Chen, Boyang Liu, Xiangwen Gao, Suddhasatwa Basu, Zhiwei Hu, Doron Aurbach, Peter G Bruce, Malachi Noked

A critical current challenge in the development of all-solid-state lithium batteries (ASSLBs) is reducing the cost of fabrication without compromising the performance. Here we report a sulfide ASSLB based on a high-energy, Co-free LiNiO2 cathode with a robust outside-in structure. This promising cathode is enabled by the high-pressure O2 synthesis and subsequent atomic layer deposition of a unique ultrathin LixAlyZnzOδ protective layer comprising a LixAlyZnzOδ surface coating region and an Al and Zn near-surface doping region. This high-quality artificial interphase enhances the structural stability and interfacial dynamics of the cathode as it mitigates the contact loss and continuous side reactions at the cathode/solid electrolyte interface. As a result, our ASSLBs exhibit a high areal capacity (4.65 mAh cm−2), a high specific cathode capacity (203 mAh g−1), superior cycling stability (92% capacity retention …

Show more

Oct 2023 • Scientific Reports

Full-optical photoacoustic imaging using speckle analysis and resolution enhancement by orthogonal pump patterns projection

Viktor Vorobev, David Weidmann, Sergey Agdarov, Yafim Beiderman, Nadav Shabairou, Matan Benyamin, Florian Klämpfl, Michael Schmidt, Dmitry Gorin, Zeev Zalevsky

This paper presents an approach for achieving full optical photoacoustic imaging with enhanced resolution utilizing speckle pattern analysis. The proposed technique involves projecting patterns derived from binary masks corresponding to orthogonal functions onto the target to elicit a photoacoustic signal. The resulting signal is then recorded using a high-speed camera and analyzed using correlation analysis of the speckle motion. Our results demonstrate the feasibility of this optical approach to achieve imaging with enhanced resolution without the need for physical contact with the target, opening up new possibilities for non-invasive medical imaging and other applications.

Show more

Oct 2023 • Journal of Energy Storage

Influence of strong bromine binding complexing agent in electrolytes on the performance of hydrogen/bromine redox flow batteries

Michael Küttinger, Kobby Saadi, Théo Faverge, Nagaprasad Reddy Samala, Ilya Grinberg, David Zitoun, Peter Fischer

1-n-Hexylpyridin-1-ium bromide [C6Py]Br is investigated in this work as bromine complexing agent (BCA) in aqueous bromine electrolytes on its influence on hydrogen bromine redox flow battery (H2/Br2-RFB) performance. [C6Py]+-cations bind bromine of aqueous polybromide solutions safely in an additional fused salt phase limiting the vapor pressure of Br2. Dissolved in aqueous electrolyte solutions, however, [BCA]+ cations drastically lower PFSA membranes' conductivity in the H2/Br2-RFB. In this work the combination of the very strong bromine-binding [C6Py]+cation and an excess of bromine in the electrolyte lead to an almost complete absorption of 99.6 mol% [C6Py]+ into the fused salt within the electrolyte's operation range. In comparison to similar application of short side chain 1-ethylpyridinium bromide, adverse effects are stronger compensated by use of [C6Py]Br. Increases in membrane resistance of …

Show more

Oct 2023 • Journal of Energy Storage

Influence of strong bromine binding complexing agent in electrolytes on the performance of hydrogen/bromine redox flow batteries

Michael Küttinger, Kobby Saadi, Théo Faverge, Nagaprasad Reddy Samala, Ilya Grinberg, David Zitoun, Peter Fischer

1-n-Hexylpyridin-1-ium bromide [C6Py]Br is investigated in this work as bromine complexing agent (BCA) in aqueous bromine electrolytes on its influence on hydrogen bromine redox flow battery (H2/Br2-RFB) performance. [C6Py]+-cations bind bromine of aqueous polybromide solutions safely in an additional fused salt phase limiting the vapor pressure of Br2. Dissolved in aqueous electrolyte solutions, however, [BCA]+ cations drastically lower PFSA membranes' conductivity in the H2/Br2-RFB. In this work the combination of the very strong bromine-binding [C6Py]+cation and an excess of bromine in the electrolyte lead to an almost complete absorption of 99.6 mol% [C6Py]+ into the fused salt within the electrolyte's operation range. In comparison to similar application of short side chain 1-ethylpyridinium bromide, adverse effects are stronger compensated by use of [C6Py]Br. Increases in membrane resistance of …

Show more

Oct 2023 • Laser & Photonics Reviews 17 (12), 2200029, 2023

Roadmap on Label‐Free Super‐Resolution Imaging

Vasily N Astratov, Yair Ben Sahel, Yonina C Eldar, Luzhe Huang, Aydogan Ozcan, Nikolay Zheludev, Junxiang Zhao, Zachary Burns, Zhaowei Liu, Evgenii Narimanov, Neha Goswami, Gabriel Popescu, Emanuel Pfitzner, Philipp Kukura, Yi‐Teng Hsiao, Chia‐Lung Hsieh, Brian Abbey, Alberto Diaspro, Aymeric LeGratiet, Paolo Bianchini, Natan T Shaked, Bertrand Simon, Nicolas Verrier, Matthieu Debailleul, Olivier Haeberlé, Sheng Wang, Mengkun Liu, Yeran Bai, Ji‐Xin Cheng, Behjat S Kariman, Katsumasa Fujita, Moshe Sinvani, Zeev Zalevsky, Xiangping Li, Guan‐Jie Huang, Shi‐Wei Chu, Omer Tzang, Dror Hershkovitz, Ori Cheshnovsky, Mikko J Huttunen, Stefan G Stanciu, Vera N Smolyaninova, Igor I Smolyaninov, Ulf Leonhardt, Sahar Sahebdivan, Zengbo Wang, Boris Luk'yanchuk, Limin Wu, Alexey V Maslov, Boya Jin, Constantin R Simovski, Stephane Perrin, Paul Montgomery, Sylvain Lecler

Label‐free super‐resolution (LFSR) imaging relies on light‐scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super‐resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state‐of‐the‐art in this field, and to discuss the resolution boundaries and hurdles that need to be overcome to break the classical diffraction limit of the label‐free imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction‐limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super‐resolution capability that are based on understanding resolution as an information science problem, on using novel structured illumination, near‐field scanning, and nonlinear optics approaches, and on designing superlenses based …

Show more

Oct 2023 • 244th ECS Meeting (October 8-12, 2023), 2023

L08-Materials Chemistry for Electrocatalysis

Lior Elbaz, Petr Krtil


Oct 2023 • Colloids and Surfaces B: Biointerfaces

Siliplant1 B-domain precipitates silica spheres, aggregates, or gel, depending on Si-precursor to peptide ratios

Vincent Otieno Ayieko, Lilian Cohen, Sabrina Diehn, Gil Goobes, Rivka Elbaum

Silica is extensively deposited by plants, however, only little is known about the molecular control over this process. Siliplant1 is the only known plant protein to precipitate biosilica. The protein contains seven repeats made of three domains. One of the domains exhibits a conserved sequence, which catalyzes silica precipitation in vitro. Here, silica was synthesized by the activity of a peptide carrying this conserved sequence. Infrared spectroscopy and thermal gravimetric analyses showed that the peptide was bound to the mineral. Scanning electron microscopy showed that silica-peptide particles of 22 ± 4 nm aggregated to spherical structures of 200 - 300 nm when the ratio of silicic acid to the peptide was below 183:1 molecules. When the ratio was about 183:1, similar particles aggregated into irregular structures, and silica gel formed at higher ratios. Solid-state NMR spectra indicated that the irregular aggregates …

Show more

logo
Articali

Powered by Articali

TermsPrivacy