BINA

3765 articles

75 publishers

Join mailing list

Feb 2023 • arXiv preprint arXiv:2202.03640

Designing exceptional-point-based graphs yielding topologically guaranteed quantum search

Quancheng Liu, David A Kessler, Eli Barkai

We design monitored quantum walks with the aim of optimizing state transfer and target search. We show how to construct walks with the property that all the eigenvalues of the non-Hermitian survival operator, describing the mixed effect of unitary dynamics and the back-action of measurement, coalesce to zero, corresponding to an exceptional point whose degree is the size of the Hilbert space. Generally, this search is guaranteed to succeed in a bounded time for any initial condition. It also performs better than the classical random walk search or quantum search on typical graphs. For example, a crawler can be designed such that, starting on a node of the graph, the walker is detected on any of the nodes with probability one at predetermined times. It also allows perfect quantum state transfer from one node of the system to any other, with or without monitoring. Interestingly, this crawler is described as a massless Dirac quasi-particle.

Show more

Feb 2023 • The Journal of Physical Chemistry C

Conductive Ytterbium Metal–Organic Framework Composite: A Lanthanide-Based Complex ORR Catalyst

Shmuel Gonen, Oran Lori, Noam Zion, Lior Elbaz

Extensive research work has been invested in the past decade in finding replacements for platinum-based electrocatalysts for the oxygen reduction reaction in fuel cells. The majority of these alternative electrocatalysts are based on transition-metal ions coordinated by organic ligands. Different from previously reported approaches for electrocatalysts, we describe here the synthesis, characterization, and oxygen reduction reaction activity of lanthanide complex electrocatalyst with ytterbium as the metal center. A metal–organic framework of Yb and benzene tricarboxylic acid as a ligand was synthesized on activated carbon (Yb(III)BTC@AC) to achieve electrical conductivity in a procedure similar to M-BTC@AC electrocatalysts with transition-metal centers. The Yb complex in activated carbon presents oxygen reduction reaction activity in alkaline solution with high onset potential relative to other nonpyrolyzed …

Show more

Feb 2023 • Nanophotonics

Digital laser-induced printing of MoS2

Adamantia Logotheti, Adi Levi, Doron Naveh, Leonidas Tsetseris, Ioanna Zergioti

Due to their atomic-scale thickness, handling and processing of two-dimensional (2D) materials often require multistep techniques whose complexity hampers their large-scale integration in modern device applications. Here we demonstrate that the laser-induced forward transfer (LIFT) method can achieve the one-step, nondestructive printing of the prototypical 2D material MoS2. By selecting the optimal LIFT experimental conditions, we were able to transfer arrays of MoS2 pixels from a metal donor substrate to a dielectric receiver substrate. A combination of various characterization techniques has confirmed that the transfer of intact MoS2 monolayers is not only feasible, but it can also happen without incurring significant defect damage during the process. The successful transfer of MoS2 shows the broad potential the LIFT technique has in the emerging field of printed electronics, including printed devices based …

Show more

Feb 2023 • Batteries 9 (2), 110, 2023

Recent Progress in Solid Electrolytes for All-Solid-State Metal (Li/Na)–Sulfur Batteries

Ravindra Kumar Bhardwaj, David Zitoun

Background:This is an early access version, the complete PDF, HTML, and XML versions will be available soon.

Show more

Feb 2023 • Batteries 9 (2), 110, 2023

Recent Progress in Solid Electrolytes for All-Solid-State Metal (Li/Na)–Sulfur Batteries

Ravindra Kumar Bhardwaj, David Zitoun

Metal–sulfur batteries, especially lithium/sodium–sulfur (Li/Na-S) batteries, have attracted widespread attention for large-scale energy application due to their superior theoretical energy density, low cost of sulfur compared to conventional lithium-ion battery (LIBs) cathodes and environmental sustainability. Despite these advantages, metal–sulfur batteries face many fundamental challenges which have put them on the back foot. The use of ether-based liquid electrolyte has brought metal–sulfur batteries to a critical stage by causing intermediate polysulfide dissolution which results in poor cycling life and safety concerns. Replacement of the ether-based liquid electrolyte by a solid electrolyte (SEs) has overcome these challenges to a large extent. This review describes the recent development and progress of solid electrolytes for all-solid-state Li/Na-S batteries. This article begins with a basic introduction to metal–sulfur batteries and explains their challenges. We will discuss the drawbacks of the using liquid organic electrolytes and the advantages of replacing liquid electrolytes with solid electrolytes. This article will also explain the fundamental requirements of solid electrolytes in meeting the practical applications of all solid-state metal–sulfur batteries, as well as the electrode–electrolyte interfaces of all solid-state Li/Na-S batteries.

Show more

Feb 2023 • Nature communications

Phonon-driven intra-exciton Rabi oscillations in CsPbBr3 halide perovskites

Xuan Trung Nguyen, Katrin Winte, Daniel Timmer, Yevgeny Rakita, Davide Raffaele Ceratti, Sigalit Aharon, Muhammad Sufyan Ramzan, Caterina Cocchi, Michael Lorke, Frank Jahnke, David Cahen, Christoph Lienau, Antonietta De Sio

Coupling electromagnetic radiation with matter, e.g., by resonant light fields in external optical cavities, is highly promising for tailoring the optoelectronic properties of functional materials on the nanoscale. Here, we demonstrate that even internal fields induced by coherent lattice motions can be used to control the transient excitonic optical response in CsPbBr3 halide perovskite crystals. Upon resonant photoexcitation, two-dimensional electronic spectroscopy reveals an excitonic peak structure oscillating persistently with a 100-fs period for up to ~2 ps which does not match the frequency of any phonon modes of the crystals. Only at later times, beyond 2 ps, two low-frequency phonons of the lead-bromide lattice dominate the dynamics. We rationalize these findings by an unusual exciton-phonon coupling inducing off-resonant 100-fs Rabi oscillations between 1s and 2p excitons driven by the low-frequency …

Show more

Feb 2023 • Angewandte Chemie (International ed. in English)

Peptide Bond Formation in the Protonated Serine Dimer Following Vacuum UV Photon‐Induced Excitation

Ori Licht, Dario Barreiro-Lage, Patrick Rousseau, Alexandre Giuliani, Aleksandar Milosavljevic, Avinoam Isaak, Yitzhak Mastai, Amnon Albeck, Raj Singh, Vy Nguyen, Laurent Nahon, Lara Martinez, Sergio Díaz-Tendero, Yoni Toker

Possible routes for intra-cluster bond formation (ICBF) in protonated serine dimers have been studied. We found no evidence of ICBF following low energy collision induced dissociation (in correspondence with previous works), however, we do observe clear evidence for ICBF following photon absorption in the eV range. Moreover, the comparison of photon induced dissociation measurements of the protonated serine dimer to those of a protonated serine dipeptide provides evidence that ICBF, in this case, involves peptide bond formation (PBF). The experimental results are supported by {\it ab initio} molecular dynamics and exploration of several excited state potential energy surfaces, unravelling a pathway for PBF following photon absorption. The combination of experiments and theory provides insight into the PBF mechanisms in clusters of amino acids, and reveals the importance of electronic excited states reached upon UV/VUV light excitation.

Show more

Feb 2023 • Journal of Power Sources

Lignin-derived bimetallic platinum group metal-free oxygen reduction reaction electrocatalysts for acid and alkaline fuel cells

Mohsin Muhyuddin, Ariel Friedman, Federico Poli, Elisabetta Petri, Hilah Honig, Francesco Basile, Andrea Fasolini, Roberto Lorenzi, Enrico Berretti, Marco Bellini, Alessandro Lavacchi, Lior Elbaz, Carlo Santoro, Francesca Soavi

Metal-nitrogen-carbons (M-N-Cs) as a reliable substitution for platinum-group-metals (PGMs) for oxygen reduction reaction (ORR) are emerging candidates to rationalize the technology of fuel cells. The development of M-N-Cs can further be economized by consuming waste biomass as an inexpensive carbon source for the electrocatalyst support. Herein, we report the simple fabrication and in-depth characterization of electrocatalysts using lignin-derived activated char. The activated char (LAC) was functionalized with metal phthalocyanine (FePc and MnPc) via atmosphere-controlled pyrolysis to produce monometallic M-N-Cs (L_Mn and L_Fe) and bimetallic M1-M2-N-Cs (L_FeMn) electrocatalysts. Raman spectroscopy and transmission electron microscopy (TEM) revealed a defect-rich architecture. XPS confirmed the coexistence of various nitrogen-containing active moieties. L_Fe and L_FeMn demonstrated …

Show more

Feb 2023 • Physical Review A

Tracking nanoscale perturbation in active disordered media

Renu Yadav, Patrick Sebbah, Maruthi M Brundavanam

Disorder-induced feedback makes random lasers very susceptible to any changes in the scattering medium. The sensitivity of the lasing modes to perturbations in the disordered systems has been utilized to map the regions of perturbation. A tracking parameter that takes into account the cumulative effect of changes in the spatial distribution of the lasing modes of the system has been defined to locate the region in which a scatterer is displaced by a few nanometers. We show numerically that the precision of the method increases with the number of modes. The proposed method opens up the possibility of application of random lasers as a tool for monitoring locations of nanoscale displacement, which can be useful for single-particle detection and monitoring.

Show more

Feb 2023 • Physical Review E

Brownian particles in periodic potentials: Coarse-graining versus fine structure

Lucianno Defaveri, Eli Barkai, David A Kessler

We study the motion of an overdamped particle connected to a thermal heat bath in the presence of an external periodic potential in one dimension. When we coarse-grain, ie, bin the particle positions using bin sizes that are larger than the periodicity of the potential, the packet of spreading particles, all starting from a common origin, converges to a normal distribution centered at the origin with a mean-squared displacement that grows as 2 D* t, with an effective diffusion constant that is smaller than that of a freely diffusing particle. We examine the interplay between this coarse-grained description and the fine structure of the density, which is given by the Boltzmann-Gibbs (BG) factor e− V (x)/k B T, the latter being nonnormalizable. We explain this result and construct a theory of observables using the Fokker-Planck equation. These observables are classified as those that are related to the BG fine structure, like the …

Show more

Feb 2023 • Biomass Conversion and Biorefinery

Biomass-derived Carbon dots and their coated surface as a potential antimicrobial agent

R Blessy Pricilla, Moorthy Maruthapandi, Arulappan Durairaj, Ivo Kuritka, John HT Luong, Aharon Gedanken

Carbon dots (CDs) with an average diameter of 6.3 nm were synthesized from the medicinal seed extract of Syzygium cumini L. using one-pot hydrothermal synthesis. The prepared CDs exhibited excitation-dependent emission characteristics with photoluminescence (PL) emission maxima at an excitation of 340 nm. The CDs at 500 µg/mL displayed antimicrobial activities against four common pathogens. Both Staphylococcus aureus and S. epidermidis were completely eradicated by CDs within 12 h, compared to 24 h for Escherichia coli and Klebsiella pneumonia. The release of various oxygen species (ROS) was postulated to play a critical role in bacterial eradication. The CDs decorated on cotton fabric by ultrasonication also displayed good antibacterial activities against the above bacteria. The finding opens a plausible use of CDs in biomedical textiles with potent antimicrobial properties against both Gram …

Show more

Feb 2023 • Physical Review E

Brownian particles in periodic potentials: Coarse-graining versus fine structure

Lucianno Defaveri, Eli Barkai, David A Kessler

We study the motion of an overdamped particle connected to a thermal heat bath in the presence of an external periodic potential in one dimension. When we coarse-grain, ie, bin the particle positions using bin sizes that are larger than the periodicity of the potential, the packet of spreading particles, all starting from a common origin, converges to a normal distribution centered at the origin with a mean-squared displacement that grows as 2 D* t, with an effective diffusion constant that is smaller than that of a freely diffusing particle. We examine the interplay between this coarse-grained description and the fine structure of the density, which is given by the Boltzmann-Gibbs (BG) factor e− V (x)/k B T, the latter being nonnormalizable. We explain this result and construct a theory of observables using the Fokker-Planck equation. These observables are classified as those that are related to the BG fine structure, like the …

Show more

Feb 2023 • arXiv preprint arXiv:2302.00705

Quantum circuits measuring weak values and Kirkwood-Dirac quasiprobability distributions, with applications

Rafael Wagner, Zohar Schwartzman-Nowik, Ismael L Paiva, Amit Te'eni, Antonio Ruiz-Molero, Rui Soares Barbosa, Eliahu Cohen, Ernesto F Galvão

Weak values and Kirkwood--Dirac (KD) quasiprobability distributions have been independently associated with both foundational issues in quantum theory and advantages in quantum metrology. We propose simple quantum circuits to measure weak values, KD distributions, and density matrix spectra without the need for post-selection. This is achieved by measuring unitary-invariant, relational properties of quantum states, as functions of Bargmann invariants. Our circuits also enable direct experimental implementation of various applications of KD distributions, such as out-of-time-ordered correlators (OTOCs) and the quantum Fisher information in post-selected parameter estimation, among others. This results in a unified view of nonclassicality in all those tasks. In particular, we discuss how negativity and imaginarity of Bargmann invariants relate to set coherence.

Show more

Feb 2023 • Physical Review Letters

Restart expedites quantum walk hitting times

Ruoyu Yin, Eli Barkai

Classical first-passage times under restart are used in a wide variety of models, yet the quantum version of the problem still misses key concepts. We study the quantum hitting time with restart using a monitored quantum walk. The restart strategy eliminates the problem of dark states, ie, cases where the particle evades detection, while maintaining the ballistic propagation which is important for a fast search. We find profound effects of quantum oscillations on the restart problem, namely, a type of instability of the mean detection time, and optimal restart times that form staircases, with sudden drops as the rate of sampling is modified. In the absence of restart and in the Zeno limit, the detection of the walker is not possible, and we examine how restart overcomes this well-known problem, showing that the optimal restart time becomes insensitive to the sampling period.

Show more

Feb 2023 • Advanced Materials Technologies

3D printable hydrogel with tunable degradability and mechanical properties as a tissue scaffold for pelvic organ prolapse treatment

Yuxiang Zhu, Tina Kwok, Joel C Haug, Shenghan Guo, Xiangfan Chen, Weiheng Xu, Dharneedar Ravichandran, Yourka D Tchoukalova, Jeffrey L Cornella, Johnny Yi, Orit Shefi, Brent L Vernon, David G Lott, Jessica N Lancaster, Kenan Song

Pelvic organ prolapse (POP) is a dysfunction that affects a large proportion of women. Current support scaffolds’ lack of biocompatibility, biodegradability, and mechanical compliance are associated with surgical complications including erosion and pain, indicating the urgent need for new tissue scaffolds with customizable functions. A new material that uses polyvinyl alcohol (PVA) as the main ingredient and is chemically tuned to possess suitable mechanical properties and degradation rates for the surgical treatment of POP is developed. Specifically, the thiol‐norbornene “click” chemistry enables the sol‐gel transition of the biomaterial under UV‐light without side‐products. Meanwhile, NaOH treatment further toughens the hydrogel with a higher crosslink density. The PVA‐based biocompatible ink can be printed with UV‐facilitated direct ink writing due to the rapidly UV‐initiated chemical crosslink; in situ image …

Show more

Feb 2023 • International Journal of Molecular Sciences

Characterization of Continuous Transcriptional Heterogeneity in High-Risk Blastemal-Type Wilms’ Tumors Using Unsupervised Machine Learning

Yaron Trink, Achia Urbach, Benjamin Dekel, Peter Hohenstein, Jacob Goldberger, Tomer Kalisky

Wilms’ tumors are pediatric malignancies that are thought to arise from faulty kidney development. They contain a wide range of poorly differentiated cell states resembling various distorted developmental stages of the fetal kidney, and as a result, differ between patients in a continuous manner that is not well understood. Here, we used three computational approaches to characterize this continuous heterogeneity in high-risk blastemal-type Wilms’ tumors. Using Pareto task inference, we show that the tumors form a triangle-shaped continuum in latent space that is bounded by three tumor archetypes with “stromal”, “blastemal”, and “epithelial” characteristics, which resemble the un-induced mesenchyme, the cap mesenchyme, and early epithelial structures of the fetal kidney. By fitting a generative probabilistic “grade of membership” model, we show that each tumor can be represented as a unique mixture of three hidden “topics” with blastemal, stromal, and epithelial characteristics. Likewise, cellular deconvolution allows us to represent each tumor in the continuum as a unique combination of fetal kidney-like cell states. These results highlight the relationship between Wilms’ tumors and kidney development, and we anticipate that they will pave the way for more quantitative strategies for tumor stratification and classification.

Show more

Feb 2023 • Results in Surfaces and Interfaces

In-situ design of hierarchical durable silica-based coatings on polypropylene films with superhydrophilic, superhydrophobic and self-cleaning properties

Naftali Kanovsky, Taly Iline-Vul, Shlomo Margel

Superhydrophobic surfaces are receiving increasing attention due to their real-world applications. However, these surfaces suffer from a lack of durability and complicated synthetic processes. This research uses a combination of a simple in-situ coating process between oxygen-activated polypropylene films and unreacted silane monomers. The in-situ process uses a modified Stöber method with the addition of the surfactant cetyltrimethylammonium bromide (CTAB) which aggregates silica (SiO 2) particles in a basic aqueous solution. This resulted in a layer of covalently bonded hierarchical coating of individual and aggregated SiO 2 “flakes” and particles. These coatings were found to have at least double the surface roughness than samples prepared without CTAB with superhydrophilic properties due to their high surface roughness and hydrophilic surface chemical groups. A second layer of fluorocarbon silane …

Show more

Feb 2023 • Nanomaterials 13 (3), 598, 2023

Recent advances in the spintronic application of carbon-based nanomaterials

Shweta Pawar, Hamootal Duadi, Dror Fixler

The term “carbon-based spintronics” mostly refers to the spin applications in carbon materials such as graphene, fullerene, carbon nitride, and carbon nanotubes. Carbon-based spintronics and their devices have undergone extraordinary development recently. The causes of spin relaxation and the characteristics of spin transport in carbon materials, namely for graphene and carbon nanotubes, have been the subject of several theoretical and experimental studies. This article gives a summary of the present state of research and technological advancements for spintronic applications in carbon-based materials. We discuss the benefits and challenges of several spin-enabled, carbon-based applications. The advantages include the fact that they are significantly less volatile than charge-based electronics. The challenge is in being able to scale up to mass production.

Show more

Feb 2023 • Cold Spring Harbor Protocols

Female fly postmating behaviors

Anne C von Philipsborn, Galit Shohat-Ophir, Carolina Rezaval

Upon copulation, females undergo a switch-like change in their behavior and physiology, known as “postmating responses.” These strong behavioral and physiological changes are triggered by the transfer of male seminal proteins during copulation. Postmating response is associated with strong reduction in receptivity, indicated by the females kicking their legs toward the suitor and curving their abdomen downward to hide their genitalia from them and extruding their ovipositor at the tip of the abdomen, which physically prevents copulation. The transfer of male-specific pheromones, such as 11-cis-vaccenyl-acetate, during copulation further reduces female attractiveness. In addition, mated females exhibit increased ovulation, egg-laying behavior, enhanced feeding behavior, and changes in food preference. However, females increase their rate of remating when they are in social groups or in the presence of food …

Show more

Feb 2023 • Frontiers in Microbiology

Comparative genomics of Bacillus cereus sensu lato spp. biocontrol strains in correlation to in-vitro phenotypes and plant pathogen antagonistic capacity

Maya Moshe, Chhedi Lal Gupta, Rakeshkumar Manojkumar Jain, Noa Sela, Dror Minz, Ehud Banin, Omer Frenkel, Eddie Cytryn

Bacillus cereus sensu lato (Bcsl) strains are widely explored due to their capacity to antagonize a broad range of plant pathogens. These include B. cereus sp. UW85, whose antagonistic capacity is attributed to the secondary metabolite Zwittermicin A (ZwA). We recently isolated four soil and root-associated Bcsl strains (MO2, S−10, S-25, LSTW-24) that displayed different growth profiles and in-vitro antagonistic effects against three soilborne plant pathogens models: Pythium aphanidermatum (oomycete) Rhizoctonia solani (basidiomycete), and Fusarium oxysporum (ascomycete). To identify genetic mechanisms potentially responsible for the differences in growth and antagonistic phenotypes of these Bcsl strains, we sequenced and compared their genomes, and that of strain UW85 using a hybrid sequencing pipeline. Despite similarities, specific Bcsl strains had unique secondary metabolite and chitinase-encoding genes that could potentially explain observed differences in in-vitro chitinolytic potential and anti-fungal activity. Strains UW85, S-10 and S-25 contained a (~500 Kbp) mega-plasmid that harbored the ZwA biosynthetic gene cluster. The UW85 mega-plasmid contained more ABC transporters than the other two strains, whereas the S-25 mega-plasmid carried a unique cluster containing cellulose and chitin degrading genes. Collectively, comparative genomics revealed several mechanisms that can potentially explain differences in in-vitro antagonism of Bcsl strains toward fungal plant pathogens.

Show more

Feb 2023 • Pharmaceutics 15 (2), 686, 2023

Bioimaging probes based on magneto-fluorescent nanoparticles

Sayan Ganguly, Shlomo Margel

Novel nanomaterials are of interest in biology, medicine, and imaging applications. Multimodal fluorescent-magnetic nanoparticles demand special attention because they have the potential to be employed as diagnostic and medication-delivery tools, which, in turn, might make it easier to diagnose and treat cancer, as well as a wide variety of other disorders. The most recent advancements in the development of magneto-fluorescent nanocomposites and their applications in the biomedical field are the primary focus of this review. We describe the most current developments in synthetic methodologies and methods for the fabrication of magneto-fluorescent nanocomposites. The primary applications of multimodal magneto-fluorescent nanoparticles in biomedicine, including biological imaging, cancer treatment, and drug administration, are covered in this article, and an overview of the future possibilities for these technologies is provided.

Show more

logo
Articali

Powered by Articali

TermsPrivacy