BINA

3583 articles

75 publishers

Join mailing list

2023 • physica status solidi (a)

Photo‐Induced Evolution of Randomly Rough Surfaces of Amorphous Chalcogenide Films

Yuri Kaganovskii, Valentin Freilikher, Michael Rosenbluh

Photo‐induced evolution of statistically rough surfaces of amorphous chalcogenide films As20Se80 at room temperature has been studied by measuring the angular dependence of the intensity of light scattered from a surface illuminated by cw laser (λ = 660 nm). The interpretation of the scattering data based on the resonant scattering theory enabled to confirm unequivocally the diffusion mechanism of PI mass transfer. It was detected that the change of the amplitude of a spatial harmonic in the roughness spectra strongly depended on its period Λ. During illumination, the amplitude increased at Λ > Λ∗, whereas harmonics with Λ < Λ∗ decreased. Λ∗ , which corresponds to zero evolution rate. was found to be 6.7 μm. In accordance with our theoretical prediction, both growth and decrease were exponential with the rates depended on Λ. As the result, the roughness with initial rms height of 50 ‐ 70 nm transformed …

Show more

2023 • EPJ Web of Conferences

Colour-coded nanoscale calibration and optical quantification of axial fluorophore position

Ilya Olevsko-Arad, Moshe Feldberg, Martin Oheim, Adi Salomon

Total internal reflection fluorescence (TIRF) has come of age, but a reliable and easy-to-use tool for calibrating evanescent-wave penetration depths is missing. We provide a test-sample for TIRF and other axial super-resolution microscopies for emitter axial calibration. Our originality is that nanometer(nm) distances along the microscope’s optical axis are color-encoded in the form of a multi-layered multi-colored transparent sandwich. Emitter layers are excited by the same laser but they emit in different colors. Layers are deposited in a controlled manner onto a glass substrate and protected with a non-fluorescent polymer. Decoding the penetration depth of the exciting evanescent field, by spectrally unmixing of multi-colored samples is presented as well. Our slide can serve as a test sample for quantifying TIRF, but also as an axial ruler for nm-axial distance measurements in single-molecule localization …

Show more

2023 • Energy & Fuels

Enhanced electrochemical performance of CuO Capsules@ CDs composites for solid-state hybrid supercapacitor

Sengodan Prabhu, Moorthy Maruthapandi, Arulappan Durairaj, John HT Luong, Aharon Gedanken

Capsule-like CuO/CDs (CuO@CDs) with a surface area of 33.12 m2 g–1 were synthesized by the hydrothermal treatment, compared to 19.02 m2 g–1 for pristine CuO. An anode was then fabricated from capsule-like CuO@CDs to form a hybrid solid-state supercapacitor (HSSC) with the activated carbon (AC) cathode and PVA/1M KOH as an electrolyte. Three electrode system offered 1208.88 F/g (specific capacitance at 2 A/g current density) and unveiled a remarkable life cycle (retention) and Coulombic efficiency (CF): 93 and 98% after 5000 charge–discharge cycles at 10 A/g. In terms of performance, the HSSC delivered 1.5 V and 102.60 F/g (50.74 C/g) at 2 A/g, 8437.50 W/kg (power density), and 36.90 Wh/kg (energy density). The HSSC still retained 92% of cyclic stability and 83% of CF after 10,000 cycles.

Show more

2023 • Batteries & Supercaps

Biopolymer‐assisted Synthesis of P‐doped TiO2 Nanoparticles for High‐performance Lithium‐ion Batteries: A Comprehensive Study

Nabil El Halya, Mohamed Aqil, Karim El Ouardi, Amreen Bano, Ayoub El Bendali, Loubna Hdidou, Rachid Amine, Seoung‐Bum Son, Fouad Ghamouss, Dan Thomas Major, Khalil Amine, Jones Alami, Mouad Dahbi

TiO2 material has gained significant attention for large‐scale energy storage due to its abundant, low‐cost, and environmentally friendly properties, as well as the availability of various nanostructures. Phosphorus doping has been established as an effective technique for improving electronic conductivity and managing the slow ionic diffusion kinetics of TiO2. In this study, non‐doped and phosphorus doped TiO2 materials were synthesized using sodium alginate biopolymer as chelating agent. The prepared materials were evaluated as anode materials for lithium‐ion batteries (LIBs). The electrodes exhibit remarkable electrochemical performance, including a high reversible capacity of 235 mAh g−1 at 0.1 C and excellent first coulombic efficiency of 99 %. An integrated approach, combining operando XRD and ex‐situ XAS, comprehensively investigates the relationship between phosphorus doping, material …

Show more

2023 • Lightwave Technol

Measuring glass transition of a polymer coating layer over working fiber using forward Brillouin scattering

Alon Bernstein, Elad Zehavi, Yosef London, Mirit Hen, Andrei Stolov, Avi Zadok

The glass transition temperature is a key parameter of polymer coating layers that protect optical fibers, and it affects the proper function of the fibers in their service environment. Established protocols for glass transition temperature measurements are destructive, require samples of specific geometries, and may only be carried out offline. In this work, we report the non-destructive measurement of the glass transition temperature of an acrylate polymer coating layer over a working standard fiber. The method is based on forward stimulated Brillouin scattering. Large decrease in the modulus of the coating layer above the glass transition temperature manifests in narrowing of the modal linewidths in the forward Brillouin scattering spectrum. The transition temperature agrees with standard dynamic mechanical analysis of samples made of the same polymer. The protocol can be useful for coating materials research and …

Show more

2023 • ACS Energy Letters

A-Site Cation Dependence of Self-Healing in Polycrystalline APbI3 Perovskite Films

Pallavi Singh, Yahel Soffer, Davide Raffaele Ceratti, Michael Elbaum, Dan Oron, Gary Hodes, David Cahen

In terms of sustainable use, halide perovskite (HaP) semiconductors have a strong advantage over most other classes of materials for (opto)electronics, as they can self-heal (SH) from photodamage. While there is considerable literature on SH in devices, where it may not be clear exactly where damage and SH occur, there is much less on the HaP material itself. Here we perform “fluorescence recovery after photobleaching” (FRAP) measurements to study SH on polycrystalline thin films for which encapsulation is critical to achieving complete and fast self-healing. We compare SH in three photoactive APbI3 perovskite films by varying the A-site cation ranging from (relatively) small inorganic Cs through medium-sized MA to large FA (the last two are organic cations). While the A cation is often considered electronically relatively inactive, it significantly affects both SH kinetics and the threshold for photodamage. The …

Show more

2023 • EPJ Web of Conferences

Fast, large-field fluorescence and second-harmonic generation imaging with a single-spinning disk two-photon microscope

Andreas Deeg, Federico Trigo, Doriane Hazart, Brigitte Delhomme, Tchyia Zar, Thomas Naiser, Christian Seebacher, Adi Salomon, Clément Ricard, Rainer Uhl, Martin Oheim

Confocal microscopes have been the workhorses of 3-D biological imaging, but they are slow, offer limited depth penetration and collect only ballistic photons. With their inefficient use of excitation photons they expose biological samples to an often intolerably high light burden. The speed limitation and photo-bleaching risk can be somewhat relaxed in a spinning-disk geometry, due to shorter pixel dwell times and rapid re-scans during image capture. Alternatively, light-sheet microscopes rapidly image large volumes of transparent or chemically cleared samples. Finally, with infrared excitation and efficient scattered-light collection, 2-photon microscopy allows deep-tissue imaging, but it remains slow. Here, we describe a new optical scheme that borrows the best from three different worlds: the speed and direct-view from a spinning-disk confocal, deep tissue-penetration and intrinsic optical sectioning from 2-photon …

Show more

2023 • bioRxiv

Improving the sensitivity of fluorescence-based immunoassays by time-resolved and spatial-resolved measurements

Ran Kremer, Shira Roth, Avital Bross, Amos Danielli, Yair Noam

Detection of target molecules, such as proteins, antibodies, or specific DNA sequences, is critical in medical laboratory science. Commonly used assays rely on tagging the target molecules with fluorescent probes. These are then fed to high-sensitivity detection systems. Such systems typically consist of a photodetector or camera and use time-resolved measurements that require sophisticated and expensive optics. Magnetic modulation biosensing (MMB) is a novel, fast, and sensitive detection technology that has been used successfully to detect viruses such as Zika and SARS-CoV-2. While this powerful tool is known for its high analytical and clinical sensitivity, the current signal-processing method for detecting the target molecule and estimating its dose is based on time-resolved measurements only. To improve the MMB-system performance, we propose here a novel signal processing algorithm that uses both temporally and spatially resolved measurements. We show that this combination significantly improves the sensitivity of the MMB-based assay. To evaluate the new method statistically, we performed multiple dose responses of Human Interleukin 9 (IL -8) on different days. Compared to standard time-resolved methods, the new algorithm provides a 2-3 fold improvement in detection limit and a 25% improvement in quantitative resolution.

Show more

2023 • Advanced Materials Technologies

3D Printable Hydrogel with Tunable Degradability and Mechanical Properties as a Tissue Scaffold for Pelvic Organ Prolapse Treatment

Yuxiang Zhu, Tina Kwok, Joel C Haug, Shenghan Guo, Xiangfan Chen, Weiheng Xu, Dharneedar Ravichandran, Yourka D Tchoukalova, Jeffrey L Cornella, Johnny Yi, Orit Shefi, Brent L Vernon, David G Lott, Jessica N Lancaster, Kenan Song

Pelvic organ prolapse (POP) is a dysfunction that affects a large proportion of women. Current support scaffolds’ lack of biocompatibility, biodegradability, and mechanical compliance are associated with surgical complications including erosion and pain, indicating the urgent need for new tissue scaffolds with customizable functions. A new material that uses polyvinyl alcohol (PVA) as the main ingredient and is chemically tuned to possess suitable mechanical properties and degradation rates for the surgical treatment of POP is developed. Specifically, the thiol‐norbornene “click” chemistry enables the sol‐gel transition of the biomaterial under UV‐light without side‐products. Meanwhile, NaOH treatment further toughens the hydrogel with a higher crosslink density. The PVA‐based biocompatible ink can be printed with UV‐facilitated direct ink writing due to the rapidly UV‐initiated chemical crosslink; in situ image …

Show more

2023 • SusMat, 2023

Design of advanced aerogel structures for oxygen reduction reaction electrocatalysis

Leigh Peles‐Strahl, Yeela Persky, Lior Elbaz

Oxygen reduction reaction (ORR) is considered the bottleneck reaction in fuel cells. Its sluggish kinetics requires the use of scarce and expensive platinum group metal (PGM) catalysts. Significant efforts have been invested in trying to find a PGM‐free catalyst to replace Pt for this reaction or reduce its loadings. One interesting family of materials that has shown great promise in doing so is aerogels, which are based on covalent frameworks. The aerogels’ high surface area and porosity enable good mass transport and high catalyst utilization that is expected to lower PGM loadings or replacing them completely. This review summarizes recent research in this field, introducing methods of using aerogels as cathodes for ORR, from carbon to metal aerogels. The catalytic sites vary from nanoparticles to atomically dispersed metal ions embedded in carbon aerogels that form all‐in‐one platform which can serve as both …

Show more

2023 • bioRxiv

AIRR-C Human IG Reference Sets: curated sets of immunoglobulin heavy and light chain germline genes

Andrew M Collins, Mats Ohlin, Martin Corcoran, James M Heather, Duncan Ralph, Mansun Law, Jesus Martinez-Barnetche, Jian Ye, Eve Richardson, William S Gibson, Oscar L Rodriguez, Ayelet Peres, Gur Yaari, Corey T Watson, William D Lees

Analysis of an individual's immunoglobulin (IG) gene repertoire requires the use of high-quality germline gene Reference Sets. The Adaptive Immune Receptor Repertoire-Community (AIRR-C) Reference Sets have been developed to include only human IG heavy and light chain alleles that have been confirmed by evidence from multiple high-quality sources. By including only those alleles with a high level of support, including some new sequences that currently lack official names, AIRR-seq analysis will have greater accuracy and studies of the evolution of immunoglobulin genes, their allelic variants and the expressed immune repertoire will be facilitated. Although containing less than half the previously recognised IG alleles (e.g. just 198 IGHV sequences), the Reference Sets eliminated erroneous calls and provided excellent coverage when tested on a set of repertoires from 99 individuals comprising over 4 million V(D)J rearrangements. To improve AIRR-seq analysis, some alleles have been extended to deal with short 3' or 5' truncations that can lead them to be overlooked by alignment utilities. To avoid other challenges for analysis programs, exact paralogs (e.g. IGHV1-69*01 and IGHV1-69D*01) are only represented once in each set, though alternative sequence names are noted in accompanying metadata. The Reference Sets also include novel alleles: 8 IGHV alleles, 2 IGKV alleles and 5 IGLV alleles. The version-tracked AIRR-C Reference Sets are freely available at the OGRDB website (https://ogrdb.airr-community.org/germline_sets/Human) and will be regularly updated to include newly-observed and previously-reported …

Show more

2023 • EPJ Web of Conferences

Colour-coded nanoscale calibration and optical quantification of axial fluorophore position

Ilya Olevsko-Arad, Moshe Feldberg, Martin Oheim, Adi Salomon

Total internal reflection fluorescence (TIRF) has come of age, but a reliable and easy-to-use tool for calibrating evanescent-wave penetration depths is missing. We provide a test-sample for TIRF and other axial super-resolution microscopies for emitter axial calibration. Our originality is that nanometer(nm) distances along the microscope’s optical axis are color-encoded in the form of a multi-layered multi-colored transparent sandwich. Emitter layers are excited by the same laser but they emit in different colors. Layers are deposited in a controlled manner onto a glass substrate and protected with a non-fluorescent polymer. Decoding the penetration depth of the exciting evanescent field, by spectrally unmixing of multi-colored samples is presented as well. Our slide can serve as a test sample for quantifying TIRF, but also as an axial ruler for nm-axial distance measurements in single-molecule localization …

Show more

2023

Projective measurements can probe non-classical work extraction and time-correlations

Santiago Hernández-Gómez, Stefano Gherardini, Alessio Belenchia, Matteo Lostaglio, Amikam Levy, Nicole Fabbri

We demonstrate an experimental technique to characterize genuinely nonclassical multi-time correlations using projective measurements with no ancillae. We implement the scheme in a nitrogen-vacancy center in diamond undergoing a unitary quantum work protocol. We reconstruct quantum-mechanical time correlations encoded in the Margenau-Hills quasiprobabilities. We observe work extraction peaks five times those of sequential projective energy measurement schemes and in violation of newly-derived stochastic bounds. We interpret the phenomenon via anomalous energy exchanges due to the underlying negativity of the quasiprobability distribution.

Show more

2023 • EPJ Web of Conferences

Changes in the Observed Shape of H6TPPS J-Aggerates by the Polarisation of the Incoming Light

Alon Krause, Tchiya Zar, Adi Salomon

Samples of H6TPPS J aggregates and bundles, deposited on glass and aligned under nitrogen flow, were measured in a 2-photon microscopy setup. Changes in the polarization state of the incoming laser have shown a difference in the resulting 2-photon scanning of the same measured sample, revelling otherwise hidden features. In addition, tracing the response of certain areas under different polarisation can provide information about the arrangement of the dipoles in that area. This shows the significant role of polarisation in 2-photon measurement, and the need to consider such effects in the microscopy of biological samples.

Show more

2023 • Nanoscale, 2023

Sonochemistry of molten metals

Vijay Bhooshan Kumar, Aharon Gedanken, I Porat Ze'ev

Ultrasonic irradiation of molten metals in liquid media causes dispersion of the metals into suspensions of micro- and nanoparticles that can be separated. This is applicable mainly to low-mp elemental metals or alloys, but higher mp elemental metals or alloys were also reported. Among metals, mercury and gallium exhibit especially-low melting points and are thus considered as liquid metals (LMs). Sonication of mercury in aqueous solutions of certain metal ions can cause simultaneous reduction of the ions and reactions between the metals. Gallium can be melted and sonicated in warm water, as well as in aqueous solutions of various solutes such as metal ions and organic compounds, which opened a wide window of interactions between the gallium particles and the solutes. Sonication of molten metals in organic liquids, such as polyethylene glycol (PEG) 400, forms carbon dots (C-dots) doped with …

Show more

2023 • EPJ Web of Conferences

Nanoporous metallic networks: Growth process and optical properties

Mohamed Hamode, Racheli Ron, Alon Krause, Adi Salomon

Nanoporous metallic systems exhibit a new generation of advanced materials with potential in a wide variety of technological fields among them catalysis, photonics, optoelectronics and sensors.Their high surface-to-volume ratio, multimodal nanoscale moieties, ability to host guest materials, and inhomogeneous surface at the submicron scale distinct them from both bulk metals and conventional plasmonic materials as well as meta-surfaces. Those structures can be prepared through different fabrication and synthesis strategies including chemical dealloying, assembly of pre-synthesized metallic nanoparticles, and via templating. In a sharp contrast with these preparation strategies, we have demonstrated one can fabricate a macroscopic nanopourus metallic networks by using physical vapor deposition in a short single-step process. These materials are highly pure, and they show very unique linear and non-linear …

Show more

2023 • Advanced Therapeutics

Tumor‐Targeted Poly (ArgGlyAsp) Nanocapsules for Personalized Cancer Therapy–In‐vivo Study

Ella Itzhaki, Eva Chausky‐Barzakh, Ayelet Atkins, Avital Bareket‐Samish, Salomon M Stemmer, Shlomo Margel, Neta Moskovits

The arginine‐glycine‐glutamic acid (RGD) sequence, an αvβ3 integrin recognition site, is overexpressed in malignancies and neovasculature, making it a potential therapeutic target. Here, we assess efficacy/safety of tumor‐targeted RGD‐based proteinoid nanocapsules (NCs) entrapping a synergistic combination of two drugs – palbociclib (Pal), a CDK4/6 inhibitor, and alpelisib (Alp), a P13K inhibitor, as a cancer treatment. P(RGD) proteinoid polymers are produced by thermal step‐growth polymerization of R, G and D under inert atmosphere. P(RGD) NCs, hollow and encapsulating 25 w% each of Pal and Alp, are formed by self‐assembly of the proteinoid polymer. The encapsulation yields of Pal and Alp were 72% and 95%, respectively. Long‐term stability, controlled release, cellular uptake, and synergistic cytotoxicity and induced cell death are evident from in‐vitro experiments. Findings from in‐vivo breast …

Show more

2023 • Nanoscale

rsc. li/nanoscale

Jessica S Freitag, Christin Möser, Robel Belay, Basma Altattan, Nico Grasse, Bhanu Kiran Pothineni, Jörg Schnauß, David M Smith, Vijay Bhooshan Kumar, Aharon Gedanken, Ze’ev Porat

Nanoscale Page 1 Nanoscale rsc.li/nanoscale The Royal Society of Chemistry is the world's leading chemistry community. Through our high impact journals and publications we connect the world with the chemical sciences and invest the profits back into the chemistry community. IN THIS ISSUE ISSN 2040-3372 CODEN NANOHL 15(17) 7595–8030 (2023) Cover See Munho Kim, Guo-En Chang et al., pp. 7745–7754. Image reproduced by permission of Guo-En Chang from Nanoscale, 2023, 15, 7745. Inside cover See Palyam Subramanyam, Vasudevanpillai Biju et al., pp. 7695–7702. Image reproduced by permission of Vasudevanpillai Biju from Nanoscale, 2023, 15, 7695. REVIEWS 7608 Integration of functional peptides into nucleic acid-based nanostructures Jessica S. Freitag, Christin Möser, Robel Belay, Basma Altattan, Nico Grasse, Bhanu Kiran Pothineni, Jörg Schnauß and David M. Smith* 7625 …

Show more

2023 • ACS Catalysis

Biomimetic Fe–Cu Porphyrrole Aerogel Electrocatalyst for Oxygen Reduction Reaction

Yeela Persky, Łukasz Kielesiński, Samala Nagaprasad Reddy, Noam Zion, Ariel Friedman, Hilah C Honig, Beata Koszarna, Michael J Zachman, Ilya Grinberg, Daniel T Gryko, Lior Elbaz

The development of bioinspired catalysts for oxygen reduction reaction is one of the most prominent pathways in the search for active materials to replace Pt-based catalysts in fuel cells. Herein, we report innovative bioinspired catalysts using a directed synthetic pathway to create adjacent Cu and Fe sites. This catalyst is composed of a covalent 3D framework in an aerogel form. Aerogels are high surface area and porous hierarchical structures that can allow the formation of ultrahigh active site density and optimized mass transport of reactants and products to and from the catalytic sites. The aerogel-based catalyst exhibits high performance in a half-cell in 0.1 M KOH, with an onset potential of 0.94 V vs RHE and half-wave potential of E1/2 = 0.80 V vs RHE, high selectivity toward the four-electron reduction of oxygen to hydroxide anions, and high durability. These results are well-translated to the anion exchange …

Show more

2023 • Chemical Communications

Anodic instability of carbon in non-alkaline Zn–air batteries

Roman R Kapaev, Malachi Noked

Although non-alkaline rechargeable Zn–air batteries (RZABs) are promising for energy storage, their chemistry is still underdeveloped and unclear. It was suggested that using Zn(OAc)2 or Zn(OTf)2 aqueous solutions as electrolytes enables reversible, corrosion-free charge–discharge processes, but the anodic stability of carbon in these cells has remained poorly studied. We report that CO2 evolution is manifested during the oxygen evolution reaction in non-alkaline RZABs, which is associated with the corrosion of carbon scaffolds. This corrosion is observed for different electrolyte compositions, such as Zn(OAc)2, ZnSO4 and Zn(OTf)2 solutions of various concentrations. The corrosion rate decreases when the overpotentials during the oxygen evolution reaction are lower. This study underlines the importance of addressing the anodic instability of carbon in non-alkaline RZABs.

Show more

2023 • Advanced Sensor Research

Modular Droplet‐Based Fluidics for Large Volume Libraries of Individual Multiparametric Codes in Lab‐On‐Chip Systems

Julian Schütt, Hariharan Nhalil, Jürgen Fassbender, Lior Klein, Asaf Grosz, Denys Makarov

Droplet‐based lab‐on‐a‐chip systems offer vast possibilities in the manipulation, guidance, tracking, and labeling of individual droplet‐based bioreactors. One of the targeted application scenarios is in drug discovery where millions of unique codes are required, which is out of reach for current technologies. Here, a concept for the realization of multiparametric codes, where information is stored in distinct physical and chemical parameters, is proposed and validated. Exemplarily, the focus is on the use of impedance and magnetic sensing by monitoring ionic concentration as well as magnetic content per droplet and droplet volume. Codes based on aqueous ferrofluid droplets are prepared using a tubing‐based millifluidic setup and consist of up to six droplets of different combinations of volumes and magnetic concentration. It is demonstrated that a droplet chain of three single droplets of different volumes with nine …

Show more

logo
Articali

Powered by Articali

TermsPrivacy