4502 articles

77 publishers

Join mailing list

Jan 2024 • Frontiers in Cell and Developmental Biology

Transposable elements acquire time-and sex-specific transcriptional and epigenetic signatures along mouse fetal gonad development

Isabelle Stévant, Nitzan Gonen, Francis Poulat

Gonadal sex determination in mice is a complex and dynamic process, which is crucial for the development of functional reproductive organs. The expression of genes involved in this process is regulated by a variety of genetic and epigenetic mechanisms. Recently, there has been increasing evidence that transposable elements (TEs), which are a class of mobile genetic elements, play a significant role in regulating gene expression during embryogenesis and organ development. In this study, we aimed to investigate the involvement of TEs in the regulation of gene expression during mouse embryonic gonadal development. Through bioinformatics analysis, we aimed to identify and characterize specific TEs that operate as regulatory elements for sex-specific genes, as well as their potential mechanisms of regulation. We identified TE loci expressed in a time- and sex-specific manner along fetal gonad development that correlate positively and negatively with nearby gene expression, suggesting that their expression is integrated to the gonadal regulatory network. Moreover, chromatin accessibility and histone post-transcriptional modification analyses in differentiating supporting cells revealed that TEs are acquiring a sex-specific signature for promoter-, enhancer-, and silencer-like elements, with some of them being proximal to critical sex-determining genes. Altogether, our study introduces TEs as the new potential players in the gene regulatory network that controls gonadal development in mammals.

Show more

Jan 2024 • Quantum Science and Technology

Quantum circuits for measuring weak values, Kirkwood–Dirac quasiprobability distributions, and state spectra

Rafael Wagner, Zohar Schwartzman-Nowik, Ismael L Paiva, Amit Te’eni, Antonio Ruiz-Molero, Rui Soares Barbosa, Eliahu Cohen, Ernesto F Galvão

Weak values and Kirkwood–Dirac (KD) quasiprobability distributions have been independently associated with both foundational issues in quantum theory and advantages in quantum metrology. We propose simple quantum circuits to measure weak values, KD distributions, and spectra of density matrices without the need for post-selection. This is achieved by measuring unitary-invariant, relational properties of quantum states, which are functions of Bargmann invariants, the concept that underpins our unified perspective. Our circuits also enable experimental implementation of various functions of KD distributions, such as out-of-time-ordered correlators and the quantum Fisher information in post-selected parameter estimation, among others. An upshot is a unified view of nonclassicality in all those tasks. In particular, we discuss how negativity and imaginarity of Bargmann invariants relate to set coherence.

Show more

Jan 2024 • Plos Genetics

Failure to mate enhances investment in behaviors that may promote mating reward and impairs the ability to cope with stressors via a subpopulation of Neuropeptide F receptor …

Julia Ryvkin, Liora Omesi, Yong-Kyu Kim, Mali Levi, Hadar Pozeilov, Lital Barak-Buchris, Bella Agranovich, Ifat Abramovich, Eyal Gottlieb, Avi Jacob, Dick R Nässel, Ulrike Heberlein, Galit Shohat-Ophir

Living in dynamic environments such as the social domain, where interaction with others determines the reproductive success of individuals, requires the ability to recognize opportunities to obtain natural rewards and cope with challenges that are associated with achieving them. As such, actions that promote survival and reproduction are reinforced by the brain reward system, whereas coping with the challenges associated with obtaining these rewards is mediated by stress-response pathways, the activation of which can impair health and shorten lifespan. While much research has been devoted to understanding mechanisms underlying the way by which natural rewards are processed by the reward system, less attention has been given to the consequences of failure to obtain a desirable reward. As a model system to study the impact of failure to obtain a natural reward, we used the well-established courtship suppression paradigm in Drosophila melanogaster as means to induce repeated failures to obtain sexual reward in male flies. We discovered that beyond the known reduction in courtship actions caused by interaction with non-receptive females, repeated failures to mate induce a stress response characterized by persistent motivation to obtain the sexual reward, reduced male-male social interaction, and enhanced aggression. This frustrative-like state caused by the conflict between high motivation to obtain sexual reward and the inability to fulfill their mating drive impairs the capacity of rejected males to tolerate stressors such as starvation and oxidative stress. We further show that sensitivity to starvation and enhanced social arousal is …

Show more

Jan 2024 • Advanced Energy Materials

A Rechargeable Zn–Air Battery with High Energy Efficiency Enabled by a Hydrogen Peroxide Bifunctional Catalyst

Alagar Raja Kottaichamy, Jonathan Tzadikov, Angus Pedersen, Jesús Barrio, Gabriel Mark, Itamar Liberman, Alexander Upcher, Michael Volokh, Idan Hod, Shmuel Barzilai, Malachi Noked, Menny Shalom

Rechargeable alkaline zinc–air batteries (ZAB) hold great promise as a viable, sustainable, and safe alternative energy storage system to the lithium‐ion battery. However, the practical realization of ZABs is limited by their intrinsically low energy trip efficiency, stemming from a large charge and discharge potential gap. This overpotential is attributed to the four‐electron oxygen evolution and reduction reactions and their sluggish kinetics. Here, a new concept based on two‐electron generation and consumption of hydrogen peroxide at the air electrode is introduced. The O2/peroxide chemistry, facilitated by a newly developed Ni‐based bifunctional electrocatalyst, enables fast peroxide generation/consumption, exceptional energy efficiency, high durability, and high capacity. Hence, this new design offers substantial progress toward the commercialization of high energy density metal–air batteries.

Show more

Jan 2024 • ACS Photonics

Molybdenum silicide superconducting nanowire single-photon detectors on lithium niobate waveguides

Marco Colangelo, Di Zhu, Linbo Shao, Jeffrey Holzgrafe, Emma K Batson, Boris Desiatov, Owen Medeiros, Matthew Yeung, Marko Loncar, Karl K Berggren

We demonstrate a molybdenum silicide superconducting nanowire single-photon detector heterogeneously integrated onto a thin-film lithium niobate waveguide. The detector achieves approximately 50% on-chip detection efficiency at 1550 nm with a jitter of 82 ps when measured at 0.78 K. This demonstration showcases the integration of an amorphous superconductor utilizing conventional fabrication processes without strict cooling and substrate requirements. This paves the way for the integration of additional superconducting electronic components, potentially realizing the full promise of integrated quantum photonic circuits.

Show more

Jan 2024 • Small Structures

Magnesium ions storage in molybdenum oxide structures examined as a promising cathode material for rechargeable magnesium batteries

Dedy Setiawan, Hyungjin Lee, Hyeri Bu, Doron Aurbach, Seung-Tae Hong, Munseok S Chae

Magnesium batteries have attracted considerable attention as a promising technology for future energy storage because of their capability to undergo multiple charging reactions. However, most oxide materials utilized as hosts for magnesium batteries do not perform well at room temperature or in nonaqueous electrolytes. Herein, a host material, Na0.04MoO3·(H2O)0.49 is successfully developed through the chemical reduction of alpha‐MoO3, which enables magnesium storage reaction in a 0.5 m Mg(ClO4)2/acetonitrile electrolyte at 25 °C. Electrochemical analysis reveals that the cathode material possesses a discharge capacity of 157.4 mAh g−1 at a 0.2 C rate. The Na0.04MoO3·(H2O)0.49 cathode material also exhibits a capacity retention of 93.4% after 100 cycles compared to the first cycle at a 2 C rate, with an average discharge voltage of −0.474 V versus activated carbon (≈2.16 V estimated …

Show more

Jan 2024 • Cell Metabolism

Disrupted RNA editing in beta cells mimics early-stage type 1 diabetes

Udi Ehud Knebel, Shani Peleg, Chunhua Dai, Roni Cohen-Fultheim, Sara Jonsson, Karin Poznyak, Maya Israeli, Liza Zamashanski, Benjamin Glaser, Erez Y Levanon, Alvin C Powers, Agnes Klochendler, Yuval Dor

A major hypothesis for the etiology of type 1 diabetes (T1D) postulates initiation by viral infection, leading to double-stranded RNA (dsRNA)-mediated interferon response and inflammation; however, a causal virus has not been identified. Here, we use a mouse model, corroborated with human islet data, to demonstrate that endogenous dsRNA in beta cells can lead to a diabetogenic immune response, thus identifying a virus-independent mechanism for T1D initiation. We found that disruption of the RNA editing enzyme adenosine deaminases acting on RNA (ADAR) in beta cells triggers a massive interferon response, islet inflammation, and beta cell failure and destruction, with features bearing striking similarity to early-stage human T1D. Glycolysis via calcium enhances the interferon response, suggesting an actionable vicious cycle of inflammation and increased beta cell workload.

Show more

Jan 2024 • arXiv preprint arXiv:2401.05532

Weak value advantage in overcoming noise on the primary system

Zohar Schwartzman-Nowik, Dorit Aharonov, Eliahu Cohen

The concept of weak value exhibits numerous intriguing characteristics, leading to unexpected and potentially advantageous phenomena. In this paper, we analyze, from a computational perspective, the performance of the weak measurement protocol for measuring the weak value within various noise channels. A mathematical framework is developed for addressing the less explored case of noise acting on the primary rather than probe system. We pinpoint specific instances where the sensitivity to noise is reduced quadratically with the weak measurement protocol while this cannot be achieved with the standard measurement protocol. Specifically, when confronted with the challenge of learning an operator under the influence of either a Pauli noise channel, a unital noise channel, or an amplitude and phase damping channel, the weak measurement of the weak value can yield significant benefits. Notably, in the first two cases, and especially in the context of the unital noise channel, initializing the system in the maximally mixed state (but postselecting it in a pure state) has proven to be particularly advantageous.

Show more

Jan 2024 • Surfaces and Interfaces

Heteroatom co-doping (N, NS, NB) on carbon dots and their antibacterial and antioxidant properties

Arumugam Saravanan, Poushali Das, Moorthy Maruthapandi, Saurav Aryal, Shulamit Michaeli, Yitzhak Mastai, John HT Luong, Aharon Gedanken

The development of new nanoparticle-based antibiotics with biocompatible properties is an emerging advance in nanotechnology. This study advocated the development of carbon dots (CDs) doped with nitrogen, nitrogen with sulfur, and nitrogen with boron (N, NS, and NB-CDs). This led to changes in the properties of the CDs, both chemically and biologically. A facile hydrothermal technique was used to synthesize CDs and the formation of CDs was confirmed through various analytical techniques. The CDs had sizes ranging from 3.2 – 4.8 nm and ζ-potential values of +13 to 27 mV. The doped CDs exhibited moderate changes in fluorescence behaviors depending on the excitation wavelength (λex). The N- and NB-doped CDs were effective at eliminating gram-negative pathogens (E. coli and K. pneumoniae), with minimum inhibitory concentrations (MIC) of 300 µg/mL and 400 µg/mL, respectively. The …

Show more

Jan 2024

The interplay between calcite crystal nucleation on polydiacetylene template and its amorphization by phosphoserine

Bidisha Tah, Amir Berman, Saja Nasser, Jürgen Jopp, Gil Goobes, Anna Stepansky, Yehonatan Glick

Organisms use a diverse range of organic-inorganic hybrid materials for a variety of purposes, including mechanical support, navigation and protection. These materials are mostly crystalline and are characterized by unique composition, polymorph, crystallite size, shape and crystallographic orientation. The crystalline biominerals are generally formed through amorphous, hydrated transient minerals, but in some, the amorphous phases are stable and persist. Using a biomimetic approach, we address aspects of biological mineralization in vitro and gain insight into the processes and interactions that play roles in the natural systems, in-vivo. In this work, we demonstrate two essential but conflicting methods that are likely to act simultaneously in many mineralizing systems. These are directed crystal nucleation on organic templates, and on the other hand, crystal inhibition to produce the transient amorphous phase. The experimental method in this project mimics aspects of biomineralization processes of calcium carbonate (CaCO3) nucleation. Polydiacetylene (PDA) – a robust, linear conjugated polymer, made from amphiphilic long-chain diacetylene monomers, which upon surface compression, followed by UV polymerization form an ultrathin, stable monolayer structure. PDA simulates the organic template for the CaCO3 crystallization in our experimental system in that it exposed a dense array of acidic groups in well-defined orientation and being a semi-rigid template surface. On PDA templates, calcite crystals nucleate from a (01.2) face and in every single domain of the PDA film they are all coaligned with the crystals' a-axes oriented parallel to …

Show more

Jan 2024 • Results in Physics

Generic arrays of surface-positioned and shallow-buried gold multi-shapes as reference samples to benchmark near-field microscopes. Part 1: Applications in s-SNOM depth imaging

Binyamin Kusnetz, Jeremy Belhassen, Denis E Tranca, Stefan G Stanciu, Stefan-Razvan Anton, Zeev Zalevsky, George A Stanciu, Avi Karsenty

A wide palette of nanoscale imaging techniques operating in the near-field regime has been reported to date, enabling an important number of scientific breakthroughs. While the tuning and benchmarking of near-field microscopes represent a very important step for optimizing the outputs of the imaging sessions, no generally acknowledged standards exist yet in terms of calibration of near-field microscopes, which would play an important role in fully exploiting the potential of these instruments. With this work, we aim to contribute to filling in this gap, by introducing a prototypical sample, that holds potential for becoming a benchmark with respect to comparing the performances of diverse near-field measurement techniques, including traditional, aperture based, scanning near field microscopy (SNOM), or apertureless variants, such as scattering-type scanning nearfield optical microscopy (s-SNOM). The proposed …

Show more

Jan 2024 • Optica Open, 2024

Multiplexed Processing of Quantum Information Across an Ultra-wide Optical Bandwidth

Avi Pe'er, Alon Eldan, Ofek Gilon, Asher Lagemi, Elai Fishman-Furman

Protocols of quantum information processing are the foundation of quantum technology, allowing to share secrets at a distance for secure communication (quantum key distribution), to teleport quantum states, and to implement quantum computation. While various protocols have already been realized, and even commercialized, the throughput and processing speed of standard protocols is generally low, limited by the narrow electronic bandwidth of the measurement apparatus in the MHz-to-GHz range, which is orders-of-magnitude lower than the optical bandwidth of available quantum optical sources (10-100 THz). We present a general concept and methods to process quantum information in parallel over multiplexed frequency channels using parametric homodyne detection for measurement of all the channels simultaneously, thereby harnessing the optical bandwidth for quantum information in an efficient …

Show more

2024 • bioRxiv

Scattering-Based Super-Resolution Optical Fluctuation Imaging

Shimon Yudovich, Gregor Posnjak, Lior Shani, Eti Teblum, Tim Liedl, Jörg Enderlein, Shimon Weiss

Super-resolution optical imaging has become a prominent tool in life and material sciences, allowing one to decipher structures at increasingly greater spatial detail. Among the utilized techniques in this field, super-resolution optical fluctuation imaging (SOFI) has proved to be a valuable approach. A major advantage of SOFI is its less restrictive requirements for generating super-resolved images of neighboring nanostructures or molecules, as it only assumes that the detected fluctuating light from neighboring emitters is statistically uncorrelated, but not necessarily separated in time. While most optical super-resolution microscopies depend on signals obtained from fluorescence, they are limited by photobleaching and phototoxicity. An alternative source for optical signals can be acquired by detecting the light scattered from molecules or nanoparticles. However, the application of coherent scattering-based imaging modalities for super-resolution imaging has been considerably limited compared to fluorescence-based modalities. Here, we develop scattering-based super-resolution optical fluctuation imaging (sSOFI), where we utilize the rotation of anisotropic particles as a source of fluctuating optical signals. We discuss the differences in the application of SOFI algorithms for coherent and incoherent imaging modalities, and utilize interference microscopy to demonstrate super-resolution imaging of rotating nanoparticle dimers. We present a theoretical analysis of the relevant model systems, and discuss the possible effects of cusp artifacts and electrodynamic coupling between nearby nano-scatterers. Finally, we apply sSOFI as a label-free novelty …

Show more

2024 • Journal of Biophotonics

Microsaccades Tracking by Secondary Speckle Pattern Analysis

Ola Shteinberg, Sergey Agdarov, Yafim Beiderman, Yoram S Bonneh, Inbal Ziv, Zeev Zalevsky

Here we propose a not pupil‐dependent microsaccades tracking technique and a novel detection method. We present a proof of concept for detecting microsaccades using a non‐contact laser‐based photonic system recording and processing the temporal changes of speckle patterns scattered from an eye sclera. The data, simultaneously recorded by the speckle‐based tracker (SBT) and the video‐based eye tracker (Eyelink), was analyzed by the frequently used detection method of Engbert and Kliegl (E&K) and by advanced machine learning detection (MLD) techniques. We detected 93% of microsaccades in the SBT data out of microsaccades detected in the Eyelink data with the E&K method. By utilizing MLD, a precision of 86% was achieved. The findings of our study demonstrate a potential improvement in measuring tiny eye movements, such as microsaccades, using speckle‐based eye tracking and, thus …

Show more

2024 • bioRxiv

Optogenetics-integrated gut organ culture system connects enteric neurons dynamics and gut homeostasis

Gitali Naim, Hadar Romano, Sivan Amidror, David Jessula Levy, Adva Cohen, Carmel Sochen, Yasmin Yarden, Mengyang Feng, Nairouz Farah, Rotem Tsentsarevsky, Ziv Brodie, Yasmin Reich, Ariel Simon, Einat Toister, Irit Shoval, Yossi Mandel, Moshe Biton, Nissan Yissachar

The enteric nervous system (ENS) senses microbiota-derived signals and orchestrates mucosal immunity and epithelial barrier functions, in health and disease. However, mechanistic dissections of intestinal neuro-immune-microbiota communications remain challenging and existing research methods limit experimental controllability and throughput. Here, we present a novel optogenetics-integrated gut organ culture system that enables real-time, whole-tissue stimulation of specific ENS lineages, allowing for detailed analysis of their functional impact. We demonstrate that optogenetic activation of enteric cholinergic neurons rapidly modulates intestinal physiology. Interestingly, distinct neuronal firing patterns differentially modulate neuro-immunological gene expression and epithelial barrier integrity. Furthermore, diverse enteric neuronal lineages exert distinct regulatory roles. While cholinergic activation promotes gene-sets associated with type-2 immunity, tachykininergic enteric neurons differentially control mucosal defense programs. Remarkably, luminal introduction of the immunomodulatory bacterium C. ramosum significantly remodeled cholinergic-induced neuro-immunological transcription. These findings suggest that complex combinatorial signals delivered by gut microbes and enteric neurons are locally integrated to fine-tune intestinal immunity and barrier defense. Collectively, we provide a powerful platform for systematic discovery and mechanistic exploration of functional neuroimmune connections, and their potential modulation by drugs, microbes, or metabolites.

Show more

2024 • Advanced Materials

Surface Defects Control Bulk Carrier Densities in Polycrystalline Pb‐Halide Perovskites

David Cahen, Yevgeny Rakita, David A Egger, Antoine Kahn

The (opto)electronic behavior of semiconductors depends on their (quasi‐)free electronic carrier densities. These are regulated by semiconductor doping, i.e., controlled “electronic contamination”. For metal halide perovskites (HaPs), the functional materials in several device types, which already challenge some of the understanding of semiconductor properties, this study shows that doping type, density and properties derived from these, are to a first approximation controlled via their surfaces. This effect, relevant to all semiconductors, and already found for some, is very evident for lead (Pb)‐HaPs because of their intrinsically low electrically active bulk and surface defect densities. Volume carrier densities for most polycrystalline Pb‐HaP films (<1 µm grain diameter) are below those resulting from even < 0.1% of surface sites being electrically active defects. This implies and is consistent with interfacial defects …

Show more

2024 • bioRxiv

Gut-specific H3R signaling orchestrates microglia-dependent resolution of peripheral inflammation

Kerstin Duerholz, Mathias Linnerbauer, Eva Schmid, Heike Danzer, Lena Loesslein, Lena Amend, Leona Ehnes, Michael Frech, Vugar Azizov, Fabian Schaelter, Arne Gessner, Sebastien Lucas, Till-Robin Lesker, R Verena Taudte, Joerg Hofmann, Felix Beyer, Hadar Bootz-Maoz, Yasmin Reich, Hadar Romano, Daniele Mauro, Ruth Beckervordersandvorth, Wei Xiang, Aiden Haghikia, Cezmi A Akdis, Francesco Ciccia, Tobias Baeuerle, Kerstin Sarter, Till Strowig, Nissan Yissachar, Georg Schett, Veit Rothhammer, Mario Michael Zaiss

Chronic inflammatory diseases, like rheumatoid arthritis (RA) have been described to cause central nervous system (CNS) activation. Less is known about environmental factors that enable the CNS to suppress peripheral inflammation in RA. Here, we identified gut microbiota-derived histamine as such factor. We show that low levels of histamine activate the enteric nervous system, increase inhibitory neurotransmitter concentrations in the spinal cord and restore homeostatic microglia, thereby reducing inflammation in the joints. Selective histamine 3 receptor (H3R) signaling in the intestine is critical for this effect, as systemic and intrathecal application did not show effects. Microglia depletion or pharmacological silencing of local nerve fibers impaired oral H3R agonist-induced pro-resolving effects on arthritis. Moreover, therapeutic supplementation of the SCFA propionate identified one way to expand local intestinal histamine concentrations in mice and humans. Thus, we define a gut-CNS-joint axis pathway where microbiota-derived histamine initiates the resolution of arthritis via the CNS.

Show more

2024 • Journal of Materials Chemistry A

Unveiling the structural integrity of tunnel-type Na 0.44 MnO 2 cathode for sodium ion battery

Sankalpita Chakrabarty, Javeed Ahmad Dar, Akanksha Joshi, Arad Paperni, Sarah Taragin, Ananya Maddegalla, Gopalakrishnan Sai Gautam, Ayan Mukherjee, Malachi Noked

Tunnel-type Na0.44MnO2 (tt-NMO) is a promising cathode for sodium ion battery having excellent structural stability, diffusion kinetics, and low cost. However, this cathode is reported to suffer from low initial charge capacity (e.g., ≤60 mA h g−1) due to the limited accessibility of sodium ion extraction (0.22–0.24 Na+ per formula unit) from the structure, which hinders the practical viability of this material in a full battery cell. In this study, we report a tailored tt-NMO structure, synthesized using a two-step facile and scalable process, with >95% yield. Our tt-NMO demonstrated a 1st charge capacity of 110 mA h g−1, followed by a discharge capacity of 115 mA h g−1 within the potential window of 4–1.7 V versus Na/Na+. The long-term cycling performance at 0.5C rate and 1C rate (1C = 120 mA h g−1) shows excellent structural integrity for over 400 cycles with >75% capacity retention. We show experimentally and support it …

Show more

2024 • Journal of Materials Chemistry C

From monolayer to thin films: engineered bandgap in CVD grown Bi 2 Se (3− x) S x topological insulator alloys

Michal Poplinger, Dimitrios Kaltsas, Chen Stern, Pilkhaz Nanikashvili, Adi Levi, Rajesh Kumar Yadav, Sukanta Nandi, Yuxiao Wu, Avinash Patsha, Ariel Ismach, Ashwin Ramasubramaniam, Amaia Pesquera, Amaia Zurutuza, Ioanna Zergiot, Leonidas Tsetseris, Tomer Lewi, Doron Naveh

Topological insulators, a class of materials possessing bulk bandgap and metallic surface states with a topological nontrivial symmetry, are considered promising candidates for emerging quantum and optoelectronic applications. However, achieving scalable growth and control over parameters including thickness, carrier density, bulk bandgap, and defect density remains a challenge in realizing such applications. In this work, we show the scalable growth of topological insulator alloys Bi2Se(3-x)Sx and demonstrate composition-tunable bandgap, using chemical vapor deposition (CVD). A bandgap increase of up to ~40% at a sulfur concentration of ~15% is demonstrated. Correspondingly, the real part (n) of the refractive index is reduced in the alloy by ~25% relative to that of Bi2Se3. Additionally, electronic transport measurements indicate a bulk p-type doping and field-effect tunable metallic surface states of the …

Show more

2024 • Journal of Biophotonics

Extracting Superficial Scattering by Q‐Sensing Technique

Alon Tzroya, Hamootal Duadi, Dror Fixler

Optical properties determine how light interacts with biological tissues. The current methods for measuring these optical properties are influenced by both deep and superficial skin layers. Polarization‐based methods have been proposed in order to determine the influence of deep layer scattering. Polarized light allows for the separation of ballistic photons from diffuse ones, enhancing image contrast and resolution while providing additional tissue information. The Q‐sensing technique captures co‐polarized I∥$$ \left({I}_{\parallel}\right) $$ and cross‐polarized I⊥$$ \left({I}_{\perp}\right) $$ signals, making it possible to isolate the superficial scattering. However, the random structure of tissues leads to rapid depolarization of the polarized light. Detecting where the light becomes depolarized aids in sensing abnormalities within the tissues. Hence, this research focuses on identifying where depolarization occurs …

Show more

2024 • ACS Energy Letters

π-Electron-Assisted Charge Storage in Fused-Ring Aromatic Carbonyl Electrodes for Aqueous Manganese-Ion Batteries

Hyungjin Lee, Amey Nimkar, Netanel Shpigel, Daniel Sharon, Seung-Tae Hong, Doron Aurbach, Munseok S Chae

Rechargeable manganese batteries hold promise for large-scale energy storage due to the abundance and eco-friendly nature of manganese. A key challenge is developing cathode materials capable of reversibly inserting Mn ions with a high specific capacity. Here, we demonstrate that perylene-3,4,9,10-tetracarboxylic dianhydride electrodes efficiently and reversibly insert Mn2+ ions in 3 M MnCl2 aqueous electrolyte solutions. Leveraging the carbonyl groups and the π-electron configuration, such compounds can serve as robust redox centers, facilitating reversible interactions with divalent ions such as Mn2+. Through comprehensive studies involving electrochemistry, elemental analyses, spectroscopy, and structural analysis, we explored these systems and found them as promising anode materials for Mn batteries. Demonstrating excellent Mn storage capabilities, such molecules could attain a reversible …

Show more

logo
Articali

Powered by Articali