BINA

3964 articles

77 publishers

Join mailing list

Jul 2023 • Optics Express

Split-well resonant-phonon terahertz quantum cascade laser

Shiran Levy, Nathalie Lander Gower, Silvia Piperno, Sadhvikas J Addamane, John L Reno, Asaf Albo

We present a highly diagonal “split-well resonant-phonon” (SWRP) active region design for GaAs/Al_0.3Ga_0.7As terahertz quantum cascade lasers (THz-QCLs). Negative differential resistance is observed at room temperature, which indicates the suppression of thermally activated leakage channels. The overlap between the doped region and the active level states is reduced relative to that of the split-well direct-phonon (SWDP) design. The energy gap between the lower laser level (LLL) and the injector is kept at 36 meV, enabling a fast depopulation of the LLL. Within this work, we investigated the temperature performance and potential of this structure.

Show more

Jul 2023 • Nanomaterials

Probing Polarity and pH Sensitivity of Carbon Dots in Escherichia coli through Time-Resolved Fluorescence Analyses

Gilad Yahav, Shweta Pawar, Anat Lipovsky, Akanksha Gupta, Aharon Gedanken, Hamootal Duadi, Dror Fixler

Intracellular monitoring of pH and polarity is crucial for understanding cellular processes and functions. This study employed pH- and polarity-sensitive nanomaterials such as carbon dots (CDs) for the intracellular sensing of pH, polarity, and viscosity using integrated time-resolved fluorescence anisotropy (FA) imaging (TR-FAIM) and fluorescence lifetime (FLT) imaging microscopy (FLIM), thereby enabling comprehensive characterization. The functional groups on the surface of CDs exhibit sensitivity to changes in the microenvironment, leading to variations in fluorescence intensity (FI) and FLT according to pH and polarity. The FLT of CDs in aqueous solution changed gradually from 6.38 ± 0.05 ns to 8.03 ± 0.21 ns within a pH range of 2–8. Interestingly, a complex relationship of FI and FLT was observed during measurements of CDs with decreasing polarity. However, the FA and rotational correlation time (θ) increased from 0.062 ± 0.019 to 0.112 ± 0.023 and from 0.49 ± 0.03 ns to 2.01 ± 0.27 ns, respectively. This increase in FA and θ was attributed to the higher viscosity accompanying the decrease in polarity. Furthermore, CDs were found to bind to three locations in Escherichia coli: the cell wall, inner membrane, and cytoplasm, enabling intracellular characterization using FI and FA decay imaging. FLT provided insights into cytoplasmic pH (7.67 ± 0.48), which agreed with previous works, as well as the decrease in polarity in the cell wall and inner membrane. The CD aggregation was suspected in certain areas based on FA, and the θ provided information on cytoplasmic heterogeneity due to the aggregation and/or interactions with …

Show more

Jul 2023 • 2023 23rd International Conference on Transparent Optical Networks (ICTON), 1-4, 2023

Microwave-Based Remote Bio-Sensing behind Walls

Ohad Meshulam, Nisan Ozana, Dan Scheffer, Shlomo Zach, Zeev Zalevsky

In this paper a novel method for microwave based remote sensing of vital signs behind walls is presented. The method is based on temporal spatial analysis of back scattered microwave signals. The use of non-optical electromagnetic radiation enables monitoring from larger distances and behind objects in contrast to similar concepts in optics. Further, such use of non-optical radiation omits the need for direct line of sight between the monitoring system and the target and enables monitoring through walls or other barriers. Micro-vibrations due to breathing and heart pulsation affect the reflection of microwaves and cause the self-interference random patterns (i.e. speckle patterns) to vary in time and space. By using this approach, the temporal change of the speckle patterns due to changes in vital signs can be tracked behind walls. In this paper we present a system in WiFi frequencies band consisting of two radio …

Show more

Jul 2023 • Progress in Materials Science, 101166, 2023

Doped MXenes—A new paradigm in 2D systems: Synthesis, properties and applications

Avishek Dey, Silvia Varagnolo, Nicholas P Power, Naresh Vangapally, Yuval Elias, Lois Damptey, Bright N Jaato, Saianand Gopalan, Zahra Golrokhi, Prashant Sonar, Vimalnath Selvaraj, Doron Aurbach, Satheesh Krishnamurthy

Since 2011, 2D transition metal carbides, carbonitrides and nitrides known as MXenes have gained huge attention due to their attractive chemical and electronic properties. The diverse functionalities of MXenes make them a promising candidate for multitude of applications. Recently, doping MXene with metallic and non-metallic elements has emerged as an exciting new approach to endow new properties to this 2D systems, opening a new paradigm of theoretical and experimental studies. In this review, we present a comprehensive overview on the recent progress in this emerging field of doped MXenes. We compare the different doping strategies; techniques used for their characterization and discuss the enhanced properties. The distinct advantages of doping in applications such as electrocatalysis, energy storage, photovoltaics, electronics, photonics, environmental remediation, sensors, and biomedical …

Show more

Jul 2023 • Solid State Nuclear Magnetic Resonance 126, 101885, 2023

Remembering Shimon Vega: Special issue on solid-state and DNP NMR

G Goobes, PK Madhu, A Goldbourt

This special issue is dedicated to the memory of Shimon Vega (1943–2021) with contributions from former students, postdocs, and other close colleagues. Shimon had seminal contributions in magnetic resonance, including in the areas of nuclear quadrupole resonance (NQR), solid-state NMR, and dynamic nuclear polarization (DNP). While dedicating a major effort to the development of NMR theory, he always made direct connections to experiments and relevant applications and was a gifted educator and teacher. The content of this special issue is a manifestation of these various facets in his personality.Matysik highlights, in his paper, the educational spirit of Shimon by describing the “Vega diagrams”; block representations of Hamiltonians and density matrices with pathways directing the reader to the relevant physics. On the theoretical side, the work of Sajith et al. extracts effective Hamiltonians and key …

Show more

Jul 2023 • Optics Express

Split-well resonant-phonon terahertz quantum cascade laser

Shiran Levy, Nathalie Lander Gower, Silvia Piperno, Sadhvikas J Addamane, John L Reno, Asaf Albo

We present a highly diagonal “split-well resonant-phonon” (SWRP) active region design for GaAs/Al_0.3Ga_0.7As terahertz quantum cascade lasers (THz-QCLs). Negative differential resistance is observed at room temperature, which indicates the suppression of thermally activated leakage channels. The overlap between the doped region and the active level states is reduced relative to that of the split-well direct-phonon (SWDP) design. The energy gap between the lower laser level (LLL) and the injector is kept at 36 meV, enabling a fast depopulation of the LLL. Within this work, we investigated the temperature performance and potential of this structure.

Show more

Jul 2023 • APL Photonics

Opto-mechanical fiber sensing with optical and acoustic cladding modes

Avi Zadok, Elad Zehavi, Alon Bernstein

Optical fibers are an excellent sensor platform. However, the detection and analysis of media outside the cladding and coating of standard fibers represent a long-standing challenge: light that is guided in the single optical core mode does not reach these media. Cladding modes help work around this difficulty, as their transverse profiles span the entire cross-section of the fiber cladding and reach its outer boundary. In this tutorial, we introduce and discuss in detail two recent advances in optical fiber sensors that make use of cladding modes. Both concepts share optomechanics as a common underlying theme. First, we describe a spatially continuous distributed analysis using the optical cladding modes of the fiber. Light is coupled to these modes using Brillouin dynamic gratings, which are index perturbations associated with acoustic waves in the core that are stimulated by light. Unlike permanent gratings, which …

Show more

Jul 2023 • Electrochimica Acta

Advanced impedance analysis of direct quinone fuel cells using distribution of relaxation times

Yan Yurko, Lior Elbaz

The need for new, reliable, and sustainable energy sources led to the development of new types of fuel cells. Fuel cells that rely on liquid hydrogen carriers may be the ultimate solution to the expensive hydrogen logistics issues. In this category, direct quinone fuel cells (DQFCs) are a promising new technology that solves many of the issues of traditional fuel cells. As a new technology, DQFCs need to be studied thoroughly to reach their full potential. Here, we use a distribution of relaxation times (DRT) analysis to analyze the impedance data of DQFCs, to gain a better understanding of the system. We systematically changed the operating parameters and attributed the changes in the DRT spectra to the physical processes they correspond to. The four main peaks observed in the DRT measurements were assigned to oxygen reduction reaction (ORR), quinone diffusion resistance, proton diffusion in the membrane …

Show more

Jul 2023 • Nanomaterials

Probing Polarity and pH Sensitivity of Carbon Dots in Escherichia coli through Time-Resolved Fluorescence Analyses

Gilad Yahav, Shweta Pawar, Anat Lipovsky, Akanksha Gupta, Aharon Gedanken, Hamootal Duadi, Dror Fixler

Intracellular monitoring of pH and polarity is crucial for understanding cellular processes and functions. This study employed pH- and polarity-sensitive nanomaterials such as carbon dots (CDs) for the intracellular sensing of pH, polarity, and viscosity using integrated time-resolved fluorescence anisotropy (FA) imaging (TR-FAIM) and fluorescence lifetime (FLT) imaging microscopy (FLIM), thereby enabling comprehensive characterization. The functional groups on the surface of CDs exhibit sensitivity to changes in the microenvironment, leading to variations in fluorescence intensity (FI) and FLT according to pH and polarity. The FLT of CDs in aqueous solution changed gradually from 6.38 ± 0.05 ns to 8.03 ± 0.21 ns within a pH range of 2–8. Interestingly, a complex relationship of FI and FLT was observed during measurements of CDs with decreasing polarity. However, the FA and rotational correlation time (θ) increased from 0.062 ± 0.019 to 0.112 ± 0.023 and from 0.49 ± 0.03 ns to 2.01 ± 0.27 ns, respectively. This increase in FA and θ was attributed to the higher viscosity accompanying the decrease in polarity. Furthermore, CDs were found to bind to three locations in Escherichia coli: the cell wall, inner membrane, and cytoplasm, enabling intracellular characterization using FI and FA decay imaging. FLT provided insights into cytoplasmic pH (7.67 ± 0.48), which agreed with previous works, as well as the decrease in polarity in the cell wall and inner membrane. The CD aggregation was suspected in certain areas based on FA, and the θ provided information on cytoplasmic heterogeneity due to the aggregation and/or interactions with …

Show more

Jul 2023 • Applied Physics Letters

Flexible planar Hall effect sensor with sub-200 pT resolution

Hariharan Nhalil, Daniel Lahav, Moty Schultz, Shai Amrusi, Asaf Grosz, Lior Klein

Flexible sensors are important for applications, such as wearable medical devices, soft robotics, and more, as they can easily conform to soft and irregularly shaped surfaces. This study presents elliptical planar Hall effect magnetic sensors fabricated on a polyamide tape with an equivalent magnetic noise (EMN) better than 200 pT/ffiffiffiffiffiffi Hz p. The sensor is characterized in flat and bent states with a bent radius of 10 mm. An EMN of 200 and 400 pT/ffiffiffiffiffiffi Hz p in flat and bent states, respectively, is achieved at a frequency of 100 Hz. The remarkable EMN combined with a simple, low-cost fabrication process makes these sensors a promising candidate for flexible electronics.

Show more

Jul 2023 • Physical Review B

Proximitized insulators from disordered superconductors

Moshe Haim, David Dentelski, Aviad Frydman

We present an experimental study of bilayers of a disordered Ag metal layer close to the metal-insulator transition and an indium-oxide film which is on the insulating side of the superconductor insulator transition. Our results show that superconducting fluctuations within the indium-oxide film, that proximitize the underlying metal layer, induce insulating rather than superconducting behavior. This is ascribed to suppression of density of states (due to the superconducting energy gap) for quasiparticles in the proximitized regions. Our results present a manifestation of the proximity effect phenomenon and provide important insight into the nature of the insulating phase of the disorder driven superconductor insulator transition.

Show more

Jun 2023 • arXiv preprint arXiv:2306.16209

Efficient Reduction of Casimir Forces by Self-assembled Bio-molecular Thin Films

René IP Sedmik, Alexander Urech, Zeev Zalevsky, Itai Carmeli

Casimir forces, related to London-van der Waals forces, arise if the spectrum of electromagnetic fluctuations is restricted by boundaries. There is great interest both from fundamental science and technical applications to control these forces on the nano scale. Scientifically, the Casimir effect being the only known quantum vacuum effect manifesting between macroscopic objects, allows to investigate the poorly known physics of the vacuum. In this work, we experimentally investigate the influence of self-assembled molecular bio and organic thin films on the Casimir force between a plate and a sphere. We find that molecular thin films, despite being a mere few nanometers thick, reduce the Casimir force by up to 14%. To identify the molecular characteristics leading to this reduction, five different bio-molecular films with varying chemical and physical properties were investigated. Spectroscopic data reveal a broad absorption band whose presence can be attributed to the mixing of electronic states of the underlying gold layer and those of the molecular film due to charge rearrangement in the process of self-assembly. Using Lifshitz theory we calculate that the observed change in the Casimir force is consistent with the appearance of the new absorption band due to the formation of molecular layers. The desired Casimir force reduction can be tuned by stacking several monolayers, using a simple self-assembly technique in a solution. The molecules - each a few nanometers long - can penetrate small cavities and holes, and cover any surface with high efficiency. This process seems compatible with current methods in the production of micro …

Show more

Jun 2023 • ImmunoInformatics

AIRR community curation and standardised representation for immunoglobulin and T cell receptor germline sets

William D Lees, Scott Christley, Ayelet Peres, Justin T Kos, Brian Corrie, Duncan Ralph, Felix Breden, Lindsay G Cowell, Gur Yaari, Martin Corcoran, Gunilla B Karlsson Hedestam, Mats Ohlin, Andrew M Collins, Corey T Watson, Christian E Busse, The AIRR Community

Analysis of an individual's immunoglobulin or T cell receptor gene repertoire can provide important insights into immune function. High-quality analysis of adaptive immune receptor repertoire sequencing data depends upon accurate and relatively complete germline sets, but current sets are known to be incomplete. Established processes for the review and systematic naming of receptor germline genes and alleles require specific evidence and data types, but the discovery landscape is rapidly changing. To exploit the potential of emerging data, and to provide the field with improved state-of-the-art germline sets, an intermediate approach is needed that will allow the rapid publication of consolidated sets derived from these emerging sources. These sets must use a consistent naming scheme and allow refinement and consolidation into genes as new information emerges. Name changes should be minimised, but …

Show more

Jun 2023 • arXiv preprint arXiv:2206.11783

Kirkwood-Dirac quasiprobability approach to the statistics of incompatible observables

Matteo Lostaglio, Alessio Belenchia, Amikam Levy, Santiago Hernández-Gómez, Nicole Fabbri, Stefano Gherardini

Recent work has revealed the central role played by the Kirkwood-Dirac quasiprobability (KDQ) as a tool to encapsulate non-classical features in the context of condensed matter physics (scrambling, dynamical phase transitions) metrology (standard and post-selected), thermodynamics (power output and fluctuation theorems), foundations (contextuality, anomalous weak values) and more. Given the growing relevance of the KDQ across the quantum sciences, the aim of this work is two-fold: first, we clarify the role played by quasiprobabilities in characterising dynamical fluctuations in the presence of measurement incompatibility, and highlight how the KDQ naturally underpins and unifies quantum correlators, quantum currents, Loschmidt echoes and weak values; second, we discuss several schemes to access the KDQ and its non-classicality features, and assess their experimental feasibility in NMR and solid-state platforms. Finally, we analyze the possibility of a `thermodynamics with quasiprobabilities' in the light of recent no-go theorems limiting traditional treatments.

Show more

Jun 2023 • Journal of hazardous materials

Soil adsorption and transport of lead in the presence of perovskite solar cell-derived organic cations

Arindam Mallick, Rene D Mendez Lopez, Gilboa Arye, David Cahen, Iris Visoly-Fisher

Perovskite photovoltaics offer a highly efficient and low-cost solar energy harvesting technology. However, the presence of lead (Pb) cations in photovoltaic halide perovskite (HaPs) materials is concerning, and quantifying the environmental hazard of accidental Pb2+ leaching into the soil is crucial for assessing the sustainability of this technology. Pb2+ from inorganic salts was previously found to remain in the upper soil layers due to adsorption. However, Pb-HaPs contain additional organic and inorganic cations, and competitive cation adsorption may affect Pb2+ retention in soils. Therefore, we measured, analyzed by simulations and report the depths to which Pb2+ from HaPs penetrates into 3 types of agricultural soil. Most of the HaP-leached Pb2+ is found to be retained already in the first cm of the soil columns, and subsequent rain events do not induce Pb2+ penetration below the first few cm of soil surface …

Show more

Jun 2023 • Developmental Cell

Genetic perturbation of AMP biosynthesis extends lifespan and restores metabolic health in a naturally short-lived vertebrate

Gwendoline Astre, Tehila Atlan, Uri Goshtchevsky, Adi Oron-Gottesman, Margarita Smirnov, Kobi Shapira, Ariel Velan, Joris Deelen, Tomer Levy, Erez Y Levanon, Itamar Harel

During aging, the loss of metabolic homeostasis drives a myriad of pathologies. A central regulator of cellular energy, the AMP-activated protein kinase (AMPK), orchestrates organismal metabolism. However, direct genetic manipulations of the AMPK complex in mice have, so far, produced detrimental phenotypes. Here, as an alternative approach, we alter energy homeostasis by manipulating the upstream nucleotide pool. Using the turquoise killifish, we mutate APRT, a key enzyme in AMP biosynthesis, and extend the lifespan of heterozygous males. Next, we apply an integrated omics approach to show that metabolic functions are rejuvenated in old mutants, which also display a fasting-like metabolic profile and resistance to high-fat diet. At the cellular level, heterozygous cells exhibit enhanced nutrient sensitivity, reduced ATP levels, and AMPK activation. Finally, lifelong intermittent fasting abolishes the longevity …

Show more

Jun 2023 • Molecules

Stable High-Capacity Elemental Sulfur Cathodes with Simple Process for Lithium Sulfur Batteries

Shunsuke Sawada, Hideki Yoshida, Shalom Luski, Elena Markevich, Gregory Salitra, Yuval Elias, Doron Aurbach

Lithium sulfur batteries are suitable for drones due to their high gravimetric energy density (2600 Wh/kg of sulfur). However, on the cathode side, high specific capacity with high sulfur loading (high areal capacity) is challenging due to the poor conductivity of sulfur. Shuttling of Li-sulfide species between the sulfur cathode and lithium anode also limits specific capacity. Sulfur-carbon composite active materials with encapsulated sulfur address both issues but require expensive processing and have low sulfur content with limited areal capacity. Proper encapsulation of sulfur in carbonaceous structures along with active additives in solution may largely mitigate shuttling, resulting in cells with improved energy density at relatively low cost. Here, composite current collectors, selected binders, and carbonaceous matrices impregnated with an active mass were used to award stable sulfur cathodes with high areal specific capacity. All three components are necessary to reach a high sulfur loading of 3.8 mg/cm2 with a specific/areal capacity of 805 mAh/g/2.2 mAh/cm2. Good adhesion between the carbon-coated Al foil current collectors and the composite sulfur impregnated carbon matrices is mandatory for stable electrodes. Swelling of the binders influenced cycling retention as electroconductivity dominated the cycling performance of the Li-S cells comprising cathodes with high sulfur loading. Composite electrodes based on carbonaceous matrices in which sulfur is impregnated at high specific loading and non-swelling binders that maintain the integrated structure of the composite electrodes are important for strong performance. This basic design can …

Show more

Jun 2023 • arXiv preprint arXiv:2306.16702

Monte Carlo Simulations for Ghost Imaging Based on Scattered Photons

RH Shukrun, S Shwartz

X-ray based imaging modalities are widely used in research, industry, and in the medical field. Consequently, there is a strong motivation to improve their performances with respect to resolution, dose, and contrast. Ghost imaging (GI) is an imaging technique in which the images are reconstructed from measurements with a single-pixel detector using correlation between the detected intensities and the intensity structures of the input beam. The method that has been recently extended to X-rays provides intriguing possibilities to overcome several fundamental challenges of X-ray imaging. However, understanding the potential of the method and designing X-ray GI systems pose challenges since in addition to geometric optic effects, radiation-matter interactions must be considered. Such considerations are fundamentally more complex than those at longer wavelengths as relativistic effects such as Compton scattering become significant. In this work we present a new method for designing and implementing GI systems using the particle transport code FLUKA, that rely on Monte Carlo (MC) sampling. This new approach enables comprehensive consideration of the radiation-matter interactions, facilitating successful planning of complex GI systems. As an example of an advanced imaging system, we simulate a high-resolution scattered photons GI technique.

Show more

Jun 2023 • arXiv preprint arXiv:2306.16258

Synchrotron-based x ray fluorescence ghost imaging

Mathieu Manni, Adi Ben-Yehuda, Yishay Klein, Bratislav Lukic, Andrew Kingston, Alexander Rack, Sharon Shwartz, Nicola Viganò

X-ray Fluorescence Ghost Imaging (XRF-GI) was recently demonstrated for x-ray lab sources. It has the potential to reduce acquisition time and deposited dose by choosing their trade-off with spatial resolution, while alleviating the focusing constraints of the probing beam. Here, we demonstrate the realization of synchrotron-based XRF-GI: We present both an adapted experimental setup and its corresponding required computational technique to process the data. This not only extends the above-mentioned advantages to synchrotron XRF imaging, it also presents new possibilities for developing strategies to improve precision in nano-scale imaging measurements.

Show more

Jun 2023 • Journal of Power Sources

Zn-enriched cathode layer interface via atomic surface reduction of LiNi0. 5Mn1. 5O4: Computational and experimental insights

Shubham Garg, Sarah Taragin, Arka Saha, Olga Brontvein, Kevin Leung, Malachi Noked

Despite having the ability to deliver 650 W h kg−1 in addition to the impressive rate capability, superior thermal stability, and facilitated electronic and ionic lithium conduction, LiNi0.5Mn1.5O4 (LNMO) is far from commercial applications. LNMO suffers from irreversible electrolytic degradation on its surface under high voltage operations leading to capacity fading and poor battery life. Therefore, this work aims to improve the stability and electrochemical behavior of LNMO by creating a Zn-enriched cathode layer interface via eccentric and facile diethyl zinc-assisted atomic surface reduction (Zn-ASR). In-depth surface characterization tools and computational calculations demonstrates a conformal 7-8 nm thin Zn-O and C-O enriched layer encapsulating the cathode particles resulting from Zn-ASR. The intensive comparative electrochemical and spectroscopic analysis, indicates superior electrochemical performance of …

Show more

Jun 2023 • Preprints, 2023

Isothermal Titration Calorimetry: The Heat of Dilution, Racemization, and What Lies In Between

Matan Oliel, Yitzhak Mastai

Chiral interactions play a crucial role in both chemistry and biology. Understanding the behavior of chiral molecules and their interactions with other molecules is essential, and chiral interactions in solutions are particularly important for studying chiral compounds. Chirality influences the physical and chemical properties of molecules, including solubility, reactivity, and biological activity. In this work, we used Isothermal Titration Calorimetry (ITC), a powerful technique for studying molecular interactions, including chiral interactions in solutions. We conducted a series of ITC measurements to investigate the heat of dilution and the heat of racemization of several amino acids (Asn, His, Ser, Ala, Met, and Phe). We also performed ITC measurements under different solute concentrations and temperatures to examine the effects of these parameters on chiral interactions, as well as the heat of dilution and racemization. The results of our measurements indicated that the heat of dilution, specifically the interactions between the solvent (water) and solute (chiral molecules), had a significant impact compared to the chiral interactions in the solution, which were found to be negligible. This suggests that the interactions between chiral molecules and the solvent play a more dominant role in determining the overall behavior and properties of the system. By studying chiral interactions in solutions, we can gain valuable insights into the behavior of chiral compounds, which can have implications in various fields, including drug design, chemical synthesis, and biological processes.

Show more

logo
Articali

Powered by Articali

TermsPrivacy