BINA

4140 articles

77 publishers

Join mailing list

Oct 2023 • 244th ECS Meeting (October 8-12, 2023), 2023

G01-ALD for Thermoelectrics

Oscar van der Straten, Andrea Illiberi, Malachi Noked

Show more

Oct 2023 • 244th ECS Meeting (October 8-12, 2023)

Performance and Stability of Carbon-Based Cathodes in Non-Alkaline Zn-Air Batteries

Roman R Kapaev, Amit Ohayon, Masato Sonoo, Malachi Noked


Oct 2023 • Sensors

Optical Multimode Fiber-Based Pipe Leakage Sensor Using Speckle Pattern Analysis

Jonathan Philosof, Yevgeny Beiderman, Sergey Agdarov, Yafim Beiderman, Zeev Zalevsky

Water is an invaluable resource quickly becoming scarce in many parts of the world. Therefore, the importance of efficiency in water supply and distribution has greatly increased. Some of the main tools for limiting losses in supply and distribution networks are leakage sensors that enable real-time monitoring. With fiber optics recently becoming a commodity, along with the sound advances in computing power and its miniaturization, multipurpose sensors relying on these technologies have gradually become common. In this study, we explore the development and testing of a multimode optic-fiber-based pipe monitoring and leakage detector based on statistical and machine learning analyses of speckle patterns captured from the fiber’s outlet by a defocused camera. The sensor was placed inside or over a PVC pipe with covered and exposed core configurations, while 2 to 8 mm diameter pipe leaks were simulated under varied water flow and pressure. We found an overall leak size determination accuracy of 75.8% for a 400 µm covered fiber and of 68.3% for a 400 µm exposed fiber and demonstrated that our sensor detected pipe bursts, outside interventions, and shocks. This result was consistent for the sensors fixed inside and outside the pipe with both covered and exposed fibers.

Show more

Oct 2023 • Molecular Therapy-Nucleic Acids

Progress and harmonization of gene editing to treat human diseases: Proceeding of COST Action CA21113 GenE-HumDi

Alessia Cavazza, Ayal Hendel, Rasmus O Bak, Paula Rio, Marc Güell, Duško Lainšček, Virginia Arechavala-Gomeza, Ling Peng, Fatma Zehra Hapil, Joshua Harvey, Francisco G Ortega, Coral Gonzalez-Martinez, Carsten W Lederer, Kasper Mikkelsen, Giedrius Gasiunas, Nechama Kalter, Manuel AFV Gonçalves, Julie Petersen, Alejandro Garanto, Lluis Montoliu, Marcello Maresca, Stefan E Seemann, Jan Gorodkin, Loubna Mazini, Rosario Sanchez, Juan R Rodriguez-Madoz, Noelia Maldonado-Pérez, Torella Laura, Michael Schmueck-Henneresse, Cristina Maccalli, Julian Grünewald, Gloria Carmona, Neli Kachamakova-Trojanowska, Annarita Miccio, Francisco Martin, Giandomenico Turchiano, Toni Cathomen, Yonglun Luo, Shengdar Q Tsai, Karim Benabdellah

The European Cooperation in Science and Technology (COST) is an intergovernmental organization dedicated to funding and coordinating scientific and technological research in Europe, fostering collaboration among researchers and institutions across countries. Recently, COST Action funded the "Genome Editing to treat Human Diseases" (GenE-HumDi) network, uniting various stakeholders such as pharmaceutical companies, academic institutions, regulatory agencies, biotech firms, and patient advocacy groups. GenE-HumDi's primary objective is to expedite the application of genome editing for therapeutic purposes in treating human diseases. To achieve this goal, GenE-HumDi is organized in several working groups, each focusing on specific aspects. These groups aim to enhance genome editing technologies, assess delivery systems, address safety concerns, promote clinical translation, and develop …

Show more

Oct 2023 • 244th ECS Meeting (October 8-12, 2023), 2023

G01-Molecular Layer Deposition

Oana Leonte, Oscar van der Straten, Malachi Noked


Oct 2023 • Chemistry of Materials

Theoretical Insights into High-Entropy Ni-Rich Layered Oxide Cathodes for Low-Strain Li-Ion Batteries

Amreen Bano, Malachi Noked, Dan Thomas Major

Ni-rich, Co-free layered oxide cathode materials are promising candidates for next-generation Li-ion batteries due to their high energy density. However, these cathode materials suffer from rapid capacity fading during electrochemical cycling. To overcome this shortcoming, so-called high-entropy (HE) materials, which are obtained by incorporating multiple dopants, have been suggested. Recent experimental work has shown that HE Ni-rich cathode materials can offer excellent capacity retention on cycling, although a thorough rationale for this has yet to be provided. Here, we present classical and first-principles calculations to elucidate the salient features of HE layered oxides as cathode materials in Li-ion batteries. We suggest that a combination of five prime factors may be responsible for the enhanced performance of HE Ni-rich layered oxide cathode materials over other Ni-rich cathodes: (1) low crystal lattice …

Show more

Oct 2023 • 244th ECS Meeting (October 8-12, 2023)

Employing a Thin Artificial CEI Layer on Na3V2 (PO4)2F3-2xO2x (0 < x < 1) by Atomic Layer Deposition; Structure Stabilization and Capacity Enhancement

Sankalpita Chakrabarty, Ayan Mukherjee, Malachi Noked


Oct 2023 • ACS Omega

Revealing the DNA Binding Modes of CsoR by EPR Spectroscopy

Yasmin Igbaria-Jaber, Lukas Hofmann, Lada Gevorkyan-Airapetov, Yulia Shenberger, Sharon Ruthstein

In pathogens, a unique class of metalloregulator proteins, called gene regulatory proteins, sense specific metal ions that initiate gene transcription of proteins that export metal ions from the cell, thereby preventing toxicity and cell death. CsoR is a metalloregulator protein found in various bacterial systems that “sense” Cu(I) ions with high affinity. Upon copper binding, CsoR dissociates from the DNA promoter region, resulting in initiation of gene transcription. Crystal structures of CsoR in the presence and absence of Cu(I) from various bacterial systems have been reported, suggesting either a dimeric or tetrameric structure of these helical proteins. However, structural information about the CsoR-DNA complex is missing. Here, we applied electron paramagnetic resonance (EPR) spectroscopy to follow the conformational and dynamical changes that Mycobacterium tuberculosis CsoR undergoes upon DNA binding in …

Show more

Oct 2023 • Nature Communications

CRISPR-Cas9 engineering of the RAG2 locus via complete coding sequence replacement for therapeutic applications

Daniel Allen, Orli Knop, Bryan Itkowitz, Nechama Kalter, Michael Rosenberg, Ortal Iancu, Katia Beider, Yu Nee Lee, Arnon Nagler, Raz Somech, Ayal Hendel

RAG2-SCID is a primary immunodeficiency caused by mutations in Recombination-activating gene 2 (RAG2), a gene intimately involved in the process of lymphocyte maturation and function. ex-vivo manipulation of a patient’s own hematopoietic stem and progenitor cells (HSPCs) using CRISPR-Cas9/rAAV6 gene editing could provide a therapeutic alternative to the only current treatment, allogeneic hematopoietic stem cell transplantation (HSCT). Here we show an innovative RAG2 correction strategy that replaces the entire endogenous coding sequence (CDS) for the purpose of preserving the critical endogenous spatiotemporal gene regulation and locus architecture. Expression of the corrective transgene leads to successful development into CD3+TCRαβ+ and CD3+TCRγδ+ T cells and promotes the establishment of highly diverse TRB and TRG repertoires in an in-vitro T-cell differentiation platform. Thus, our …

Show more

Oct 2023 • ACS Catalysis

Modular Iron–Bipyridine-Based Conjugated Aerogels as Catalysts for Oxygen Reduction Reaction

Leigh Peles-Strahl, Hilah C Honig, Yeela Persky, David A Cullen, Adi Dahan, Lior Elbaz

Aerogels have a large surface area and a porous structure, which make them an attractive catalyst support materials for fuel cells. Modifying the aerogels’ building blocks and introducing catalytic sites into their backbones allow them to function as both catalysts and supports, thereby increasing the density and distribution of catalyst active sites. In this work, we studied conjugated aerogels containing iron–bipyridine catalytic sites for the oxygen reduction reaction. To demonstrate the variation in physical and electrochemical properties of these aerogels, a series of aerogels were synthesized by a Glaser coupling reaction. Iron salt was added to the three-dimensional gel to produce iron–bipyridine complexes and obtain atomically dispersed catalytic sites. The electrocatalytic activity and electrical conductivity of the aerogels were increased after their heat treatment to yield Fe-doped carbon aerogels. The control of …

Show more

Oct 2023 • ACS nano

Triggering Gaussian-to-Exponential Transition of Displacement Distribution in Polymer Nanocomposites via Adsorption-Induced Trapping

Ming Hu, Hongbo Chen, Hongru Wang, Stanislav Burov, Eli Barkai, Dapeng Wang

In many disordered systems, the diffusion of classical particles is described by a displacement distribution P(x, t) that displays exponential tails instead of Gaussian statistics expected for Brownian motion. However, the experimental demonstration of control of this behavior by increasing the disorder strength has remained challenging. In this work, we explore the Gaussian-to-exponential transition by using diffusion of poly(ethylene glycol) (PEG) in attractive nanoparticle–polymer mixtures and controlling the volume fraction of the nanoparticles. In this work, we find “knobs”, namely nanoparticle concentration and interaction, which enable the change in the shape of P(x,t) in a well-defined way. The Gaussian-to-exponential transition is consistent with a modified large deviation approach for a continuous time random walk and also with Monte Carlo simulations involving a microscopic model of polymer trapping via …

Show more

Oct 2023 • Heliyon

Sonochemical treatment of packaging materials for prolonging fresh produce shelf life

Belal Abu Salha, Ilana Perelshtein, Aharon Gedanken

Packaging bags made of polyethylene (PE) were sonochemically coated with edible antibacterial nanoparticles of chitosan (CS). In this work, the nanoparticles (NPs) were deposited on the surface of PE packaging bags by applying sonication waves on an acetic solution of chitosan. The characterization of CS NPs and PE bags was conducted by physicochemical techniques. The results showed that the coated bags had longer freshness than the uncoated ones. Furthermore, the characterization of cucumber, mushroom, and garlic placed into coated and uncoated PE bags was conducted by monitoring various parameters such as mass loss, total soluble solids, pH, and visual inspection. The study revealed that the PE bags coated with CS NPs showed a noticeable result in extending the shelf life of fresh produce. Finally, the antibacterial activity of PE bags was evaluated against various bacterial species. Hence …

Show more

Oct 2023 • Journal of Energy Storage

Influence of strong bromine binding complexing agent in electrolytes on the performance of hydrogen/bromine redox flow batteries

Michael Küttinger, Kobby Saadi, Théo Faverge, Nagaprasad Reddy Samala, Ilya Grinberg, David Zitoun, Peter Fischer

1-n-Hexylpyridin-1-ium bromide [C6Py]Br is investigated in this work as bromine complexing agent (BCA) in aqueous bromine electrolytes on its influence on hydrogen bromine redox flow battery (H2/Br2-RFB) performance. [C6Py]+-cations bind bromine of aqueous polybromide solutions safely in an additional fused salt phase limiting the vapor pressure of Br2. Dissolved in aqueous electrolyte solutions, however, [BCA]+ cations drastically lower PFSA membranes' conductivity in the H2/Br2-RFB. In this work the combination of the very strong bromine-binding [C6Py]+cation and an excess of bromine in the electrolyte lead to an almost complete absorption of 99.6 mol% [C6Py]+ into the fused salt within the electrolyte's operation range. In comparison to similar application of short side chain 1-ethylpyridinium bromide, adverse effects are stronger compensated by use of [C6Py]Br. Increases in membrane resistance of …

Show more

Oct 2023 • ACS nano

ZnO quantum photoinitiators as an all-in-one solution for multifunctional photopolymer nanocomposites

Tom Naor, Shira Gigi, Nir Waiskopf, Gila Jacobi, Sivan Shoshani, Doron Kam, Shlomo Magdassi, Ehud Banin, Uri Banin


Oct 2023 • Quantum

Kirkwood-Dirac quasiprobability approach to the statistics of incompatible observables

Matteo Lostaglio, Alessio Belenchia, Amikam Levy, Santiago Hernández-Gómez, Nicole Fabbri, Stefano Gherardini

Recent work has revealed the central role played by the Kirkwood-Dirac quasiprobability (KDQ) as a tool to properly account for non-classical features in the context of condensed matter physics (scrambling, dynamical phase transitions) metrology (standard and post-selected), thermodynamics (power output and fluctuation theorems), foundations (contextuality, anomalous weak values) and more. Given the growing relevance of the KDQ across the quantum sciences, our aim is two-fold: First, we highlight the role played by quasiprobabilities in characterizing the statistics of quantum observables and processes in the presence of measurement incompatibility. In this way, we show how the KDQ naturally underpins and unifies quantum correlators, quantum currents, Loschmidt echoes, and weak values. Second, we provide novel theoretical and experimental perspectives by discussing a wide variety of schemes to access the KDQ and its non-classicality features.

Show more

Oct 2023 • Angewandte Chemie International Edition

Polymeric Carbon nitride with chirality inherited from supramolecular assemblies

Adi Azoulay, Sapir Shekef Aloni, Lidan Xing, Ayelet Tashakory, Yitzhak Mastai, Menny Shalom

The facile synthesis of chiral materials is of paramount importance for various applications. Supramolecular preorganization of monomers for thermal polymerization has been proven as an effective tool to synthesize carbon and carbon nitride‐based (CN) materials with ordered morphology and controlled properties. However, the transfer of an intrinsic chemical property, such as chirality from supramolecular assemblies to the final material after thermal condensation, was not shown. Here, we report the large‐scale synthesis of chiral CN materials capable of enantioselective recognition. To achieve this, we designed supramolecular assemblies with a chiral center that remains intact at elevated temperatures. The optimized chiral CN demonstrates an enantiomeric preference of ca. 14 %; CN electrodes were also prepared and show stereoselective interactions with enantiomeric probes in electrochemical …

Show more

Oct 2023 • Colloids and Surfaces B: Biointerfaces

Siliplant1 B-domain precipitates silica spheres, aggregates, or gel, depending on Si-precursor to peptide ratios

Vincent Otieno Ayieko, Lilian Cohen, Sabrina Diehn, Gil Goobes, Rivka Elbaum

Silica is extensively deposited by plants, however, only little is known about the molecular control over this process. Siliplant1 is the only known plant protein to precipitate biosilica. The protein contains seven repeats made of three domains. One of the domains exhibits a conserved sequence, which catalyzes silica precipitation in vitro. Here, silica was synthesized by the activity of a peptide carrying this conserved sequence. Infrared spectroscopy and thermal gravimetric analyses showed that the peptide was bound to the mineral. Scanning electron microscopy showed that silica-peptide particles of 22 ± 4 nm aggregated to spherical structures of 200 - 300 nm when the ratio of silicic acid to the peptide was below 183:1 molecules. When the ratio was about 183:1, similar particles aggregated into irregular structures, and silica gel formed at higher ratios. Solid-state NMR spectra indicated that the irregular aggregates …

Show more

Oct 2023

How synchronized human networks escape local minima

Moti Fridman, Elad Shniderman, Yahav Avraham, Shir Shahal, Hamootal Duadi, Nir Davidson

Finding the global minimum in complex networks while avoiding local minima is challenging in many types of networks. We study the dynamics of complex human networks and observed that humans have different methods to avoid local minima than other networks. Humans can change the coupling strength between them or change their tempo. This leads to different dynamics than other networks and makes human networks more robust and better resilient against perturbations. We observed high-order vortex states, oscillation death, and amplitude death, due to the unique dynamics of the network. This research may have implications in politics, economics, pandemic control, decision-making, and predicting the dynamics of networks with artificial intelligence.

Show more

Oct 2023 • Nano Letters

Unveiling Local Optical Properties Using Nanoimaging Phase Mapping in High-Index Topological Insulator Bi2Se3 Resonant Nanostructures

Sukanta Nandi, Shany Z Cohen, Danveer Singh, Michal Poplinger, Pilkhaz Nanikashvili, Doron Naveh, Tomer Lewi

Topological insulators are materials characterized by an insulating bulk and high mobility topologically protected surface states, making them promising candidates for future optoelectronic and quantum devices. Although their electronic properties have been extensively studied, their mid-infrared (MIR) properties and prospective photonic capabilities have not been fully uncovered. Here, we use a combination of far-field and near-field nanoscale imaging and spectroscopy to study chemical vapor deposition-grown Bi2Se3 nanobeams (NBs). We extract the MIR optical constants of Bi2Se3, revealing refractive index values as high as n ∼ 6.4, and demonstrate that the NBs support Mie resonances across the MIR. Local near-field reflection phase mapping reveals domains of various phase shifts, providing information on the local optical properties of the NBs. We experimentally measure up to 2π phase-shift across the …

Show more

Oct 2023 • Chemistry of Materials

Theoretical insights into high-entropy Ni-Rich layered oxide cathodes for low-strain li-ion batteries

Amreen Bano, Malachi Noked, Dan Thomas Major

Ni-rich, Co-free layered oxide cathode materials are promising candidates for next-generation Li-ion batteries due to their high energy density. However, these cathode materials suffer from rapid capacity fading during electrochemical cycling. To overcome this shortcoming, so-called high-entropy (HE) materials, which are obtained by incorporating multiple dopants, have been suggested. Recent experimental work has shown that HE Ni-rich cathode materials can offer excellent capacity retention on cycling, although a thorough rationale for this has yet to be provided. Here, we present classical and first-principles calculations to elucidate the salient features of HE layered oxides as cathode materials in Li-ion batteries. We suggest that a combination of five prime factors may be responsible for the enhanced performance of HE Ni-rich layered oxide cathode materials over other Ni-rich cathodes: (1) low crystal lattice …

Show more

logo
Articali

Powered by Articali

TermsPrivacy