Apr 2022 • Scientific Reports
Nadav Shabairou, Maor Tiferet, Zeev Zalevsky, Moshe Sinvani
We report here on focusing of a probe IR (λ= 1.55 μm) laser beam in silicon. The focusing is done by a second pump laser beam, at λ= 0.775 μm and 30 ps pulse width, with a donut shape that is launched collinearly and simultaneously (with some delay time) with the IR beam pulse. The pump beam pulse is absorbed in the silicon and creates, temporally, a free charge carriers (FCCs) donut pattern in the silicon. Following the plasma dispersion effect, the donut FCCs shapes a complex index of refraction pattern in the silicon that serves as a sort of dynamic GRIN lens for the probe beam due to the diffusion of the FCCs towards the donut center. This lens can be tuned to its focal point by the pump-probe delay time to reduce the point spread function (PSF) of the IR probe beam. We start seeing the focusing of the probe beam at pump-probe delay time of. The best focusing (results in PSF) was observed at …
Show moreApr 2022 • ACS Applied Materials & Interfaces
Shanmugasundaram Manoj, Hari Krishna Sadhanala, Ilana Perelshtein, Aharon Gedanken
Supercapacitors are considered potential energy storage devices and have drawn significant attention due to their superior intrinsic advantages. Herein, we report the synthesis of ReS2 embedded in MoS2 nanosheets (RMS-31) by a hydrothermal technique. The prepared RMS-31 electrode material demonstrated superior pseudocapacitive behavior in 1 M KOH electrolyte solution, which is confirmed by the heterostructure of RMS-31 nanosheet architectures. RMS-31 has a specific capacitance of 244 F g–1 at a current density of 1 A g–1 and a greater areal capacitance of 540 mF cm–2 at a current density of 5 mA cm–2. The symmetric supercapacitor device with the RMS-31 electrode delivers an energy density of 28 W h cm–2 with a power density of 1 W cm–2 and reveals long-term stability at a constant current density of 5 mA cm–2 for 10,000 cycles while accomplishing a retention of 66.5%. The high performance …
Show moreApr 2022 • Scientific Reports
Abhijit Sanjeev, Vismay Trivedi, Zeev Zalevsky
Light propagating along a reversed path experiences the same transmission coefficient as in the forward direction, independent of the path complexity. This is called the optical reciprocity of light, which is valid for not too intense scattering media as well. Hence, by utilizing the reciprocity principle, the proposed novel technique can achieve axially and laterally tunable focus, non-invasively, through a scattering media without a priori knowledge or modeling of its scattering properties. Moreover, the uniqueness of the proposed technique lies in the fact that the illumination and detection are on the same side of the scattering media.
Show moreApr 2022 • JOSA A
Maor Laufer, Zeev Zalevsky
In this paper, we show an enhancement of a super-resolution field of view multiplexing approach that, in addition to overcoming the diffraction related resolution limitation while sacrificing the field of view, also allows generating geometric super-resolution by creating sub-pixel shifts versus time. Thus, the proposed approach is both field of view as well as time multiplexing super-resolution, and it overcomes the resolution limits of both the diffraction and geometric limitation of spatial sampling caused by the stringent size of a camera’s pixels.
Show moreApr 2022 • Minimally Invasive Therapy & Allied Technologies
Koby Goren, Neelam Neelam, Jonathan B Yuval, Daniel J Weiss, Nikolai Kunicher, Shlomo Margel, Yoav Mintz
Introduction In non-resectable tumors, chemotherapy is crucial to improve patient survival. However, it is often accompanied by considerable side effects. Targeted delivery of chemotherapy by coupling with iron oxide superparamagnetic nanoparticles (IONP) could potentially increase efficacy while decreasing adverse systemic side effects. We aimed to evaluate the feasibility of targeting nontoxic, biodegradable-IONP into tumors in-vivo by applying an external magnetic field.Material and methods Subcutaneous colon carcinoma tumors were induced in 35 mice. IONP was injected systemically, followed by suturing of a magnet on top of the tumors for 2–24 h. Tumors and livers were excised and stained for iron to explore IONP localization.Results Iron staining was evident in 43% and 20% of tumors exposed to magnets for 4 h or 24 h, respectively. No iron was present following 2 h exposure, nor in the control …
Show moreApr 2022 • ACS Agricultural Science & Technology
Eyal Malka, Aviv Dombrovsky, Shlomo Margel
Damage and loss of crops and plants caused by pathogens are global problems that have major effects on the food supply of many countries. Environmentally friendly viricide approaches are gaining in popularity to combat these problems. This study proposes the use of environmentally friendly hydrogen peroxide (HP) as a pesticide entrapped in a poly(vinyl alcohol) (PVA)/polyvinylpyrrolidone (PVP) hydrogel for controlled release in agricultural applications. The hydrogel was prepared as a matrix of PVA and PVP containing HP. Freeze–thaw cycles of the PVA/PVP/HP hydrogel improve the mechanical properties and thereby decrease the HP release rate. The hydrogel chemical composition, morphology, and HP release rate through direct and indirect (gas phase) contact were investigated. Viricide capabilities were tested, indicating a high efficiency against ToBRFV on tobacco and tomato plants. Additionally, low …
Show moreApr 2022 • Nature Communications
Hugh S Gannon, Tao Zou, Michael K Kiessling, Galen F Gao, Diana Cai, Peter S Choi, Alexandru P Ivan, Ilana Buchumenski, Ashton C Berger, Jonathan T Goldstein, Andrew D Cherniack, Francisca Vazquez, Aviad Tsherniak, Erez Y Levanon, William C Hahn, Matthew Meyerson
The original version of the Supplementary Information associated with this Article contained an error in Supplementary Fig. 4a. In Supplementary Fig. 4a the labels “ADAR KO sensitive” and “ADAR KO insensitive” at the top of the immunoblots were mistakenly swapped. The HTML version of the Article has been updated to include a corrected version of the Supplementary Information.
Show moreApr 2022 • arXiv preprint arXiv:2204.04177
Ismael L Paiva, Amit Te'eni, Bar Peled, Eliahu Cohen, Yakir Aharonov
Recently, there have been many attempts to extend the notion of proper time to quantum mechanics with the use of quantum clocks. Using a similar idea combined with the relativistic mass-energy equivalence, we consider an accelerating massive quantum particle with an internal clock system. We show that the ensuing evolution from the perspective of the particle's internal clock is non-Hermitian. This result does not rely on specific implementations of the clock. As a particular consequence, we prove that the effective Hamiltonian of two gravitationally interacting particles is non-Hermitian from the perspective of the clock of either particle.
Show moreApr 2022 • Optics Express
Ariel Halevi, Nairouz Farah, Nisan Ozana, Sharon Cohen, Assaf Shoval, Orit Shefi, Yossi Mandel, Zeev Zalevsky
Label free and remote action potential detection in neurons can be of great importance in the neuroscience research field. This paper presents a novel label free imaging modality based on the detection of temporal vibrations of speckle patterns illuminating the sample. We demonstrated the feasibility of detecting action potentials originating from spontaneous and stimulated activity in cortical cell culture. The spatiotemporal vibrations of isolated cortical cells were extracted by illuminating the culture with a laser beam while the vibrations of the random back scattered secondary speckle patterns are captured by a camera. The postulated action potentials were estimated following correlation-based analysis on the captured vibrations, where the variance deviation of the signal from a Gaussian distribution is directly associated with the action potential events. The technique was validated in a series of experiments in which the optical signals were acquired concurrently with microelectrode array (MEA) recordings. Our results demonstrate the ability of detecting action potential events in mammalian cells remotely via extraction of acoustic vibrations.
Show moreApr 2022 • arXiv preprint arXiv:2204.04657
Gal Tuvia, Sapir Weitz Sobelman, Shay Sandik, Beena Kalisky, Yoram Dagan
Ferroelectric and ferromagnetic orders rarely coexist, and magnetoelectric coupling is even more scarce. A possible avenue for combining these orders is by interface design, where orders formed at the constituent materials can overlap and interact. Using a combination of magneto-transport and scanning SQUID measurements, we explore the interactions between ferroelectricity, magnetism, and the 2D electron system (2DES) formed at the novel LaAlO/EuTiO/SrCaTiO heterostructure. We find that the electrons at the interface experience magnetic scattering appearing along with a diverging Curie-Weiss-type behaviour in the EuTiO layer. The 2DES is also affected by the switchable ferroelectric polarization at the SrCaTiO bulk. While the 2DES interacts with both magnetism and ferroelectricity, we show that the presence of the conducting electrons has no effect on magnetization in the EuTiO layer. Our results provide a first step towards realizing a new multiferroic system where magnetism and ferroelectricity can interact via an intermediate conducting layer.
Show moreApr 2022 • NATURE COMMUNICATIONS
Hugh S Gannon, Tao Zou, Michael K Kiessling, Galen F Gao, Diana Cai, Peter S Choi, Alexandru P Ivan, Ilana Buchumenski, Ashton C Berger, Jonathan T Goldstein, Andrew D Cherniack, Francisca Vazquez, Aviad Tsherniak, Erez Y Levanon, William C Hahn, Matthew Meyerson
Apr 2022 • Optics Express
Ariel Halevi, Nairouz Farah, Nisan Ozana, Sharon Cohen, Assaf Shoval, Orit Shefi, Yossi Mandel, Zeev Zalevsky
Label free and remote action potential detection in neurons can be of great importance in the neuroscience research field. This paper presents a novel label free imaging modality based on the detection of temporal vibrations of speckle patterns illuminating the sample. We demonstrated the feasibility of detecting action potentials originating from spontaneous and stimulated activity in cortical cell culture. The spatiotemporal vibrations of isolated cortical cells were extracted by illuminating the culture with a laser beam while the vibrations of the random back scattered secondary speckle patterns are captured by a camera. The postulated action potentials were estimated following correlation-based analysis on the captured vibrations, where the variance deviation of the signal from a Gaussian distribution is directly associated with the action potential events. The technique was validated in a series of experiments in which the optical signals were acquired concurrently with microelectrode array (MEA) recordings. Our results demonstrate the ability of detecting action potential events in mammalian cells remotely via extraction of acoustic vibrations.
Show moreApr 2022 • Journal of Colloid and Interface Science
Pilkhaz M Nanikashvili, Alexander V Butenko, Moshe Deutsch, Daeyeon Lee, Eli Sloutskin
Apr 2022 • arXiv preprint arXiv:2204.05342
Abhisek Samanta, Efrat Shimshoni, Daniel Podolsky
We study the effect of acoustic phonons on the quantum phase transition in the O() model. We develop a renormalization group analysis near (3+1) space-time dimensions and derive the RG equations using an -expansion. Our results indicate that when the number of flavors of the underlying O() model exceeds a critical number , the quantum transition remains second-order of the Wilson-Fisher type while, for , it is a weakly first-order transition. We characterize this weakly first-order transition by a length-scale , below which the behavior appears to be critical. At finite temperatures for , a tricritical point separates the weakly first-order and second-order transitions.
Show moreApr 2022 • ACS Applied Energy Materials
Prasant Kumar Nayak, Dhatshanamoorthy Boopathi, Elena Levi, Judith Grinblat, Yuval Elias, Boris Markovsky, Doron Aurbach
Li- and Mn-rich layered-spinel integrated cathodes exhibit a high specific capacity, ≥200 mAh g–1, in a wide potential range; however, the low initial capacity of Li[Ni1/3Mn2/3]O2 is a drawback for their application in Li-ion batteries. Two Al-doped layered-spinel Li[Ni0.33Mn0.63Al0.03]O2 and Li[Ni0.33Mn0.60Al0.06]O2 cathode materials which were synthesized by self-combustion reaction, having less monoclinic and more active spinel phases, could show a much higher initial capacity compared to the undoped reference material. These cathode materials exhibit an initial specific capacity of 188 mAh g–1 vs ∼110 mAh g–1 when cycled at 20 mA g–1 between 2.3 and 4.9 V vs Li. Their capacity gradually increases to 210 mAh g–1 during initial cycling in standard electrolyte solutions and stabilizes thereafter. The average discharge voltage decreases from around 3.6 to 3.2 V after 200 cycles. Electrochemical …
Show moreApr 2022 • Materials 15 (7), 2601, 2022
Nataliia Dudchenko, Shweta Pawar, Ilana Perelshtein, Dror Fixler
Magnetite nanoparticles with different surface coverages are of great interest for many applications due to their intrinsic magnetic properties, nanometer size, and definite surface morphology. Magnetite nanoparticles are widely used for different medical-biological applications while their usage in optics is not as widespread. In recent years, nanomagnetite suspensions, so-called magnetic ferrofluids, are applied in optics due to their magneto-optical properties. This review gives an overview of nanomagnetite synthesis and its properties. In addition, the preparation and application of magnetic nanofluids in optics, nanophotonics, and magnetic imaging are described.
Show moreApr 2022 • Sensors and Actuators B: Chemical
Hari Krishna Sadhanala, Saurav Aryal, Kusha Sharma, Ziv Orpaz, Shulamit Michaeli, Aharon Gedanken
The magnesium (Mg2+) ion is the second most abundant intracellular cation after potassium, and it is involved in a variety of biological processes and physiological functions. Because of the different effects which are dependent on Mg2+ ion concentration, it is critical to monitor Mg2+ ion levels in biological systems. Here, we report the hydrothermal synthesis of photoluminescent N-doped carbon dots (NCDs) using 4-Hydroxybenzaldehyde and 1, 2, 4, 5-benzenetetramine tetrahydrochloride as carbon and nitrogen sources, respectively. The as-synthesized NCDs demonstrated excitation dependent photoluminescence (PL) with a quantum yield of 16.2%. Because of water dispersibility and chelating functional groups, NCDs were used for highly selective detection of Mg2+ ions using ratiometric PL enhancement with a detection limit of 60 μM. Following that, based on highly biocompatibility and sensing of Mg2+ ions …
Show moreApr 2022 • Sensors
Matan Benyamin, Zeev Zalevsky
Remote detection of photoacoustic signals is a well desired ability, enabling to perform advanced imaging in scenarios where contact is not possible. Various unique solutions have been suggested, including a camera-based speckle contrast photoacoustic detection. In this manuscript, a significant upgrade to the camera-based speckle contrast approach is presented and experimentally demonstrated. This solution is based on all-optical vibration sensing setup. The technique is based on spectral estimation of speckle pattern contrast and relies on several pre-developed works. First, it relies on the suggested application of speckle contrast to vibration sensing, and then on the realization of intensity pattern spectral manipulation, using a shearing interferometer. The method is evaluated and compared to traditional contrast estimation, and demonstrated in several applications in various vibration frequency band such as photoacoustic signal analysis and phonocardiographic heart sounds. The method is also applicable to measuring contrast changes due to a general speckle changing behavior, rather than surface vibration alone.
Show moreApr 2022 • Sensors and Actuators B: Chemical
Hari Krishna Sadhanala, Saurav Aryal, Kusha Sharma, Ziv Orpaz, Shulamit Michaeli, Aharon Gedanken
The magnesium (Mg2+) ion is the second most abundant intracellular cation after potassium, and it is involved in a variety of biological processes and physiological functions. Because of the different effects which are dependent on Mg2+ ion concentration, it is critical to monitor Mg2+ ion levels in biological systems. Here, we report the hydrothermal synthesis of photoluminescent N-doped carbon dots (NCDs) using 4-Hydroxybenzaldehyde and 1, 2, 4, 5-benzenetetramine tetrahydrochloride as carbon and nitrogen sources, respectively. The as-synthesized NCDs demonstrated excitation dependent photoluminescence (PL) with a quantum yield of 16.2%. Because of water dispersibility and chelating functional groups, NCDs were used for highly selective detection of Mg2+ ions using ratiometric PL enhancement with a detection limit of 60 μM. Following that, based on highly biocompatibility and sensing of Mg2+ ions …
Show moreApr 2022 • Preprints, 2022
Romina Monzani, Mara Gagliardi, Nausicaa Clemente, Valentina Saverio, Elżbieta Pańczyszyn, Nissan Yissachar, Marco Corazzari
Background: IBD is a spectrum of pathologies characterized by dysregulated immune activation leading to uncontrolled response against intestinal, thus resulting in chronic gut inflammation and tissue damage. Due to its complexity, the molecular mechanisms responsible for disease onset and progression are still elusive, thus requiring intense research effort. In this context, the development of models recapitulating the etiopathology of IBD is critical. Methods: Colon from C57BL/6 or BALB/c mice were cultivated in a gut-ex-vivo system (GEVS), exposed 5h to DNBS 1, 5 or 2, 5 mg/ml, and the main hallmarkers of IBD were evaluated. Results: Gene expression analysis revealed a DNBS-induced: i) compromised Tight junction organization, responsible for tissue permeability dysregulation; induction of ER stress, and iii) tissue inflammation in colon of C57BL/6 mice. Moreover, the concomitant DNBS-induced apoptosis and ferroptosis pathways was evident in colon from both BALB/c and C57BL/6 mice. Conclusions: Overall, we have provided results demonstrating that GEVS is a consistent, reliable, and cost-effective system for modeling DNBS-induced IBD, useful for studying the onset and progression of human disease at the molecular level, while also reducing animal suffering.
Show moreApr 2022 • Nanoscale and Quantum Materials: From Synthesis and Laser Processing to …, 2022
Adamantia Logotheti, Symeon Papazoglou, Dimitris Kaltsas, Amaia Zurutuza, Amaia Pesquera, Doron Naveh, Leonidas Tsetseris, Ioanna Zergioti
Ιn the current work we will present the transfer hBN, MoS2 and Bi2Se3-xSx by using the Laser Induced Transfer technique on rigid and flexible substrates. We will exhibit the advantages of the certain technique, the resolution of the transferred pixels and the characterization methods such as Scanning Electron Microscopy, Raman spectroscopy and Atomic Force Microscopy. Furthermore, we will refer to the possible applications concerning the Bi2Se3-xSx and the hBN. Finally, we will support the experimental results with the corresponding theoretical results of ab initio Molecular Dynamics (AIMD) with main purpose to explain the detachment and the attachment of the 2D materials from the donor to the receiver substrate.
Show more