Feb 2023 • Nanophotonics
Adamantia Logotheti, Adi Levi, Doron Naveh, Leonidas Tsetseris, Ioanna Zergioti
Due to their atomic-scale thickness, handling and processing of two-dimensional (2D) materials often require multistep techniques whose complexity hampers their large-scale integration in modern device applications. Here we demonstrate that the laser-induced forward transfer (LIFT) method can achieve the one-step, nondestructive printing of the prototypical 2D material MoS2. By selecting the optimal LIFT experimental conditions, we were able to transfer arrays of MoS2 pixels from a metal donor substrate to a dielectric receiver substrate. A combination of various characterization techniques has confirmed that the transfer of intact MoS2 monolayers is not only feasible, but it can also happen without incurring significant defect damage during the process. The successful transfer of MoS2 shows the broad potential the LIFT technique has in the emerging field of printed electronics, including printed devices based …
Show moreFeb 2023 • Results in Surfaces and Interfaces
Naftali Kanovsky, Taly Iline-Vul, Shlomo Margel
Superhydrophobic surfaces are receiving increasing attention due to their real-world applications. However, these surfaces suffer from a lack of durability and complicated synthetic processes. This research uses a combination of a simple in-situ coating process between oxygen-activated polypropylene films and unreacted silane monomers. The in-situ process uses a modified Stöber method with the addition of the surfactant cetyltrimethylammonium bromide (CTAB) which aggregates silica (SiO 2) particles in a basic aqueous solution. This resulted in a layer of covalently bonded hierarchical coating of individual and aggregated SiO 2 “flakes” and particles. These coatings were found to have at least double the surface roughness than samples prepared without CTAB with superhydrophilic properties due to their high surface roughness and hydrophilic surface chemical groups. A second layer of fluorocarbon silane …
Show moreFeb 2023 • IEEE Transactions on Applied Superconductivity
A Roitman, A Shaulov, Y Yeshurun
Coplanar microwave resonators made of NbN and YBa 2 Cu 3 O 7-δ show similar behavior under the influence of magnetic field. In particular, the two resonators exhibit marked difference between zero-field-cooled (ZFC) and field-cooled (FC) measurements, which is attributed to the presence of screening currents in ZFC but not in FC measurements.
Show moreFeb 2023 • arXiv preprint arXiv:2302.00650
Rain Lenny, Amit Te'eni, Bar Y Peled, Avishy Carmi, Eliahu Cohen
Entanglement is a uniquely quantum resource giving rise to many quantum technologies. It is therefore important to detect and characterize entangled states, but this is known to be a challenging task, especially for multipartite mixed states. The correlation minor norm (CMN) was recently suggested as a bipartite entanglement detector employing bounds on the quantum correlation matrix. In this paper we explore generalizations of the CMN to multipartite systems based on matricizations of the correlation tensor. It is shown that the CMN is able to detect and differentiate classes of multipartite entangled states. We further analyze the correlations within the reduced density matrices and show their significance for entanglement detection. Finally, we employ matricizations of the correlation tensor for introducing a measure of global quantum discord.
Show moreFeb 2023 • Nature Communications
Xuan Trung Nguyen, Katrin Winte, Daniel Timmer, Yevgeny Rakita, Davide Raffaele Ceratti, Sigalit Aharon, Muhammad Sufyan Ramzan, Caterina Cocchi, Michael Lorke, Frank Jahnke, David Cahen, Christoph Lienau, Antonietta De Sio
Coupling electromagnetic radiation with matter, e.g., by resonant light fields in external optical cavities, is highly promising for tailoring the optoelectronic properties of functional materials on the nanoscale. Here, we demonstrate that even internal fields induced by coherent lattice motions can be used to control the transient excitonic optical response in CsPbBr3 halide perovskite crystals. Upon resonant photoexcitation, two-dimensional electronic spectroscopy reveals an excitonic peak structure oscillating persistently with a 100-fs period for up to ~2 ps which does not match the frequency of any phonon modes of the crystals. Only at later times, beyond 2 ps, two low-frequency phonons of the lead-bromide lattice dominate the dynamics. We rationalize these findings by an unusual exciton-phonon coupling inducing off-resonant 100-fs Rabi oscillations between 1s and 2p excitons driven by the low-frequency …
Show moreFeb 2023 • ImmunoInformatics
William D Lees, Scott Christley, Ayelet Peres, Justin T Kos, Brian Corrie, Duncan Ralph, Felix Breden, Lindsay G Cowell, Gur Yaari, Martin Corcoran, Gunilla B Karlsson Hedestam, Mats Ohlin, Andrew M Collins, Corey T Watson, Christian E Busse, The AIRR Community
Analysis of an individual's immunoglobulin or T cell receptor gene repertoire can provide important insights into immune function. High-quality analysis of adaptive immune receptor repertoire sequencing data depends upon accurate and relatively complete germline sets, but current sets are known to be incomplete. Established processes for the review and systematic naming of receptor germline genes and alleles require specific evidence and data types, but the discovery landscape is rapidly changing. To exploit the potential of emerging data, and to provide the field with improved state-of-the-art germline sets, an intermediate approach is needed that will allow the rapid publication of consolidated sets derived from these emerging sources. These sets must use a consistent naming scheme and allow refinement and consolidation into genes as new information emerges. Name changes should be minimised, but …
Show moreFeb 2023 • Cold Spring Harbor Protocols
Anne C von Philipsborn, Galit Shohat-Ophir, Carolina Rezaval
Naive males court both virgin and mated females but learn through experience to discriminate between them, thus minimizing futile investments in nonreceptive female flies. In the laboratory, we can exploit the innate courtship enthusiasm of males and manipulate their behavior by placing them with a nonreceptive female (immature virgin females, decapitated mature virgin females, or mature mated females), termed as the courtship suppression/conditioning assay. Early studies showed that male flies that experience failure to mate upon interaction with nonreceptive previously mated females show decreased motivation to court (courtship suppression). Courtship suppression is an important experimental paradigm for studying genes and neuronal circuits that mediate short-and long-term memory. The anti-aphrodisiac male-specific pheromone 11-cis-vaccenyl-acetate plays a key role in this conditioned response, as …
Show moreFeb 2023 • Cold Spring Harbor Protocols
Anne C von Philipsborn, Galit Shohat-Ophir, Carolina Rezaval
Courtship behaviors in Drosophila melanogaster are innate and contain highly stereotyped but also experience-and state-dependent elements. They have been the subject of intense study for more than 100 years. The power of Drosophila as a genetic experimental system has allowed the dissection of reproductive behaviors at a molecular, cellular, and physiological level. As a result, we know a great deal about how flies perceive sensory cues from potential mates, how this information is integrated in higher brain centers to execute reproductive decisions, and how state and social contexts modulate these responses. The simplicity of the assay has allowed for its broad application. Here, we introduce methods for studying male and female innate reproductive behaviors as well as their plastic responses.
Show moreFeb 2023 • Cold Spring Harbor Protocols
Anne C von Philipsborn, Galit Shohat-Ophir, Carolina Rezaval
During reproduction, male and female flies use wing vibration to generate different acoustic signals. Males produce a courtship song before copulation that is easily recognized by unilateral wing vibration. In copula, females produce a distinct sound pattern (copulation song) with both wings. Sexual rejection of immature virgins and aggressive encounters between males are also accompanied by sound pulses generated by wing flicks. Fly song has frequency ranges audible to the human ear and can be directly listened to after appropriate amplification. When displayed in an oscillogram, audio recordings can be mapped on wing-movement patterns and thus provide a fast and precise method to sample and quantify motor behaviors with high temporal resolution. After recording different fly sounds, their effect on behavior can be tested in playback experiments.
Show moreFeb 2023 • Angewandte Chemie (International ed. in English)
Ori Licht, Dario Barreiro-Lage, Patrick Rousseau, Alexandre Giuliani, Aleksandar Milosavljevic, Avinoam Isaak, Yitzhak Mastai, Amnon Albeck, Raj Singh, Vy Nguyen, Laurent Nahon, Lara Martinez, Sergio Díaz-Tendero, Yoni Toker
Possible routes for intra-cluster bond formation (ICBF) in protonated serine dimers have been studied. We found no evidence of ICBF following low energy collision induced dissociation (in correspondence with previous works), however, we do observe clear evidence for ICBF following photon absorption in the eV range. Moreover, the comparison of photon induced dissociation measurements of the protonated serine dimer to those of a protonated serine dipeptide provides evidence that ICBF, in this case, involves peptide bond formation (PBF). The experimental results are supported by {\it ab initio} molecular dynamics and exploration of several excited state potential energy surfaces, unravelling a pathway for PBF following photon absorption. The combination of experiments and theory provides insight into the PBF mechanisms in clusters of amino acids, and reveals the importance of electronic excited states reached upon UV/VUV light excitation.
Show moreFeb 2023 • The Journal of Physical Chemistry B
Eszter Papp, Gábor Vattay, Carlos Romero-Muñiz, Linda A Zotti, Jerry A Fereiro, Mordechai Sheves, David Cahen
The finding that electronic conductance across ultrathin protein films between metallic electrodes remains nearly constant from room temperature to just a few degrees Kelvin has posed a challenge. We show that a model based on a generalized Landauer formula explains the nearly constant conductance and predicts an Arrhenius-like dependence for low temperatures. A critical aspect of the model is that the relevant activation energy for conductance is either the difference between the HOMO and HOMO–1 or the LUMO+1 and LUMO energies instead of the HOMO–LUMO gap of the proteins. Analysis of experimental data confirms the Arrhenius-like law and allows us to extract the activation energies. We then calculate the energy differences with advanced DFT methods for proteins used in the experiments. Our main result is that the experimental and theoretical activation energies for these three different proteins …
Show moreFeb 2023 • Biophysical Journal
Debjit Roy, Xavier Michalet, Kiran Bharadwaj, Evan W Miller, Yijie Wang, Arjun Deb, Michael A Wayne, Claudio Bruschini, Edoardo Charbon, Mahbanoo Vakili, Robert Gunsalus, Robert T Clubb, Shimon Weiss
While great progress has been achieved in developing optical methods for measuring fast changes in membrane potential (like action potentials) in excitable cells, less progress has been made in precise (and calibrated) measurements of steady state resting membrane potentials (RMPs) and small changes in RMPs (in excitable or non-excitable cells). In excitable cells, small changes in RMPs are associated with multiple physiological processes such as sub-threshold events in neuronal signaling and in synaptic plasticity. They also play an important role in cell differentiation and proliferation of cardiomyocytes. In non-excitable cells, such as bacterial colonies, RMP changes play important roles in intercellular communication, coordination, metabolism, and stress response. Accurate and precise recordings of minute RMP changes require noise-immune optical tools. We have been developing an RMP (calibrated …
Show moreFeb 2023 • npj Quantum Information
Chen Mechel, Jonathan Nemirovsky, Eliahu Cohen, Ido Kaminer
Major advances in the precision of magnetic measurements bring us closer to quantum detection of individual spins at the single-atom level. On the quest for reducing both classical and quantum measurement noise, it is intriguing to look forward and search for precision limits arising from the fundamental quantum nature of the measurement process itself. Here, we present the limits of magnetic quantum measurements arising from quantum information considerations, and apply these limits to a concrete example of magnetic force microscopy (MFM). We show how such microscopes have a fundamental limit on their precision arising from the theory of imperfect quantum cloning, manifested by the entanglement between the measured system and the measurement probe. We show that counterintuitively, increasing the probe complexity decreases both the measurement noise and back action, and a judicious design …
Show moreFeb 2023 • Angewandte Chemie (International ed. in English)
Ori Licht, Dario Barreiro-Lage, Patrick Rousseau, Alexandre Giuliani, Aleksandar Milosavljevic, Avinoam Isaak, Yitzhak Mastai, Amnon Albeck, Raj Singh, Vy Nguyen, Laurent Nahon, Lara Martinez, Sergio Díaz-Tendero, Yoni Toker
Possible routes for intra-cluster bond formation (ICBF) in protonated serine dimers have been studied. We found no evidence of ICBF following low energy collision induced dissociation (in correspondence with previous works), however, we do observe clear evidence for ICBF following photon absorption in the eV range. Moreover, the comparison of photon induced dissociation measurements of the protonated serine dimer to those of a protonated serine dipeptide provides evidence that ICBF, in this case, involves peptide bond formation (PBF). The experimental results are supported by {\it ab initio} molecular dynamics and exploration of several excited state potential energy surfaces, unravelling a pathway for PBF following photon absorption. The combination of experiments and theory provides insight into the PBF mechanisms in clusters of amino acids, and reveals the importance of electronic excited states reached upon UV/VUV light excitation.
Show moreFeb 2023 • Cold Spring Harbor Protocols
Anne C von Philipsborn, Galit Shohat-Ophir, Carolina Rezaval
Upon copulation, females undergo a switch-like change in their behavior and physiology, known as “postmating responses.” These strong behavioral and physiological changes are triggered by the transfer of male seminal proteins during copulation. Postmating response is associated with strong reduction in receptivity, indicated by the females kicking their legs toward the suitor and curving their abdomen downward to hide their genitalia from them and extruding their ovipositor at the tip of the abdomen, which physically prevents copulation. The transfer of male-specific pheromones, such as 11-cis-vaccenyl-acetate, during copulation further reduces female attractiveness. In addition, mated females exhibit increased ovulation, egg-laying behavior, enhanced feeding behavior, and changes in food preference. However, females increase their rate of remating when they are in social groups or in the presence of food …
Show moreFeb 2023 • arXiv preprint arXiv:2302.00705
Rafael Wagner, Zohar Schwartzman-Nowik, Ismael L Paiva, Amit Te'eni, Antonio Ruiz-Molero, Rui Soares Barbosa, Eliahu Cohen, Ernesto F Galvão
Weak values and Kirkwood--Dirac (KD) quasiprobability distributions have been independently associated with both foundational issues in quantum theory and advantages in quantum metrology. We propose simple quantum circuits to measure weak values, KD distributions, and density matrix spectra without the need for post-selection. This is achieved by measuring unitary-invariant, relational properties of quantum states, as functions of Bargmann invariants. Our circuits also enable direct experimental implementation of various applications of KD distributions, such as out-of-time-ordered correlators (OTOCs) and the quantum Fisher information in post-selected parameter estimation, among others. This results in a unified view of nonclassicality in all those tasks. In particular, we discuss how negativity and imaginarity of Bargmann invariants relate to set coherence.
Show moreFeb 2023 • Solid State Nuclear Magnetic Resonance
Irina Matlahov, Alex Kulpanovich, Taly Iline-Vul, Merav Nadav-Tsubery, Gil Goobes
Bone construction has been under intensive scrutiny for many years using numerous techniques. Solid-state NMR spectroscopy helped unravel key characteristics of the mineral structure in bone owing to its capability of analyzing crystalline and disordered phases at high-resolution. This has invoked new questions regarding the roles of persistent disordered phases in structural integrity and mechanical function of mature bone as well as regarding regulation of early events in formation of apatite by bone proteins which interact intimately with the different mineral phases to exert biological control.Here, spectral editing tethered to standard NMR techniques is employed to analyze bone-like apatite minerals prepared synthetically in the presence and absence of two non-collagenous bone proteins, osteocalcin and osteonectin. A 1H spectral editing block allows excitation of species from the crystalline and disordered …
Show moreFeb 2023 • Cold Spring Harbor Protocols
Anne C von Philipsborn, Galit Shohat-Ophir, Carolina Rezaval
Courtship in Drosophila melanogaster involves a series of innate, complex behaviors that allow male and female flies to exchange sensory information and assess the quality of a potential mate. Although highly robust and stereotypical, courtship behaviors can be modulated by internal state and experience. This protocol describes methods for designing and carrying out experiments that measure courtship performance in single-pair assays, in which a male is paired with a female, or in competitive assays, in which a male is presented with a female and with a male competitor. It also includes approaches for measuring female sexual receptivity during courtship.
Show moreFeb 2023 • Batteries 9 (2), 110, 2023
Ravindra Kumar Bhardwaj, David Zitoun
Background:This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
Show moreFeb 2023 • Physical Review Research
Gal Amit, Yonathan Japha, Tomer Shushi, Ron Folman, Eliahu Cohen
Cold atoms hold much promise for the realization of quantum technologies, but still encounter many challenges. In this work we show how the fundamental Casimir-Polder force, by which atoms are attracted to a surface, may be temporarily suppressed by utilizing a specially designed quantum potential, which is familiar from the hydrodynamic or Bohmian reformulations of quantum mechanics. We show that when harnessing the quantum potential via suitable atomic wave-packet engineering, the absorption by the surface can be dramatically reduced. As a result, the probing time of the atoms as sensors can increase. This is proven both analytically and numerically. Furthermore, an experimental scheme is proposed for achieving the required shape for the atomic wave packet. All these may assist existing applications of cold atoms in metrology and sensing and may also enable prospective ones. Finally, these …
Show moreFeb 2023 • Pharmaceutics 15 (2), 686, 2023
Sayan Ganguly, Shlomo Margel
Novel nanomaterials are of interest in biology, medicine, and imaging applications. Multimodal fluorescent-magnetic nanoparticles demand special attention because they have the potential to be employed as diagnostic and medication-delivery tools, which, in turn, might make it easier to diagnose and treat cancer, as well as a wide variety of other disorders. The most recent advancements in the development of magneto-fluorescent nanocomposites and their applications in the biomedical field are the primary focus of this review. We describe the most current developments in synthetic methodologies and methods for the fabrication of magneto-fluorescent nanocomposites. The primary applications of multimodal magneto-fluorescent nanoparticles in biomedicine, including biological imaging, cancer treatment, and drug administration, are covered in this article, and an overview of the future possibilities for these technologies is provided.
Show more