Mar 2024 • Frontiers in Biological Detection: From Nanosensors to Systems XVI, PC1286109, 2024
Shmuel Burg, Meir Cohen, Michael Margulis, Reut Askenasy, Amos Danielli
Rapid, highly sensitive, and high-throughput detection of biomarkers at low concentrations is invaluable for the early diagnosis of various diseases. In many sensitive immunoassays, the protocol is time-consuming and requires a complicated and expensive detection system. Previously, we presented a high-throughput optical modulation biosensing (ht-OMB) system, which enables reading a 96-well plate within 10 minutes. In ht-OMB, to aggregate and immobilize the magnetic beads to one spot, a single cylindrical permanent magnet with a sharp tip is positioned under a 96-well plate. To reduce washing and separation steps, the laser beam is manipulated relative to the fixed magnetic beads. Recently, MagBiosense Inc., which commercializes the ht-OMB technology, provided us with a fully automated OMBi detection system. Here, we show the use of the OMBi system for highly sensitive serological (clinical anti …
Show moreMar 2024 • Nano Letters
Steffi Y Woo, Fuhui Shao, Ashish Arora, Robert Schneider, Nianjheng Wu, Andrew J Mayne, Ching-Hwa Ho, Mauro Och, Cecilia Mattevi, Antoine Reserbat-Plantey, Alvaro Moreno, Hanan Herzig Sheinfux, Kenji Watanabe, Takashi Taniguchi, Steffen Michaelis de Vasconcellos, Frank HL Koppens, Zhichuan Niu, Odile Stéphan, Mathieu Kociak, F Javier García de Abajo, Rudolf Bratschitsch, Andrea Konečná, Luiz HG Tizei
Control over the optical properties of atomically thin two-dimensional (2D) layers, including those of transition metal dichalcogenides (TMDs), is needed for future optoelectronic applications. Here, the near-field coupling between TMDs and graphene/graphite is used to engineer the exciton line shape and charge state. Fano-like asymmetric spectral features are produced in WS2, MoSe2, and WSe2 van der Waals heterostructures combined with graphene, graphite, or jointly with hexagonal boron nitride (h-BN) as supporting or encapsulating layers. Furthermore, trion emission is suppressed in h-BN encapsulated WSe2/graphene with a neutral exciton red shift (44 meV) and binding energy reduction (30 meV). The response of these systems to electron beam and light probes is well-described in terms of 2D optical conductivities of the involved materials. Beyond fundamental insights into the interaction of TMD …
Show moreMar 2024 • ACS Sustainable Chemistry & Engineering
Nophar Tubul, Noam Levi, Gil Bergman, Amey Nimkar, Masato Sonoo, Noa Lulu-Bitton, Shlomo Haroush, Yaniv Gelbstein, Daniel Sharon, Netanel Shpigel, Doron Aurbach
Vertical growth of Zn crystals is widely recognized as a primary factor responsible for the premature failure of aqueous Zn batteries. These vertically aligned sharp-tipped Zn plates can easily pierce the separator, propagating toward the cathode side, and short-circuit the cell. While inhibition of this phenomenon may be achieved by electrolyte engineering or manipulation of the anode’s interface, we propose herein an effective suppression of vertical Zn growth by replacing the conventional separators with highly affordable commercially available printing paper. Based on electrochemical and structural studies followed by small punch measurements, we found that these papers comprise nanometric rigid ceramic particles that act as a physical barrier for the growth of Zn plates, preventing their penetration through the paper-based separator. As a result, the examined cells demonstrate excellent long-term performance …
Show moreMar 2024 • Bulletin of the American Physical Society
Jiaoqing Wang, Chenni Xu, Aswathy Sundaresan, Patrick Sebbah
The spacetime curvature in the vicinity of massive black holes induces the bending of ray trajectories and the trapping of light in a specific region of space called the photon sphere. We mimic in the laboratory the behavior of waves near a black hole by investigating the modes of vibration on a 3D curved surface corresponding to a particular metric of the black hole. This surface can be transformed to a flat disk with non-uniform distribution of refractive index. Here, we consider elastic waves guided in a thin plate with non-uniform thickness, which corresponds to a varying velocity. Selective laser melting has been used to 3D-print our model with an aluminum alloy. A short pulse is propagated, and the spatiotemporal profile of the velocity-field is recorded by scanning a laser vibrometer. The quasimodes of the system are obtained by modal analysis in the Fourier domain. We find two different classes of modes:(1) Modes …
Show moreMar 2024 • Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XXI …, 2024
Alon Tzroya, Hamootal Duadi, Dror Fixler
Water pollution, particularly from hazardous substances like heavy metal ions, poses a serious threat to both human health and the environment. The conventional methods used to measure these pollutants in water are not only expensive and time-consuming but also require extensive sample preparation. Addressing this challenge, we propose an optical approach that utilizes the full scattering profile, focusing on the iso-pathlength (IPL) point. The IPL point remains constant for different scattering coefficients, with absorption affecting only its intensity, not its position. This paper demonstrate the effectiveness of this approach detecting FeCl2 and intralipid in concentrations of 70-100 and 20-30 ppm, respectively. These findings highlight the IPL point as an intrinsic calibration parameter, offering an efficient means to differentiate water contamination. The method is not only precise and versatile but also emerges as a …
Show moreMar 2024 • Advanced Functional Materials
Alexandre Py‐Renaudie, Yahel Soffer, Pallavi Singh, Sujit Kumar, Davide R Ceratti, Yuval Mualem, Irit Rosenhek‐Goldian, Dan Oron, Sidney R Cohen, Philip Schulz, David Cahen, Jean‐François Guillemoles
Self‐healing (SH) of (opto)electronic material damage can have a huge impact on resource sustainability. The rising interest in halide perovskite (HaP) compounds over the past decade is due to their excellent semiconducting properties for crystals and films, even if made by low‐temperature solution‐based processing. Direct proof of self‐healing in Pb‐based HaPs is demonstrated through photoluminescence recovery from photodamage, fracture healing and their use as high‐energy radiation and particle detectors. Here, the question of how to find additional semiconducting materials exhibiting SH, in particular lead‐free ones is addressed. Applying a data‐mining approach to identify semiconductors with favorable mechanical and thermal properties, for which Pb HaPs are clear outliers, it is found that the Cs2AuIAuIIIX6, (X = I, Br, Cl) family, which is synthesized and tested for SH. This is the first demonstration of …
Show moreMar 2024 • High Contrast Metastructures XIII, PC1289711, 2024
Tomer Lewi
In nanophotonic, small mode volumes, narrow resonance linewidths and field enhancements, fundamentally scales with refractive index values and are key for many implementations involving light-matter interactions. Topological insulators (TI) are a class of insulating materials that host topologically protected surface states, some of which exhibit very high permittivity values. In this talk, I will present my group’s latest results on chalcogenide metaphotonics. I start by discussing Chalcogenide Bi2Te3 and Bi2Se3 TIs nanostructures. Using polarized far-field and near field Nanospectroscopy we reveal that Bi2Se3 nanobeams exhibit mid-infrared resonant modes with 2π phase shifts across the resonance. We further demonstrate that Bi2Te3 metasurfaces exhibit deep-subwavelength resonant modes utilizing their record high index value peaking at n~11. Finally we discuss how the anomalous thermo-optic effect in …
Show moreMar 2024 • Bioinformatics
William D Lees, Swati Saha, Gur Yaari, Corey T Watson
Summary Knowledge of immunoglobulin and T cell receptor encoding genes is derived from high-quality genomic sequencing. High throughput sequencing is delivering large volumes of data, and precise, high-throughput approaches to annotation are needed. Digger is an automated tool that identifies coding and regulatory regions of these genes, with results comparable to those obtained by current expert curational methods. Availability and Implementation Digger is published under open source licence at https://github.com/williamdlees/Digger and is available as a Python package and a Docker container.
Show moreMar 2024 • Nonlinear Optics and its Applications 2024, PC1300405, 2024
Yuval Tamir, Moti Fridman
Deep learning has emerged as a powerful tool for solving complex problems in a wide range of domains. The success of deep learning can be attributed to several factors, including the availability of massive datasets, the increasing computing power of modern hardware, and the development of efficient algorithms. Still, In the modern era of information and communication technologies, the demand for faster and more efficient data transmission has driven researchers to explore novel approaches to enhance communication systems, among them is the optical approach for such a problem. In our lab, we develop a fully optical deep learning network that is based on high order spatial mode, and the ultrafast nonlinear four wave mixing interactions inside multimode fibers. We exploit the optical nonlinear interactions between waves for developing a deep learning network that is faster than any electronic based network …
Show moreMar 2024 • Bulletin of the American Physical Society
Chenni Xu, Itzhack Dana, Li-Gang Wang, Patrick Sebbah
G54. 00011: Light chaotic dynamics and ray engineering transformed from curved to flat space
Show moreMar 2024 • Chemistry‐Methods 4 (3), e202300039, 2024
Rajashree Konar, Sandipan Maiti, Boris Markovsky, Hadar Sclar, Doron Aurbach
Lithiated transition metal oxides are the most important cathode materials for lithium‐ion batteries. Many efforts have been devoted in recent years to improving their energy density, stability, and safety, as demonstrated by thousands of publications. However, the commercialization of several promising materials is limited due to obstacles like stability limitations. To overcome the limitations of energetically high‐voltage or high‐capacity cathode materials, unconventional solutions for their surface engineering were suggested; among them, metal–organic frameworks (MOFs) and zeolites have been employed. MOFs possess favorable characteristics for stabilization goals, including manageable structures, topological control, high porosity, large surface area, and low density. This review article explores promising strategies for improving the electrochemical behavior of favorable cathode materials through surface …
Show moreMar 2024 • Surfaces and Interfaces
Nahum Shabi, Madina Telkhozhayeva, Olga Girshevitz, Moshe Kaveh, Issai Shlimak
Identifying the type of structural defects and determining their concentration is crucial for effective defect engineering strategies since they govern various physical, chemical, and optoelectronic properties of graphene. Here, we study the effects of Ga ion irradiation on freestanding monolayer graphene, specifically focusing on the behavior of three defect-induced Raman lines (D, D' and (D+ D')). By employing a modified approach of the local activation model, we determine the key defect parameters of each line and show their dependence on different vibrational configurations of the iTO and iLO phonons emitted during scattering. The redshift of the lines and the broadening of their width, observed with an increase in the concentration of radiation defects over Nd ≈ 1013cm−2, are explained by the tensile stress of the graphene film and a decrease in the phonon lifetime, respectively. The resulting intensity ratio I(D)/I …
Show moreMar 2024 • Bulletin of the American Physical Society
Chenni Xu, Aswathy Sundaresan, Dominique Decanini, Hugo Girin, Clement Lafargue, Ligang Wang, Melanie Lebental, Patrick Sebbah
One of interesting phenomena of a black hole (BH) in its vicinity due to its extreme curvature of spacetime is called a photon sphere (PS), a closed trajectory where photons get trapped and orbit. In this work, we design novel 3D microcavities and investigate lasing on modes localized on a PS, induced by attractive nature of BH. We explore these eigenmodes by conformally transforming a Schwarzschild BH metric into a 2D plane with varying refractive index. We analytically confirm the existence of PS modes by extending our previous theory of conformal transformations [PNAS 119, e2112052119 (2022)] into open systems, and solving the wave equation under a WKB framework. To numerically induce lasing of PS modes, we selectively pump the 2D cavity above the vicinity of the PS. The lasing process is revealed by a 3D finite-difference time-domain simulation coupled to the atomic population of a four-level …
Show moreFeb 2024 • NPJ Genomic Medicine
Ariel Dadush, Rona Merdler-Rabinowicz, David Gorelik, Ariel Feiglin, Ilana Buchumenski, Lipika R Pal, Shay Ben-Aroya, Eytan Ruppin, Erez Y Levanon
The majority of human genetic diseases are caused by single nucleotide variants (SNVs) in the genome sequence. Excitingly, new genomic techniques known as base editing have opened efficient pathways to correct erroneous nucleotides. Due to reliance on deaminases, which have the capability to convert A to I(G) and C to U, the direct applicability of base editing might seem constrained in terms of the range of mutations that can be reverted. In this evaluation, we assess the potential of DNA and RNA base editing methods for treating human genetic diseases. Our findings indicate that 62% of pathogenic SNVs found within genes can be amended by base editing; 30% are G>A and T>C SNVs that can be corrected by DNA base editing, and most of them by RNA base editing as well, and 29% are C>T and A>G SNVs that can be corrected by DNA base editing directed to the complementary strand. For each, we …
Show moreFeb 2024 • Biomass Conversion and Biorefinery
R Blessy Pricilla, Moorthy Maruthapandi, Arulappan Durairaj, Ivo Kuritka, John HT Luong, Aharon Gedanken
Carbon dots (CDs) with an average diameter of 6.3 nm were synthesized from the medicinal seed extract of Syzygium cumini L. using one-pot hydrothermal synthesis. The prepared CDs exhibited excitation-dependent emission characteristics with photoluminescence (PL) emission maxima at an excitation of 340 nm. The CDs at 500 µg/mL displayed antimicrobial activities against four common pathogens. Both Staphylococcus aureus and S. epidermidis were completely eradicated by CDs within 12 h, compared to 24 h for Escherichia coli and Klebsiella pneumonia. The release of various oxygen species (ROS) was postulated to play a critical role in bacterial eradication. The CDs decorated on cotton fabric by ultrasonication also displayed good antibacterial activities against the above bacteria. The finding opens a plausible use of CDs in biomedical textiles with potent antimicrobial properties against both Gram …
Show moreFeb 2024 • Progress in Nuclear Magnetic Resonance Spectroscopy, 2024
Nicole Leifer, Doron Aurbach, Steve G Greenbaum
This review focuses on the application of nuclear magnetic resonance (NMR) spectroscopy in the study of lithium and sodium battery electrolytes. Lithium-ion batteries are widely used in electronic devices, electric vehicles, and renewable energy systems due to their high energy density, long cycle life, and low self-discharge rate. The sodium analog is still in the research phase, but has significant potential for future development. In both cases, the electrolyte plays a critical role in the performance and safety of these batteries. NMR spectroscopy provides a non-invasive and non-destructive method for investigating the structure, dynamics, and interactions of the electrolyte components, including the salts, solvents, and additives, at the molecular level. This work attempts to give a nearly comprehensive overview of the ways that NMR spectroscopy, both liquid and solid state, has been used in past and present studies …
Show moreFeb 2024 • ACS omega 9 (7), 7393-7412, 2024
Kwangho Nam, Yihan Shao, Dan T Major, Magnus Wolf-Watz
Understanding enzyme mechanisms is essential for unraveling the complex molecular machinery of life. In this review, we survey the field of computational enzymology, highlighting key principles governing enzyme mechanisms and discussing ongoing challenges and promising advances. Over the years, computer simulations have become indispensable in the study of enzyme mechanisms, with the integration of experimental and computational exploration now established as a holistic approach to gain deep insights into enzymatic catalysis. Numerous studies have demonstrated the power of computer simulations in characterizing reaction pathways, transition states, substrate selectivity, product distribution, and dynamic conformational changes for various enzymes. Nevertheless, significant challenges remain in investigating the mechanisms of complex multistep reactions, large-scale conformational changes …
Show moreFeb 2024 • Electrochem
Vivek Kumar Singh, Bibhudatta Malik, Rajashree Konar, Efrat Shawat Avraham, Gilbert Daniel Nessim
The electrocatalytic oxygen evolution reaction (OER) is an arduous step in water splitting due to its slow reaction rate and large overpotential. Herein, we synthesized glycerate-anion-intercalated nickel–iron glycerates (NiFeGs) using a one-step solvothermal reaction. We designed various NiFeGs by tuning the molar ratio between Ni and Fe to obtain Ni4Fe1G, Ni3Fe1G, Ni3Fe2G, and Ni1Fe1G, which we tested for their OER performance. We initially analyzed the catalytic performance of powder samples immobilized on glassy carbon electrodes using a binder. Ni3Fe2G outperformed the other NiFeG compositions, including NiFe layered double hydroxide (LDH). It exhibited an overpotential of 320 mV at a current density of 10 mA cm–2 in an electrolytic solution of pH 14. We then synthesized carbon paper (CP)-modified Ni3Fe2G as a self-supported electrode (Ni3Fe2G/CP), and it exhibited a high current density (100 mA cm−2) at a low overpotential of 300 mV. The redox peak analysis for the NiFeGs revealed that the initial step of the OER is the formation of γ-NiOOH, which was further confirmed by a post-Raman analysis. We extensively analyzed the catalyst’s stability and lifetime, the nature of the active sites, and the role of the Fe content to enhance the OER performance. This work may provide the motivation to study metal-alkoxide-based efficient OER electrocatalysts that can be used for alkaline water electrolyzer applications.
Show moreFeb 2024 • Molecules
Srijith, Rajashree Konar, Eti Teblum, Vivek Kumar Singh, Madina Telkhozhayeva, Michelangelo Paiardi, Gilbert Daniel Nessim
The high concentration of antibiotics in aquatic environments is a serious environmental issue. In response, researchers have explored photocatalytic degradation as a potential solution. Through chemical vapor deposition (CVD), we synthesized copper selenide (β-Cu2−xSe) and found it an effective catalyst for degrading tetracycline hydrochloride (TC-HCl). The catalyst demonstrated an impressive degradation efficiency of approximately 98% and a reaction rate constant of 3.14 × 10−2 min−1. Its layered structure, which exposes reactive sites, contributes to excellent stability, interfacial charge transfer efficiency, and visible light absorption capacity. Our investigations confirmed that the principal active species produced by the catalyst comprises O2− radicals, which we verified through trapping experiments and electron paramagnetic resonance (EPR). We also verified the TC-HCl degradation mechanism using high-performance liquid chromatography–mass spectrometry (LC-MS). Our results provide valuable insights into developing the β-Cu2−xSe catalyst using CVD and its potential applications in environmental remediation.
Show moreFeb 2024 • Journal of Coatings Technology and Research
Matan Nissim, Sivan Shoshani, Gila Jacobi, Eyal Malka, Ehud Banin, Shlomo Margel
Biofilms comprising sessile microorganisms attached to surfaces are increasingly researched for their importance in medicine and industry. Current studies focus on development of antibiotics that unfortunately can lead to resistance and environmental pollution. Phosphonium cations are known to exhibit significant activity with less resistance. Here, silane-phosphonium thin coatings are applied by Stöber polymerization of new silane-phosphonium monomer onto oxidized polypropylene film to eliminate phosphonium leaching and reduce the risk of environmental pollution. The composition and morphology were investigated by infrared spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and contact angle measurements. Coating durability was assessed by adhesion test. The significant anti-biofilm activity against S. aureus and E. coli suggests applications in medicine and agriculture.
Show moreFeb 2024 • Biophysical Journal
Visa Ruokolainen, Sami Salminen, Inka Huusko, Vesa Aho, Yaron Shav-Tal, Maija Vihinen-Ranta
Herpesviruses are promising candidates as therapeutic vectors. During the progression of herpes simplex virus type 1 infection, the growth of nuclear replication compartments leads to the marginalization of chromatin to the nuclear periphery. By using a combination of fluorescence imaging, EM, and soft X-ray tomography along with machine learning we have described how virusinduced chromatin marginalization leads to changes in chromatin organization and local density. In addition, live cell single-particle tracking of capsid motion showed that the viral capsid movement during their nuclear exit was restricted by the nuclear chromatin. The capsid diffusion coefficient was lower inside than outside the chromatin, but as the infection proceeded, the chromatin became more permissive and the probability of capsids to enter the chromatin was increased. In this work, we use live cell FLIM-FRET to measure the DNA …
Show more