BINA

4542 articles

77 publishers

Join mailing list

Mar 2024 • Real-time Measurements, Rogue Phenomena, and Single-Shot Applications IX …, 2024

Quantum temporal optics

Moti Fridman, Eliahu Cohen

This manuscript introduces and shares MATLAB code for simulating the behavior of a temporal SU(1,1) interferometer, offering a valuable resource for researchers and practitioners in the field. The provided code facilitates comprehensive simulations of the interferometer’s dynamics, enabling the exploration of its response to various parameters and scenarios. The simulations delve into the interferometer’s performance, emphasizing its sensitivity to ultrafast phase changes and its concurrent operation in both the time and spectral domains. By making the MATLAB code openly available, this contribution aims to foster collaboration, enhance reproducibility, and serve as a foundational tool for researchers delving into the design and analysis of temporal SU(1,1) interferometers. The manuscript provides detailed documentation on code usage, empowering users to adapt and extend the simulations for their specific …

Show more

Mar 2024 • Optics Express

Analyzing the effect of doping concentration in split-well resonant-phonon terahertz quantum cascade lasers

Shiran Levy, Nathalie Lander Gower, Silvia Piperno, Sadhvikas J Addamane, John L Reno, Asaf Albo

The effect of doping concentration on the temperature performance of the novel split-well resonant-phonon (SWRP) terahertz quantum-cascade laser (THz QCL) scheme supporting a clean 4-level system design was analyzed using non-equilibrium Green’s functions (NEGF) calculations. Experimental research showed that increasing the doping concentration in these designs led to better results compared to the split-well direct-phonon (SWDP) design, which has a larger overlap between its active laser states and the doping profile. However, further improvement in the temperature performance was expected, which led us to assume there was an increased gain and line broadening when increasing the doping concentration despite the reduced overlap between the doped region and the active laser states. Through simulations based on NEGF calculations we were able to study the contribution of the different …

Show more

Mar 2024 • Nucleic Acids Research

Two redundant transcription factor binding sites in a single enhancer are essential for mammalian sex determination

Meshi Ridnik, Elisheva Abberbock, Veronica Alipov, Shelly Ziv Lhermann, Shoham Kaufman, Maor Lubman, Francis Poulat, Nitzan Gonen

Male development in mammals depends on the activity of the two SOX gene: Sry and Sox9, in the embryonic testis. As deletion of Enhancer 13 (Enh13) of the Sox9 gene results in XY male-to-female sex reversal, we explored the critical elements necessary for its function and hence, for testis and male development. Here, we demonstrate that while microdeletions of individual transcription factor binding sites (TFBS) in Enh13 lead to normal testicular development, combined microdeletions of just two SRY/SOX binding motifs can alone fully abolish Enh13 activity leading to XY male-to-female sex reversal. This suggests that for proper male development to occur, these few nucleotides of non-coding DNA must be intact. Interestingly, we show that depending on the nature of these TFBS mutations, dramatically different phenotypic outcomes can occur, providing a molecular explanation for the distinct clinical …

Show more

Mar 2024 • Journal of Physics: Energy

Roadmap on Multivalent Batteries

M Rosa Palacin, Patrik Johansson, Robert Dominko, Ben Dlugatch, Doron Aurbach, Zhenyou Li, Maximilian Fichtner, Olivera Lužanin, Jan Bitenc, Zhixuan Wei, Clarissa Glaser, Jürgen Janek, Ana Fernández-Barquín, Aroa R Mainar, Olatz Leonet, Idoia Urdampilleta, J Alberto Blázquez, Deyana S Tchitchekova, Alexandre Ponrouch, Pieremanuele Canepa, Gopalakrishnan Sai Gautam, Raúl San Román Gallego Casilda, Cynthia S Martinez-Cisneros, Nieves Ureña Torres, Alejandro Varez, Jean-Yves Sanchez, Kostiantyn V Kravchyk, Maksym V Kovalenko, Anastasia A Teck, Huw Shiel, Ifan EL Stephens, Mary P Ryan, Eugen Zemlyanushin, Sonia Dsoke, Rebecca Grieco, Nagaraj Patil, Rebeca Marcilla, Xuan Gao, Claire J Carmalt, Guanjie He, Maria-Magdalena Titirici

Battery technologies based in multivalent charge carriers with ideally two or three electrons transferred per ion exchanged between the electrodes have large promises in raw performance numbers, most often expressed as high energy density, and are also ideally based on raw materials that are widely abundant and less expensive. Yet, these are still globally in their infancy, with some concepts (e.g., Mg metal) being more technologically mature. The challenges to address are derived on one side from the highly polarizing nature of multivalent ions when compared to single valent concepts such as Li+ or Na+ present in Li-ion or Na-ion batteries, and on the other, from the difficulties in achieving efficient metal plating/stripping (which remains the holy grail for lithium). Nonetheless, research performed to date has given some fruits and a clearer view of the challenges ahead. These include technological topics …

Show more

Mar 2024 • Chemistry‐Methods 4 (3), e202300039, 2024

Exploring the Capability of Framework Materials to Improve Cathodes’ Performance for High‐energy Lithium‐ion Batteries

Rajashree Konar, Sandipan Maiti, Boris Markovsky, Hadar Sclar, Doron Aurbach

Lithiated transition metal oxides are the most important cathode materials for lithium‐ion batteries. Many efforts have been devoted in recent years to improving their energy density, stability, and safety, as demonstrated by thousands of publications. However, the commercialization of several promising materials is limited due to obstacles like stability limitations. To overcome the limitations of energetically high‐voltage or high‐capacity cathode materials, unconventional solutions for their surface engineering were suggested; among them, metal–organic frameworks (MOFs) and zeolites have been employed. MOFs possess favorable characteristics for stabilization goals, including manageable structures, topological control, high porosity, large surface area, and low density. This review article explores promising strategies for improving the electrochemical behavior of favorable cathode materials through surface …

Show more

Mar 2024 • High Contrast Metastructures XIII, PC1289711, 2024

Extreme metaphotonics with ultra high-index chalcogenide topological insulators

Tomer Lewi

In nanophotonic, small mode volumes, narrow resonance linewidths and field enhancements, fundamentally scales with refractive index values and are key for many implementations involving light-matter interactions. Topological insulators (TI) are a class of insulating materials that host topologically protected surface states, some of which exhibit very high permittivity values. In this talk, I will present my group’s latest results on chalcogenide metaphotonics. I start by discussing Chalcogenide Bi2Te3 and Bi2Se3 TIs nanostructures. Using polarized far-field and near field Nanospectroscopy we reveal that Bi2Se3 nanobeams exhibit mid-infrared resonant modes with 2π phase shifts across the resonance. We further demonstrate that Bi2Te3 metasurfaces exhibit deep-subwavelength resonant modes utilizing their record high index value peaking at n~11. Finally we discuss how the anomalous thermo-optic effect in …

Show more

Mar 2024 • Disease Models & Mechanisms

Cross-species modeling of muscular dystrophy in Caenorhabditis elegans using patient-derived extracellular vesicles

Rewayd Shalash, Mor Levi-Ferber, Coral Cohen, Amir Dori, Chaya Brodie, Sivan Henis-Korenblit

Reliable disease models are critical for medicine advancement. Here, we established a versatile human disease model system using patient-derived extracellular vesicles (EVs), which transfer a pathology-inducing cargo from a patient to a recipient naïve model organism. As a proof of principle, we applied EVs from the serum of patients with muscular dystrophy to Caenorhabditis elegans and demonstrated their capability to induce a spectrum of muscle pathologies, including lifespan shortening and robust impairment of muscle organization and function. This demonstrates that patient-derived EVs can deliver disease-relevant pathologies between species and can be exploited for establishing novel and personalized models of human disease. Such models can potentially be used for disease diagnosis, prognosis, analyzing treatment responses, drug screening and identification of the disease-transmitting cargo of …

Show more

Mar 2024 • arXiv preprint arXiv:2403.03050

Microscopic origin of abrupt transition in interdependent superconducting networks

Bnaya Gross, Irina Volotsenko, Ivan Bonamassa, Shlomo Havlin, Aviad Frydman

The paradigm of interdependent networks has recently been manifested in experimentally testable lab setup of interdependent superconducting networks. This system experiences an abrupt transition due to the thermal dissipation between the networks but its underlying mechanism remains elusive. Here we study the critical behavior and the underlying mechanism of the transition, unveiling its unique microscopic nature. The microscopic characteristics of the transition result in a macroscopic long-living plateau that lasts for thousands of seconds and increases with the size of the system. We characterize the critical behavior of the transition and find that the critical exponents are consistent with those predicted theoretically for percolation of abstract interdependent networks and interdependent ferromagnetic networks, supporting a common universal origin of interdependent systems.

Show more

Mar 2024 • Frontiers in Biological Detection: From Nanosensors to Systems XVI, PC1286108, 2024

Saliva-based extraction-free molecular assay for rapid diagnostics of SARS-CoV-2

Michael Margulis, Hanan Rohana, Oran Erster, Michal Mandelboim, Asaf Biber, Eli Schwartz, Avi Peretz, Amos Danielli

The COVID-19 pandemic has emphasized the inability of diagnostic laboratories' testing capacity to keep up with the surging demand. The primary reasons were the lack of reagents (e.g., viral transport media and nucleic acid extraction kits) and the low throughput of the gold-standard molecular detection method (RT-qPCR). While the reagent shortages were eventually resolved, the limited throughput of the RT-qPCR remains a bottleneck for high-throughput testing applications even today. Here, we introduce a rapid saliva-based extraction-free molecular assay, which utilizes a non-invasive saliva sampling and extraction-free sample preparation, a fast endpoint RT-PCR and a high-throughput optical modulation biosensing (ht-OMBi) detection platform. We blindly tested 364 paired nasopharyngeal swabs and saliva samples from suspected SARS-CoV-2 cases in Israel. Compared with the gold standard swab …

Show more

Mar 2024 • Angewandte Chemie International Edition

Differential Substrate Sensing in Terpene Synthases from Plants and Microorganisms. Insights from Structural, Bioinformatic, and EnzyDock Analyses

Renana Schwartz, Shani Zev, Dan T Major

Terpene synthases (TPS) catalyze the first step in the formation of terpenoids, which comprise the largest class of natural products in nature. TPS employ a family of universal natural substrates, composed of isoprenoid units bound to a diphosphate moiety. The intricate structures generated by TPS are the result of substrate binding and folding in the active site, enzyme‐controlled carbocation reaction cascades, and final reaction quenching. A key unaddressed question in class I TPS is the asymmetric nature of the diphosphate‐(Mg2+)3 cluster, which forms a critical part of the active site. In this asymmetric ion‐cluster, two diphosphate oxygens protrude into the active site pocket. The substrate hydrocarbon tail, which is eventually molded into terpenes, can bind to either of these oxygens, yet to which is unknown. Here, we employ structural, bioinformatics, and EnzyDock docking tools to address this enigma. We bring …

Show more

Mar 2024 • Journal of Biological Chemistry

Nucleic acid hybridization-based detection of pathogenic RNA using microscale thermophoresis

Matan Yosef Avivi, Noga Touitou, Hanan Rohana, Batia Lerrer, Yaron Shav-Tal, Avi Peretz, Haim Yosef Cohen

Infectious diseases are one of the world's leading causes of morbidity. Their rapid spread emphasizes the need for accurate and fast diagnostic methods for large-scale screening. Here, we describe a robust method for the detection of pathogens based on microscale thermophoresis (MST). The method involves the hybridization of a fluorescently labeled DNA probe to a target RNA, and the assessment of thermophoretic migration of the resulting complex in solution within a 2-30 second time window. We found that the thermophoretic migration of the nucleic acid-based probes is primarily determined by the fluorescent molecule used, rather than the nucleic acid sequence of the probe. Furthermore, a panel of uniformly labeled probes that bind to the same target RNA yields a more responsive detection pattern than a single probe, and moreover, can be used for detection of specific pathogen variants. In addition …

Show more

Mar 2024 • Protein Science

VWD domain stabilization by autocatalytic Asp‐Pro cleavage

Noa Yeshaya, Prashant Kumar Gupta, Orly Dym, David Morgenstern, Dan Thomas Major, Deborah Fass

Domains known as von Willebrand factor type D (VWD) are found in extracellular and cell‐surface proteins including von Willebrand factor, mucins, and various signaling molecules and receptors. Many VWD domains have a glycine‐aspartate‐proline‐histidine (GDPH) amino‐acid sequence motif, which is hydrolytically cleaved post‐translationally between the aspartate (Asp) and proline (Pro). The Fc IgG binding protein (FCGBP), found in intestinal mucus secretions and other extracellular environments, contains 13 VWD domains, 11 of which have a GDPH cleavage site. In this study, we investigated the structural and biophysical consequences of Asp‐Pro peptide cleavage in a representative FCGBP VWD domain. We found that endogenous Asp‐Pro cleavage increases the resistance of the domain to exogenous proteolytic degradation. Tertiary structural interactions made by the newly generated chain termini …

Show more

Mar 2024 • ACS Sustainable Chemistry & Engineering

Inhibiting Vertical Zinc Growth Using Low-Cost Composite Membranes

Nophar Tubul, Noam Levi, Gil Bergman, Amey Nimkar, Masato Sonoo, Noa Lulu-Bitton, Shlomo Haroush, Yaniv Gelbstein, Daniel Sharon, Netanel Shpigel, Doron Aurbach

Vertical growth of Zn crystals is widely recognized as a primary factor responsible for the premature failure of aqueous Zn batteries. These vertically aligned sharp-tipped Zn plates can easily pierce the separator, propagating toward the cathode side, and short-circuit the cell. While inhibition of this phenomenon may be achieved by electrolyte engineering or manipulation of the anode’s interface, we propose herein an effective suppression of vertical Zn growth by replacing the conventional separators with highly affordable commercially available printing paper. Based on electrochemical and structural studies followed by small punch measurements, we found that these papers comprise nanometric rigid ceramic particles that act as a physical barrier for the growth of Zn plates, preventing their penetration through the paper-based separator. As a result, the examined cells demonstrate excellent long-term performance …

Show more

Mar 2024 • arXiv preprint arXiv:2403.03050

The microscopic origin of abrupt transitions in interdependent systems

Bnaya Gross, Irina Volotsenko, Yuval Sallem, Nahala Yadid, Ivan Bonamassa, Shlomo Havlin, Aviad Frydman

Phase transitions are fundamental features of statistical physics. While the well-studied continuous phase transitions are known to be controlled by external \textit{macroscopic} changes in the order parameter, the origin of abrupt transitions is not yet clear. Here we show that abrupt phase transitions may occur due to a unique internal \textit{microscopic} cascading mechanism, resulting from dependency interactions. We experimentally unveil the underlying mechanism of the abrupt transition in interdependent superconducting networks to be governed by a unique metastable state of a long-living resistance cascading plateau. This plateau is characterized by spontaneous \textit{microscopic} changes that last for \textit{thousands} of seconds, followed by a \textit{macroscopic} phase shift of the system. Similar microscopic mechanisms are expected to be found in a variety of systems showing abrupt transitions.

Show more

Mar 2024 • Physical Review A

Nonrelativistic spatiotemporal quantum reference frames

Michael Suleymanov, Ismael L Paiva, Eliahu Cohen

Quantum reference frames have attracted renewed interest recently, as their exploration is relevant and instructive in many areas of quantum theory. Among the different types, position and time reference frames have captivated special attention. Here, we introduce and analyze a nonrelativistic framework in which each system contains an internal clock in addition to its external (spatial) degree of freedom and, hence, can be used as a spatiotemporal quantum reference frame. We present expressions for expectation values and variances of relevant observables in different perspectives, as well as relations between these quantities in different perspectives in scenarios with no interactions. In particular, we show that even in these simple scenarios the relative uncertainty between clocks affects the relative spatial spread of the systems.

Show more

Mar 2024 • Frontiers in Biological Detection: From Nanosensors to Systems XVI, PC1286109, 2024

From concept to commercialization: automated high throughput optical modulation biosensing for detection of low concentrations of biomarkers

Shmuel Burg, Meir Cohen, Michael Margulis, Reut Askenasy, Amos Danielli

Rapid, highly sensitive, and high-throughput detection of biomarkers at low concentrations is invaluable for the early diagnosis of various diseases. In many sensitive immunoassays, the protocol is time-consuming and requires a complicated and expensive detection system. Previously, we presented a high-throughput optical modulation biosensing (ht-OMB) system, which enables reading a 96-well plate within 10 minutes. In ht-OMB, to aggregate and immobilize the magnetic beads to one spot, a single cylindrical permanent magnet with a sharp tip is positioned under a 96-well plate. To reduce washing and separation steps, the laser beam is manipulated relative to the fixed magnetic beads. Recently, MagBiosense Inc., which commercializes the ht-OMB technology, provided us with a fully automated OMBi detection system. Here, we show the use of the OMBi system for highly sensitive serological (clinical anti …

Show more

Mar 2024 • Communications Engineering

High-resolution computed tomography with scattered X-ray radiation and a single pixel detector

A Ben-Yehuda, O Sefi, Y Klein, H Schwartz, E Cohen, RH Shukrun, S Shwartz

X-ray imaging is a prevalent technique for non-invasively visualizing the interior of the human body and other opaque samples. In most commercial X-ray modalities, an image is formed by measuring the X-rays that pass through the object of interest. However, despite the potential of scattered radiation to provide additional information about the object, it is often disregarded due to its inherent tendency to cause blurring. Consequently, conventional imaging modalities do not measure or utilize these valuable data. In contrast, we propose and experimentally demonstrate a high resolution technique for X-ray computed tomography (CT) that measures scattered radiation by exploiting computational ghost imaging (CGI). We show that the resolution of our method can exceed 500 µm, which is approximately an order of magnitude higher than the typical resolution of X-ray imaging modalities based on scattered radiation …

Show more

Mar 2024 • Label-free Biomedical Imaging and Sensing (LBIS) 2024, PC128540H, 2024

Spatially and temporally resolution enhanced, all-optical, localized, non-contact and photoacoustic imaging

Matan Benyamin, Zeev Zalevsky

In this presentation we will present an all-optical pump-probe approach for non-contact photo-acoustic sensing and imaging. We will show various configurations for enhancing the obtainable spatial and temporal resolution as well as usage of the proposed sensing technique for various important applications. The presented pump-probe approach allows localized and direct technique for performing photoacoustic imaging while the focused pump beam excites the acoustic signal, and a focused probe beam does the spatial-temporal analysis of the diffracted speckle patterns. This analysis is done in one configuration by analyzing time changing contrast of the time varying speckle patterns and in another sensing configuration, where the speckle pattern do not vary but rather laterally move, by tracking the position of the correlation peak. Due to its advantage of performing localized photo-acoustic sensing, the …

Show more

Mar 2024 • Bioinformatics

Digger: directed annotation of immunoglobulin and T cell receptor V, D, and J gene sequences and assemblies

William D Lees, Swati Saha, Gur Yaari, Corey T Watson

Summary Knowledge of immunoglobulin and T cell receptor encoding genes is derived from high-quality genomic sequencing. High-throughput sequencing is delivering large volumes of data, and precise, high-throughput approaches to annotation are needed. Digger is an automated tool that identifies coding and regulatory regions of these genes, with results comparable to those obtained by current expert curational methods. Availability and implementation Digger is published under open source license at https://github.com/williamdlees/Digger and is available as a Python package and a Docker container.

Show more

Mar 2024 • Surfaces and Interfaces

Heteroatom co-doping (N, NS, NB) on carbon dots and their antibacterial and antioxidant properties

Arumugam Saravanan, Poushali Das, Moorthy Maruthapandi, Saurav Aryal, Shulamit Michaeli, Yitzhak Mastai, John HT Luong, Aharon Gedanken

The development of new nanoparticle-based antibiotics with biocompatible properties is an emerging advance in nanotechnology. This study advocated the development of carbon dots (CDs) doped with nitrogen, nitrogen with sulfur, and nitrogen with boron (N, NS, and NB-CDs). This led to changes in the properties of the CDs, both chemically and biologically. A facile hydrothermal technique was used to synthesize CDs and the formation of CDs was confirmed through various analytical techniques. The CDs had sizes ranging from 3.2–4.8 nm and ζ-potential values of +13 to 27 mV. The doped CDs exhibited moderate changes in fluorescence behaviors depending on the excitation wavelength (λex). The N- and NB-doped CDs were effective at eliminating gram-negative pathogens (E. coli and K. pneumoniae), with minimum inhibitory concentrations (MIC) of 300 µg/mL and 400 µg/mL, respectively. The bactericidal …

Show more

Mar 2024 • Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XXI …, 2024

Surface radiolabeling of PEGylated liposomes for biomedical applications

Chen Tzror-Azankot, Adi Anaki, Tamar Sadan, Menachem Motiei, Rachela Popovtzer

Liposomes, self-assembled lipid-based nanoparticles, have gained significant attention due to their versatility and potential applications in various biomedical fields. They serve as promising platforms for targeted drug delivery, imaging, and therapeutics. Among the various types of liposomes, radiolabeled liposomes have attracted considerable interest due to their unique capabilities in both therapy and imaging. In therapy, radiolabeled liposomes can effectively transport therapeutic radioactive agents directly to disease sites, allowing for precise and localized treatment. In imaging, radiolabeling enables non-invasive visualization and tracking of liposomes, providing valuable diagnostic information. In this study, we present a technique for surface radiolabeling of liposomes, achieved by introducing a chelating agent onto the liposome surface and optimizing radiolabeling conditions for desired radionuclides …

Show more

logo
Articali

Powered by Articali

TermsPrivacy