BINA

3858 articles

77 publishers

Join mailing list

Jul 2023 • Nature Communications

A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis

Hao Shi, Tanyuan Wang, Jianyun Liu, Weiwei Chen, Shenzhou Li, Jiashun Liang, Shuxia Liu, Xuan Liu, Zhao Cai, Chao Wang, Dong Su, Yunhui Huang, Lior Elbaz, Qing Li

Hydrogen produced from neutral seawater electrolysis faces many challenges including high energy consumption, the corrosion/side reactions caused by Cl-, and the blockage of active sites by Ca2+/Mg2+ precipitates. Herein, we design a pH-asymmetric electrolyzer with a Na+ exchange membrane for direct seawater electrolysis, which can simultaneously prevent Cl- corrosion and Ca2+/Mg2+ precipitation and harvest the chemical potentials between the different electrolytes to reduce the required voltage. In-situ Raman spectroscopy and density functional theory calculations reveal that water dissociation can be promoted with a catalyst based on atomically dispersed Pt anchored to Ni-Fe-P nanowires with a reduced energy barrier (by 0.26 eV), thus accelerating the hydrogen evolution kinetics in seawater. Consequently, the asymmetric electrolyzer exhibits current densities of 10 mA cm−2 and 100 mA cm …

Show more

Jul 2023 • Nanomaterials

Probing Polarity and pH Sensitivity of Carbon Dots in Escherichia coli through Time-Resolved Fluorescence Analyses

Gilad Yahav, Shweta Pawar, Anat Lipovsky, Akanksha Gupta, Aharon Gedanken, Hamootal Duadi, Dror Fixler

Intracellular monitoring of pH and polarity is crucial for understanding cellular processes and functions. This study employed pH- and polarity-sensitive nanomaterials such as carbon dots (CDs) for the intracellular sensing of pH, polarity, and viscosity using integrated time-resolved fluorescence anisotropy (FA) imaging (TR-FAIM) and fluorescence lifetime (FLT) imaging microscopy (FLIM), thereby enabling comprehensive characterization. The functional groups on the surface of CDs exhibit sensitivity to changes in the microenvironment, leading to variations in fluorescence intensity (FI) and FLT according to pH and polarity. The FLT of CDs in aqueous solution changed gradually from 6.38 ± 0.05 ns to 8.03 ± 0.21 ns within a pH range of 2–8. Interestingly, a complex relationship of FI and FLT was observed during measurements of CDs with decreasing polarity. However, the FA and rotational correlation time (θ) increased from 0.062 ± 0.019 to 0.112 ± 0.023 and from 0.49 ± 0.03 ns to 2.01 ± 0.27 ns, respectively. This increase in FA and θ was attributed to the higher viscosity accompanying the decrease in polarity. Furthermore, CDs were found to bind to three locations in Escherichia coli: the cell wall, inner membrane, and cytoplasm, enabling intracellular characterization using FI and FA decay imaging. FLT provided insights into cytoplasmic pH (7.67 ± 0.48), which agreed with previous works, as well as the decrease in polarity in the cell wall and inner membrane. The CD aggregation was suspected in certain areas based on FA, and the θ provided information on cytoplasmic heterogeneity due to the aggregation and/or interactions with …

Show more

Jul 2023 • Progress in Materials Science, 101166, 2023

Doped MXenes—A new paradigm in 2D systems: Synthesis, properties and applications

Avishek Dey, Silvia Varagnolo, Nicholas P Power, Naresh Vangapally, Yuval Elias, Lois Damptey, Bright N Jaato, Saianand Gopalan, Zahra Golrokhi, Prashant Sonar, Vimalnath Selvaraj, Doron Aurbach, Satheesh Krishnamurthy

Since 2011, 2D transition metal carbides, carbonitrides and nitrides known as MXenes have gained huge attention due to their attractive chemical and electronic properties. The diverse functionalities of MXenes make them a promising candidate for multitude of applications. Recently, doping MXene with metallic and non-metallic elements has emerged as an exciting new approach to endow new properties to this 2D systems, opening a new paradigm of theoretical and experimental studies. In this review, we present a comprehensive overview on the recent progress in this emerging field of doped MXenes. We compare the different doping strategies; techniques used for their characterization and discuss the enhanced properties. The distinct advantages of doping in applications such as electrocatalysis, energy storage, photovoltaics, electronics, photonics, environmental remediation, sensors, and biomedical …

Show more

Jul 2023 • Laser & Photonics Reviews

Deep-Subwavelength Resonant Meta-Optics Enabled by Ultra-High Index Topological Insulators

Singh, D., Nandi, S., Fleger, Y., Cohen, S. Z., Lewi, T.

In nanophotonics, small mode volumes, high‐quality factor resonances, and large field enhancements without metals fundamentally scale with the refractive index and are key for many implementations involving light‐matter interactions. Topological insulators (TIs) are a class of insulating materials that host topologically protected surface states, some of which exhibit extraordinarily high permittivity values. Here, the optical properties of TI bismuth telluride (Bi2Te3) single crystals are studied. It is found that both the bulk and surface states contribute to the extremely large optical constants, with the real part of the refractive index peaking at n ≈ 11. Utilizing these ultra‐high index values, it is demonstrated that Bi2Te3 metasurfaces are capable of squeezing light in deep‐subwavelength structures, with the fundamental magnetic dipole (MD) resonance confined in unit cell sizes smaller than λ/10. It is further shown that …

Show more

Jul 2023 • Quantum Information Processing

Multipartite entanglement detection via correlation minor norm

Rain Lenny, Amit Te’eni, Bar Y Peled, Avishy Carmi, Eliahu Cohen

Entanglement is a uniquely quantum resource giving rise to many quantum technologies. It is therefore important to detect and characterize entangled states, but this is known to be a challenging task, especially for multipartite mixed states. The correlation minor norm (CMN) was recently suggested as a bi-partite entanglement detector employing bounds on the quantum correlation matrix. In this paper, we explore generalizations of the CMN to multipartite systems based on matricizations of the correlation tensor. It is shown that the CMN is able to detect and differentiate classes of multipartite entangled states. We further analyze the correlations within the reduced density matrices and show their significance for entanglement detection. Finally, we employ matricizations of the correlation tensor for introducing a measure of global quantum discord.

Show more

Jul 2023 • Fuel

Design of three-dimensional hexagonal petal-like nickel-copper cobaltite//luffa sponge-derived activated carbon electrode materials for high-performance solid-state supercapattery

Sengodan Prabhu, Moorthy Maruthapandi, Arulappan Durairaj, S Arun Kumar, John HT Luong, Rajendran Ramesh, Aharon Gedanken

Three-dimensional porous nanostructured materials are considered superior materials for energy storage applications due to their high storage capability. A nickel copper-cobalt oxide (NCC) composite with a uniform 3-D porous nanostructure (positive electrode materials) and luffa sponge-derived activated carbon (LPAC) with honeycomb-like structure (negative electrode materials) were synthesized by a simple hydrothermal and chemical method. A sample of the nickel-copper cobalt oxide-5 (NCC-5) nanocomposite reached a high specific capacitance of 1048 F/g at the current density of 0.5 A/g. The NCC-5 nanocomposite sample shows a retention capacity of 93 % after 10,000 charge and discharge cycles with 95 % of Coulombic efficiency (CE). The LPAC illustrates a remarkable specific capacitance of 909 F/g at 1 A/g of current density, compared to the best literature value of 400 F/g. The full-cell NCC-5//LPAC …

Show more

Jul 2023 • Optics Express

Split-well resonant-phonon terahertz quantum cascade laser

Shiran Levy, Nathalie Lander Gower, Silvia Piperno, Sadhvikas J Addamane, John L Reno, Asaf Albo

We present a highly diagonal “split-well resonant-phonon” (SWRP) active region design for GaAs/Al_0.3Ga_0.7As terahertz quantum cascade lasers (THz-QCLs). Negative differential resistance is observed at room temperature, which indicates the suppression of thermally activated leakage channels. The overlap between the doped region and the active level states is reduced relative to that of the split-well direct-phonon (SWDP) design. The energy gap between the lower laser level (LLL) and the injector is kept at 36 meV, enabling a fast depopulation of the LLL. Within this work, we investigated the temperature performance and potential of this structure.

Show more

Jul 2023 • Nanomaterials

Probing Polarity and pH Sensitivity of Carbon Dots in Escherichia coli through Time-Resolved Fluorescence Analyses

Gilad Yahav, Shweta Pawar, Anat Lipovsky, Akanksha Gupta, Aharon Gedanken, Hamootal Duadi, Dror Fixler

Intracellular monitoring of pH and polarity is crucial for understanding cellular processes and functions. This study employed pH- and polarity-sensitive nanomaterials such as carbon dots (CDs) for the intracellular sensing of pH, polarity, and viscosity using integrated time-resolved fluorescence anisotropy (FA) imaging (TR-FAIM) and fluorescence lifetime (FLT) imaging microscopy (FLIM), thereby enabling comprehensive characterization. The functional groups on the surface of CDs exhibit sensitivity to changes in the microenvironment, leading to variations in fluorescence intensity (FI) and FLT according to pH and polarity. The FLT of CDs in aqueous solution changed gradually from 6.38 ± 0.05 ns to 8.03 ± 0.21 ns within a pH range of 2–8. Interestingly, a complex relationship of FI and FLT was observed during measurements of CDs with decreasing polarity. However, the FA and rotational correlation time (θ) increased from 0.062 ± 0.019 to 0.112 ± 0.023 and from 0.49 ± 0.03 ns to 2.01 ± 0.27 ns, respectively. This increase in FA and θ was attributed to the higher viscosity accompanying the decrease in polarity. Furthermore, CDs were found to bind to three locations in Escherichia coli: the cell wall, inner membrane, and cytoplasm, enabling intracellular characterization using FI and FA decay imaging. FLT provided insights into cytoplasmic pH (7.67 ± 0.48), which agreed with previous works, as well as the decrease in polarity in the cell wall and inner membrane. The CD aggregation was suspected in certain areas based on FA, and the θ provided information on cytoplasmic heterogeneity due to the aggregation and/or interactions with …

Show more

Jul 2023 • The Journal of Chemical Physics

Temperature-dependence of the chirality-induced spin selectivity effect—Experiments and theory

Seif Alwan, Subhajit Sarkar, Amos Sharoni, Yonatan Dubi

The temperature-dependence of the chirality-induced spin selectivity (CISS) effect can be used to discriminate between different theoretical proposals for the mechanism of the CISS effect. Here, we briefly review key experimental results and discuss the effect of temperature in different models for the CISS effect. We then focus on the recently suggested spinterface mechanism and describe the different possible effects temperature can have within this model. Finally, we analyze in detail recent experimental results presented in the work of Qian et al.[Nature 606, 902–908 (2022)] and demonstrate that, contrary to the original interpretation by the authors, these data actually indicate that the CISS effect increases with decreasing temperature. Finally, we show how the spinterface model can accurately reproduce these experimental results.

Show more

Jun 2023 • Molecules

Stable High-Capacity Elemental Sulfur Cathodes with Simple Process for Lithium Sulfur Batteries

Shunsuke Sawada, Hideki Yoshida, Shalom Luski, Elena Markevich, Gregory Salitra, Yuval Elias, Doron Aurbach

Lithium sulfur batteries are suitable for drones due to their high gravimetric energy density (2600 Wh/kg of sulfur). However, on the cathode side, high specific capacity with high sulfur loading (high areal capacity) is challenging due to the poor conductivity of sulfur. Shuttling of Li-sulfide species between the sulfur cathode and lithium anode also limits specific capacity. Sulfur-carbon composite active materials with encapsulated sulfur address both issues but require expensive processing and have low sulfur content with limited areal capacity. Proper encapsulation of sulfur in carbonaceous structures along with active additives in solution may largely mitigate shuttling, resulting in cells with improved energy density at relatively low cost. Here, composite current collectors, selected binders, and carbonaceous matrices impregnated with an active mass were used to award stable sulfur cathodes with high areal specific capacity. All three components are necessary to reach a high sulfur loading of 3.8 mg/cm2 with a specific/areal capacity of 805 mAh/g/2.2 mAh/cm2. Good adhesion between the carbon-coated Al foil current collectors and the composite sulfur impregnated carbon matrices is mandatory for stable electrodes. Swelling of the binders influenced cycling retention as electroconductivity dominated the cycling performance of the Li-S cells comprising cathodes with high sulfur loading. Composite electrodes based on carbonaceous matrices in which sulfur is impregnated at high specific loading and non-swelling binders that maintain the integrated structure of the composite electrodes are important for strong performance. This basic design can …

Show more

Jun 2023 • Electrochimica Acta

Correlation between the electrochemical response and main components structure in solutions for rechargeable Mg batteries based on THF and the reaction products of tBuMgCl and …

Sankalpita Chakrabarty, Yuri Glagovsky, Ananya Maddegalla, Natalia Fridman, Dmitry Bravo-Zhivotovski, Doron Aurbach, Ayan Mukherjee, Malachi Noked

The electrochemical response of ethereal solutions containing magnesium organohaloaluminate complexes has drawn great interest in recent decades owing to their relevance to rechargeable magnesium batteries, as demonstrated with solutions containing complexes formed by reacting R2Mg and AlCl2R moieties in ethers like tetrahydrofuran (THF). However, most of previous reports focused on battery related performances, and less on the structure of the active species. Herein, we focus on (1) identifying electroactive species and (2) correlating the electrochemical properties of their solutions to the preparation modes: either through reactions of their precursors in THF, or by dissolving isolated crystallized products in the ether solvent. Specifically, we explore the products of the reaction of the Grignard reagent t-BuMgCl with AlCl3 (1:1) in THF, and how their presence in solutions affect their electrochemical …

Show more

Jun 2023 • Journal of Physics: Conference Series

Quantum clock frames: Uncertainty relations, non-Hermitian dynamics and nonlocality in time

Eliahu Cohen

Dynamical evolution can be reconstructed within stationary, closed quantum systems by employing the Page-Wootters" timeless approach". When conditioning upon the state of a" clock" subsystem, the rest of the system regains its time dependence. This mechanism, involving entanglement between the above subsystems has gained much attention during the last few years. After a brief introduction to the topic we will elaborate on a few recent results: The derivation of new time-energy uncertainty relations, emergence of non-Hermitian dynamics when utilizing non-inertial quantum clocks and dynamical nonlocality in quantum time.

Show more

Jun 2023 • arXiv preprint arXiv:2306.16209

Efficient Reduction of Casimir Forces by Self-assembled Bio-molecular Thin Films

René IP Sedmik, Alexander Urech, Zeev Zalevsky, Itai Carmeli

Casimir forces, related to London-van der Waals forces, arise if the spectrum of electromagnetic fluctuations is restricted by boundaries. There is great interest both from fundamental science and technical applications to control these forces on the nano scale. Scientifically, the Casimir effect being the only known quantum vacuum effect manifesting between macroscopic objects, allows to investigate the poorly known physics of the vacuum. In this work, we experimentally investigate the influence of self-assembled molecular bio and organic thin films on the Casimir force between a plate and a sphere. We find that molecular thin films, despite being a mere few nanometers thick, reduce the Casimir force by up to 14%. To identify the molecular characteristics leading to this reduction, five different bio-molecular films with varying chemical and physical properties were investigated. Spectroscopic data reveal a broad absorption band whose presence can be attributed to the mixing of electronic states of the underlying gold layer and those of the molecular film due to charge rearrangement in the process of self-assembly. Using Lifshitz theory we calculate that the observed change in the Casimir force is consistent with the appearance of the new absorption band due to the formation of molecular layers. The desired Casimir force reduction can be tuned by stacking several monolayers, using a simple self-assembly technique in a solution. The molecules - each a few nanometers long - can penetrate small cavities and holes, and cover any surface with high efficiency. This process seems compatible with current methods in the production of micro …

Show more

Jun 2023 • arXiv preprint arXiv:2306.13621

Ergodic properties of Brownian motion under stochastic resetting

Eli Barkai, Rosa Flaquer-Galmes, Vicenç Méndez

We study ergodic properties of one-dimensional Brownian motion with resetting. Using generic classes of statistics of times between resets, we find respectively for thin/fat tailed distributions, the normalized/non-normalised invariant density of this process. The former case corresponds to known results in the resetting literature and the latter to infinite ergodic theory. Two types of ergodic transitions are found in this system. The first is when the mean waiting time between resets diverges, when standard ergodic theory switches to infinite ergodic theory. The second is when the mean of the square root of time between resets diverges and the properties of the invariant density are drastically modified. We then find a fractional integral equation describing the density of particles. This finite time tool is particularly useful close to the ergodic transition where convergence to asymptotic limits is logarithmically slow. Our study implies rich ergodic behaviors for this non-equilibrium process which should hold far beyond the case of Brownian motion analyzed here.

Show more

Jun 2023 • Journal of Investigative Dermatology

Altered RNA editing in atopic dermatitis highlights the role of double-stranded RNA for immune surveillance

Miriam Karmon, Eli Kopel, Aviv Barzilai, Polina Geva, Eli Eisenberg, Erez Y Levanon, Shoshana Greenberger

Atopic dermatitis (AD) is associated with dysregulated type 1 IFN‒mediated responses, in parallel with the dominant type 2 inflammation. However, the pathophysiology of this dysregulation is largely unknown. Adenosine-to-inosine RNA editing plays a critical role in immune regulation by preventing double-stranded RNA recognition by MDA5 and IFN activation. We studied global adenosine-to-inosine editing in AD to elucidate the role played by altered editing in the pathophysiology of this disease. Analysis of three RNA-sequencing datasets of AD skin samples revealed reduced levels of adenosine-to-inosine RNA editing in AD. This reduction was seen globally throughout Alu repeats as well as in coding genes and in specific pre-mRNA loci expected to create long double-stranded RNA, the main substrate of MDA5 leading to type I IFN activation. Consistently, IFN signature genes were upregulated. In contrast …

Show more

Jun 2023 • arXiv preprint arXiv:2306.00528

Neuronal Cell Type Classification using Deep Learning

Ofek Ophir, Orit Shefi, Ofir Lindenbaum


Jun 2023 • 2023 IEEE International Conference on Acoustics, Speech, and Signal …, 2023

Neuronal Cell Type Classification Using Locally Sparse Networks

Ofek Ophir, Orit Shefi, Ofir Lindenbaum

The brain is likely the most complex organ, given the variety of functions it controls, the number of cells it comprises, and their corresponding connectivity and diversity. Identifying and studying neurons, the major building blocks of the brain, is a crucial milestone and is essential for understanding brain functionality in health and disease. Recent developments in machine learning have provided advanced abilities for classifying neurons, mainly according to their morphology. This paper aims to provide an explainable deep-learning framework to classify neurons based on their electrophysiological activity. Our analysis is performed on data provided by the Allen Cell Types database. The data contains a survey of biological features derived from single-cell recordings from mice. Neurons are classified into subtypes based on Cre mouse lines using an inherently interpretable locally sparse deep neural network model …

Show more

Jun 2023 • arXiv preprint arXiv:2206.11783

Kirkwood-Dirac quasiprobability approach to the statistics of incompatible observables

Matteo Lostaglio, Alessio Belenchia, Amikam Levy, Santiago Hernández-Gómez, Nicole Fabbri, Stefano Gherardini

Recent work has revealed the central role played by the Kirkwood-Dirac quasiprobability (KDQ) as a tool to encapsulate non-classical features in the context of condensed matter physics (scrambling, dynamical phase transitions) metrology (standard and post-selected), thermodynamics (power output and fluctuation theorems), foundations (contextuality, anomalous weak values) and more. Given the growing relevance of the KDQ across the quantum sciences, the aim of this work is two-fold: first, we clarify the role played by quasiprobabilities in characterising dynamical fluctuations in the presence of measurement incompatibility, and highlight how the KDQ naturally underpins and unifies quantum correlators, quantum currents, Loschmidt echoes and weak values; second, we discuss several schemes to access the KDQ and its non-classicality features, and assess their experimental feasibility in NMR and solid-state platforms. Finally, we analyze the possibility of a `thermodynamics with quasiprobabilities' in the light of recent no-go theorems limiting traditional treatments.

Show more

Jun 2023 • arXiv preprint arXiv:2306.16258

Synchrotron-based x ray fluorescence ghost imaging

Mathieu Manni, Adi Ben-Yehuda, Yishay Klein, Bratislav Lukic, Andrew Kingston, Alexander Rack, Sharon Shwartz, Nicola Viganò

X-ray Fluorescence Ghost Imaging (XRF-GI) was recently demonstrated for x-ray lab sources. It has the potential to reduce acquisition time and deposited dose by choosing their trade-off with spatial resolution, while alleviating the focusing constraints of the probing beam. Here, we demonstrate the realization of synchrotron-based XRF-GI: We present both an adapted experimental setup and its corresponding required computational technique to process the data. This not only extends the above-mentioned advantages to synchrotron XRF imaging, it also presents new possibilities for developing strategies to improve precision in nano-scale imaging measurements.

Show more

Jun 2023 • Journal of hazardous materials

Soil adsorption and transport of lead in the presence of perovskite solar cell-derived organic cations

Arindam Mallick, Rene D Mendez Lopez, Gilboa Arye, David Cahen, Iris Visoly-Fisher

Perovskite photovoltaics offer a highly efficient and low-cost solar energy harvesting technology. However, the presence of lead (Pb) cations in photovoltaic halide perovskite (HaPs) materials is concerning, and quantifying the environmental hazard of accidental Pb2+ leaching into the soil is crucial for assessing the sustainability of this technology. Pb2+ from inorganic salts was previously found to remain in the upper soil layers due to adsorption. However, Pb-HaPs contain additional organic and inorganic cations, and competitive cation adsorption may affect Pb2+ retention in soils. Therefore, we measured, analyzed by simulations and report the depths to which Pb2+ from HaPs penetrates into 3 types of agricultural soil. Most of the HaP-leached Pb2+ is found to be retained already in the first cm of the soil columns, and subsequent rain events do not induce Pb2+ penetration below the first few cm of soil surface …

Show more

Jun 2023 • ACS Omega

Detecting Contaminants in Water Based on Full Scattering Profiles within the Single Scattering Regime

Alon Tzroya, Shoshana Erblich, Hamootal Duadi, Dror Fixler

Clean water is essential for maintaining human health. To ensure clean water, it is important to use sensitive detection methods that can identify contaminants in real time. Most techniques do not rely on optical properties and require calibrating the system for each level of contamination. Therefore, we suggest a new technique to measure water contamination using the full scattering profile, which is the angular intensity distribution. From this, we extracted the iso-pathlength (IPL) point which minimizes the effects of scattering. The IPL point is an angle where the intensity values remain constant for different scattering coefficients while the absorption coefficient is set. The absorption coefficient does not affect the IPL point but only attenuates its intensity. In this paper, we show the appearance of the IPL in single scattering regimes for small concentrations of Intralipid. We extracted a unique point for each sample diameter …

Show more

logo
Articali

Powered by Articali

TermsPrivacy