3597 articles

75 publishers

Join mailing list

Mar 2023 • The Journal of Physical Chemistry Letters

Protein Orientation Defines Rectification of Electronic Current via Solid-State Junction of Entire Photosystem-1 Complex

Jerry A Fereiro, Tatyana Bendikov, Andreas Herrmann, Israel Pecht, Mordechai Sheves, David Cahen

We demonstrate that the direction of current rectification via one of nature’s most efficient light-harvesting systems, the photosystem 1 complex (PS1), can be controlled by its orientation on Au substrates. Molecular self-assembly of the PS1 complex using four different linkers with distinct functional head groups that interact by electrostatic and hydrogen bonds with different surface parts of the entire protein PS1 complex was used to tailor the PS1 orientation. We observe an orientation-dependent rectification in the current–voltage characteristics for linker/PS1 molecule junctions. Results of an earlier study using a surface two-site PS1 mutant complex having its orientation set by covalent binding to the Au substrate supports our conclusion. Current–voltage–temperature measurements on the linker/PS1 complex indicate off-resonant tunneling as the main electron transport mechanism. Our ultraviolet photoemission …

Show more

Mar 2023 • Nanoscale and Quantum Materials: From Synthesis and Laser Processing to …, 2023

Laser induced transfer of 2D materials for optoelectronic applications

I Cheliotis, A Logotheti, F Zacharatos, A Pesquera, A Zurutuza, D Naveh, L Tsetseris, I Zergioti

The advent of functional devices based on two-dimensional (2D) materials has further intensified the interest in the latter. However, the fabrication of structures using layered materials remains a key challenge. Recently, we proposed the so-called “Laser-Induced Transfer” method (LIT), as a digital and solvent-free approach for the high-resolution and intact transfer of 2D materials’ pixels. Here, we will further highlight the versatility of LIT by reporting results on the high-quality digital transfer of graphene and MoS2. These materials have emerged in the field of nanoelectronics, sensors and photonics due to their unique optoelectronic properties, but their high-quality transfer remains a hurdle. The quality of the transferred films has been confirmed with systematic characterization based on Scanning Electron Microscopy and Raman spectroscopy, as well as mobility’s extraction. Then we will present how the laser …

Show more

Mar 2023 • Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XX …, 2023

Endoscope-integrated wavelength multiplexing super-resolved imaging based upon encoding patterns projection

Omer Wagner, Asaf Shahmoon, Zeev Zalevsky

In this paper a wavelength-multiplexing based super-resolving concept is presented to allow high resolution imaging through blood. We use temporally pulsed and spectrally wide-band laser while at its output we have special grating and a spatial 2-D transmission mask allowing to project wavelengths’ dependent high-resolution spatial orthogonal encoding patterns (different spatial patterns for each wavelength). The ballistic photons of the short temporal pulses allow the high-resolution encoding pattern to reach the inspected object through the scattering blood medium without being spatially blurred. The light is intentionally collected via low resolution optics. The high-resolution reconstruction can be obtained digitally by post processing or optically by passing the collected low-resolution data through a similar grating and 2-D mask which do an all-optical decoding. After summing all the images together, the super …

Show more

Mar 2023 • Bulletin of the American Physical Society

Measurement of Higher Order X-ray Optical Mixing

Chance Ornelas-Skarin, David Reis, Jerome Hastings, Mariano Trigo, Shambhu Ghimire, Daria Gorelova, Matthias Fuchs, Sharon Shwartz, Diling Zhu, Takahiro Sato, Quynh Nguyen, Tatiana Bezriadina, Henrik Lemke, Roman Mankowsky, Mathias Sander, Nelson Hua, Ludmila Diniz Leroy, Gilberto De La Pena

X-ray optical wave mixing is a nonlinear diffraction method that gives direct information about the Ångstrom and femtosecond-scale structure of the local optically-induced charge density in bulk solids, information unavailable to purely optical methods. The first measurements of wave mixing between x rays and optical photons were reported for single crystal diamond [Glover et al., Nature 488, 603 (2012)]. Here we report x-ray optical wave mixing experiments using the Swiss-FEL and LCLS hard x-ray free-electron lasers. To measure the wave-mixing signal we use silicon crystal optics to monochromate the free-electron laser output and analyze the energy-angle dependent wave-mixing signal while rejecting the elastic background. The results include the first measurements from silicon and the first measurement of the higher-order wave-mixing process generating the sum frequency of two optical and one x-ray …

Show more

Mar 2023 • Energy Technology

Influence of the Halogen in Argyrodite Electrolytes on the Electrochemical Performance of All‐Solid‐State Lithium Batteries

Longlong Wang, Guy Rahamim, Kirankumar Vudutta, Nicole Leifer, Ran Elazari, Ilan Behar, Malachi Noked, David Zitoun

All‐solid‐state lithium batteries (ASSLBs) are considered as an alternative solution to lithium‐ion batteries, because of their safety and high theoretical energy density. Argyrodite‐based solid‐electrolytes (SEs), Li6PS5X (X = Cl, Cl0.5Br0.5 or Br), are promising candidates for ASSLBs. Most of the previous reports have used Li6PS5Cl as the default SE composition. Here, the electrochemical behavior of three different argyrodites with Cl− or Br−, or both, as the halogen is systematically studied. Using LiNi0.6Co0.2Mn0.2O2 as a model cathode, the behavior of these SEs in ASSLB cells is also studied. SEs containing Br show higher near‐room‐temperature ionic conductivity (>2 mS cm−1) and the critical current density (≥1 mA cm−2) during Li plating/stripping, and are stable up to 5 V versus Li/Li+. Li6PS5Br gives the best electrochemical performance in terms of C‐rate and long‐term cycling among the three …

Show more

Mar 2023 • Cellular and Molecular Gastroenterology and Hepatology

High-Resolution Genomic Profiling of Liver Cancer Links Etiology With Mutation and Epigenetic Signatures

Shira Perez, Anat Lavi-Itzkovitz, Moriah Gidoni, Tom Domovitz, Roba Dabour, Ishant Khurana, Ateret Davidovich, Ana Tobar, Alejandro Livoff, Evgeny Solomonov, Yaakov Maman, Assam El-Osta, Yishan Tsai, Ming-Lung Yu, Salomon M Stemmer, Izhak Haviv, Gur Yaari, Meital Gal-Tanamy

BackgroundHepatocellular carcinoma (HCC) is a model of diverse spectrum of cancers, since it is induced by well-known etiologies, mainly Hepatitis C virus (HCV) and Hepatitis B virus (HBV). Here we aimed to identify HCV-specific mutational signature and explored the link between the HCV-related regional variation in mutations rates and HCV-induced alterations in genome-wide chromatin organization.MethodsTo identify an HCV-specific mutational signature in HCC, we performed high-resolution targeted sequencing to detect passenger mutations on 64 HCC samples from three etiology groups – HBV, HCV, or other. To explore the link between genomic signature and genome-wide chromatin organization we performed ChIP-seq for the transcriptionally permissive H3K4me3, H3K9ac and suppressive H3K9me3 modifications following HCV infection.ResultsRegional variation in mutations rates analysis …

Show more

Mar 2023 • Journal of Biophotonics

Fluorescence attenuated by a thick scattering medium: theory, simulations and experiments

Yitzchak Weber, Hamootal Duadi, Pavitra Sokke Rudraiah, Inbar Yariv, Gilad Yahav, Dror Fixler, Rinat Ankri

Fluorescence‐based imaging has an enormous impact on our understanding of biological systems. However, in vivo fluorescence imaging is greatly influenced by tissue scattering. A better understanding of this dependance can improve the potential of non‐invasive in vivo fluorescence imaging. In this paper we present a diffusion model, based on an existing master‐slave model, of isotropic point sources imbedded in a scattering slab, representing fluorophores within a tissue. The model was compared to Monte Carlo simulations and measurements of a fluorescent slide measured through tissue‐like phantoms with different reduced scattering coefficients (0.5 to 2.5mm‐1) and thicknesses(0.5 to 5mm). Results show a good correlation between our suggested theory, simulations and experiments; while the fluorescence intensity decays as the slab's scattering and thickness increase, the decay rate decreases as the …

Show more

Mar 2023 • Physical Review Research

Majorana-Weyl cones in ferroelectric superconductors

Hennadii Yerzhakov, Roni Ilan, Efrat Shimshoni, Jonathan Ruhman

Topological superconductors are predicted to exhibit outstanding phenomena, including non-Abelian anyon excitations, heat-carrying edge states, and topological nodes in the Bogoliubov spectra. Nonetheless, and despite major experimental efforts, we are still lacking unambiguous signatures of such exotic phenomena. In this context, the recent discovery of coexisting superconductivity and ferroelectricity in lightly doped and ultraclean SrTiO 3 opens new opportunities. Indeed, a promising route to engineer topological superconductivity is the combination of strong spin-orbit coupling and inversion-symmetry breaking. Here we study a three-dimensional parabolic band minimum with Rashba spin-orbit coupling, whose axis is aligned by the direction of a ferroelectric moment. We show that all of the aforementioned phenomena naturally emerge in this model when a magnetic field is applied. Above a critical Zeeman …

Show more

Mar 2023 • Proceedings Volume PC12432, High Contrast Metastructures XII

Temperature Invariant Metasurfaces

Tomer Lewi Shany Cohen, Sukanta Nandi, Danveer Singh

Mar 2023 • Journal of Power Sources

Enhanced oxygen reduction and fuel cell performance and durability of ultra-low loading Pt-supported high surface area titanium nitro-carbide

Oran Lori, Alisa Kozhushner, Hilah C Honig, Lior Elbaz

Corrosion resistance, porous structure and high surface area are becoming more and more significant as electrode properties in long-term operation of polymer electrolyte membrane fuel cell. In this work, high surface area, porous titanium-based ceramic compound was synthesized via the facile modified urea glass method (mUGM) and utilized as electrocatalyst support for oxygen resection reaction (ORR) in fuel cells cathodes. The as-prepared compound was found to have surface area and crystallite sizes of the scale of carbon black (CB) with strong dependency on the Ti precursor to urea molar ratio. N–C bonds were found to be involved, as suggested from the X-ray photoelectron spectra, and little to-no residual bulk carbon was found in the samples (X-ray diffraction and Raman spectroscopy). After deposition of Pt metal catalyst, the ceramic-based system demonstrated superior ORR activity and fuel cell …

Show more

Mar 2023 • Molecular Therapy-Nucleic Acids

Multiplex HDR for disease and correction modeling of SCID by CRISPR genome editing in human HSPCs

Ortal Iancu, Daniel Allen, Orli Knop, Yonathan Zehavi, Dor Breier, Adaya Arbiv, Atar Lev, Yu Nee Lee, Katia Beider, Arnon Nagler, Raz Somech, Ayal Hendel

Severe combined immunodeficiency (SCID) is a group of disorders caused by mutations in genes involved in the process of lymphocyte maturation and function. CRISPR-Cas9 gene editing of the patient’s own hematopoietic stem and progenitor cells (HSPCs) ex vivo could provide a therapeutic alternative to allogeneic hematopoietic stem cell transplantation, the current gold standard for treatment of SCID. To eliminate the need for scarce patient samples, we engineered genotypes in healthy donor (HD)-derived CD34+ HSPCs using CRISPR-Cas9/rAAV6 gene-editing, to model both SCID and the therapeutic outcomes of gene-editing therapies for SCID via multiplexed homology-directed repair (HDR). First, we developed a SCID disease model via biallelic knockout of genes critical to the development of lymphocytes; and second, we established a knockin/knockout strategy to develop a proof-of-concept single …

Show more

Mar 2023 • Real-time Measurements, Rogue Phenomena, and Single-Shot Applications VIII …, 2023

Quantum interferometer based on time-lenses

Sara Meir, Eliahu Cohen, Moti Fridman

Time-lenses can image ultrafast signals in time. Placing them in a 2-f configuration leads to Fourier transform of the input signal and ultrafast spectroscopy. We utilized two time-lenses in a 4-f configuration and formed an interferometer in the time domain. Our time lenses are based on four-wave mixing process, generating an idler beam which serves as the output. The output from the first time-lens is the input to the second time-lens. At the output of the second time-lens, we get an interference between the signal beams of both time-lenses and the idler beams of both time-lenses. This interference is sensitive to ultrafast phase shifts in time and can lead to interfere signals in different times. This interferometer is good for quantum imaging, and studying the temporal structure of entangled photons. In this talk we will demonstrate the interferometer, how we exploit time-lenses for interferometry, the application of the …

Show more

Mar 2023 • arXiv e-prints

Leggett–Garg-like Inequalities from a Correlation Matrix Construction

Dana Ben Porath, Eliahu Cohen

The Leggett-Garg Inequality (LGI) constrains, under certain fundamental assumptions, the correlations between measurements of a quantity Q at different times. Here we analyze the LGI, and propose similar but somewhat more elaborate inequalities, employing a technique that utilizes the mathematical properties of correlation matrices, which was recently proposed in the context of nonlocal correlations. We also find that this technique can be applied to inequalities that combine correlations between different times (as in LGI) and correlations between different locations (as in Bell inequalities). All the proposed bounds include additional correlations compared to the original ones and also lead to a particular form of complementarity. A possible experimental realization and some applications are briefly discussed.

Show more

Mar 2023 • Physics and Simulation of Optoelectronic Devices XXXI 12415, 163-170, 2023

High efficiency multi-taper coupler based optical modulator

Ted GL Frumkin, Amiel A Ishaaya, Zeev Zalevsky

This article focuses on electro-optical modulators and in particularly it concerns a high efficiency modulator based on a multi-taper coupler. The advantages achieved by adding a modulator located on the multi-taper are: increasing the efficiency, bandwidth, versatility and decreasing the propagation loss while decreasing the connection gate and the location on the PIC, all due to the Multi-Taper coupling sensitivity. Numerical simulations will show the feasibility of changing the coupling efficiency dramatically by a small change on the multi-taper coupler, where coupling efficiency changes dramatically, from 3dB loss up to 38dB loss. The fabrication process will be shown for manufacturing the multi-taper modulator.

Show more

Mar 2023 • Frontiers in Biological Detection: From Nanosensors to Systems XV, PC1239706, 2023

High throughput optical modulation biosensing for highly sensitive and mass scale rapid detection of Covid-19 (Conference Presentation)

Shmuel Burg, Shira Roth, Meir Cohen, Shira Avivi-Mintz, Michael Margulis, Hanan Rohana, Avi Peretz, Amos Danielli

Rapid, highly sensitive, and high-throughput detection of biomarkers at low concentrations is invaluable for early diagnosis of various diseases. In many sensitive immunoassays the protocol is time consuming and requires a complicated and expensive detection system. Here, we demonstrate a high-throughput optical modulation biosensing (ht-OMB) system, which enables reading a 96-well plate within 10 minutes. Using the system, to detect human Interleukin-8, we demonstrated a limit of detection of 0.14 ng/L and a 4-log dynamic range. Testing 94 RNA extracts from 36 confirmed RT-qPCR SARS-CoV-2-positive patients (C_t≤40) and 58 confirmed RT-qPCR SARS-CoV-2-negative individuals resulted in 100% sensitivity and 100% specificity.

Show more

Mar 2023 • Physical Review A

Observation of coherent oscillations in the association of dimers from a thermal gas of ultracold atoms

Roy Elbaz, Yaakov Yudkin, Panagiotis Giannakeas, Jan-Michael Rost, Chris H Greene, Lev Khaykovich

We report the observation of coherent oscillations in conversion efficiency of weakly bound dimers formed from a thermal gas of ultracold atoms. Finite thermal energy of the gas causes loss of coherence when a broad continuum is resonantly coupled to a discrete bound state. Restoration of the coherence can be achieved through nonadiabatic transitions of the dressed molecular energy level that are induced by a strong modulation pulse with fast envelope dynamics. Conditions to observe coherent oscillations are verified and control of their properties is demonstrated. The main experimental findings are supported by theoretical modeling and numerical calculations. The observed results may lead to a renewed interest in general studies of a discrete energy level coupled to a broadband continuum when the properties of both are fully controlled.

Show more

Mar 2023 • Real-time Measurements, Rogue Phenomena, and Single-Shot Applications VIII …, 2023

Dynamics of modal self-cleaning

Yuval Tamir, Moti Fridman

Sending an ultrafast pulse in multimode fiber can lead to nonlinear interactions between the modes. When sending such a pulse in graded-index fibers there are cases where all the energy is transferring from the high-order modes into the lowest one. This effect is called modal self-cleaning. We developed a multimode time-lens, which measures the temporal and spatial dynamics of ultrafast signals in multimode fibers. With our system, we can detect the dynamics of each mode in time with high temporal resolution, and identify which mode is coupled to which and how the energy transfers between them. In this talk, We will present our measurement system in details and describe our novel results on modal self-cleaning. We will also comment on other multimode effects which our system can measure for the first time.

Show more

Mar 2023 • Microsystems & Nanoengineering

Femtosecond laser-assisted fabrication of piezoelectrically actuated crystalline quartz-based MEMS resonators

John Linden, Neta Melech, Igor Sakaev, Ofer Fogel, Slava Krylov, David Nuttman, Zeev Zalevsky, Marina Sirota

A novel technology for the precise fabrication of quartz resonators for MEMS applications is introduced. This approach is based on the laser-induced chemical etching of quartz. The main processing steps include femtosecond UV laser treatment of a Cr-Au-coated Z-cut alpha quartz wafer, followed by wet etching. The laser-patterned Cr-Au coating serves as an etch mask and is used to form electrodes for piezoelectric actuation. This fabrication approach does not alter the quartz’s crystalline structure or its piezo-electric properties. The formation of defects, which is common in laser micromachined quartz, is prevented by optimized process parameters and by controlling the temporal behavior of the laser-matter interactions. The process does not involve any lithography and allows for high geometric design flexibility. Several configurations of piezoelectrically actuated beam-type resonators were fabricated using …

Show more

Mar 2023 • Nature

RBFOX2 modulates a metastatic signature of alternative splicing in pancreatic cancer

Amina Jbara, Kuan-Ting Lin, Chani Stossel, Zahava Siegfried, Haya Shqerat, Adi Amar-Schwartz, Ela Elyada, Maxim Mogilevsky, Maria Raitses-Gurevich, Jared L Johnson, Tomer M Yaron, Ofek Ovadia, Gun Ho Jang, Miri Danan-Gotthold, Lewis C Cantley, Erez Y Levanon, Steven Gallinger, Adrian R Krainer, Talia Golan, Rotem Karni

Pancreatic ductal adenocarcinoma (PDA) is characterized by aggressive local invasion and metastatic spread, leading to high lethality. Although driver gene mutations during PDA progression are conserved, no specific mutation is correlated with the dissemination of metastases–. Here we analysed RNA splicing data of a large cohort of primary and metastatic PDA tumours to identify differentially spliced events that correlate with PDA progression. De novo motif analysis of these events detected enrichment of motifs with high similarity to the RBFOX2 motif. Overexpression of RBFOX2 in a patient-derived xenograft (PDX) metastatic PDA cell line drastically reduced the metastatic potential of these cells in vitro and in vivo, whereas depletion of RBFOX2 in primary pancreatic tumour cell lines increased the metastatic potential of these cells. These findings support the role of RBFOX2 as a potent metastatic suppressor in …

Show more

Mar 2023 • Journal of Hazardous Materials

Soil adsorption and transport of lead in the presence of perovskite solar cell-derived organic cations

Arindam Mallick, Rene D Mendez Lopez, Gilboa Arye, David Cahen, Iris Visoly-Fisher

Perovskite photovoltaics offer a highly efficient and low-cost solar energy harvesting technology. However, the presence of lead (Pb) cations in photovoltaic halide perovskite (HaPs) materials is concerning, and quantifying the environmental hazard of accidental Pb2+ leaching into the soil is crucial for assessing the sustainability of this technology. Pb2+ from inorganic salts was previously found to remain in the upper soil layers due to adsorption. However, Pb-HaPs contain additional organic and inorganic cations, and competitive cation adsorption may affect Pb2+ retention in soils. Therefore, we measured, analyzed by simulations and report the depths to which Pb2+ from HaPs penetrates into 3 types of agricultural soil. Most of the HaP-leached Pb2+ is found to be retained already in the first cm of the soil columns, and subsequent rain events do not induce Pb2+ penetration below the first few cm of soil surface …

Show more

Mar 2023 • Frontiers in Biological Detection: From Nanosensors to Systems XV, PC1239704, 2023

Improving the sensitivity of fluorescence-based immunoassays by time-resolved and spatial-resolved measurements (Conference Presentation)

Ran Kremer, Shira Roth, Avital Bross, Yair Noam, Amos Danielli

In fluorescence-based biosensing applications, to increase optical detection sensitivity, time-resolved measurements are extensively used. Magnetic modulation biosensing (MMB) is a novel, fast, and sensitive detection technology for various applications. While this technology provides high sensitivity detection of biomarkers, to date, only the time resolved signal was analyzed. Here, we use for the first time both time-resolved and spatial-resolved measurements and show that this combination drastically improves the sensitivity of an MMB-based assay.

Show more


Powered by Articali