BINA

2708 articles

72 publishers

Join mailing list

May 2022 • ACS Applied Materials & Interfaces

CuO-Coated Antibacterial and Antiviral Car Air-Conditioning Filters

Ilana Perelshtein, Itsik Levi, Nina Perkas, Avi Pollak, Aharon Gedanken

The demand for improved indoor air quality, especially during the pandemic of Covid-19, has led to renewed interest in antiviral and antibacterial air-conditioning systems. Here, air filters of vehicles made of nonwoven polyester filter media were sonochemically coated with CuO nanoparticles by a roll-to-roll coating method. The product, aimed at providing commuters with high air quality, showed good stability and mechanical properties and potent activity against Escherichia coli and Staphylococcus aureus bacteria, H1N1 influenza, and two SARS-CoV-2 variants. The filtering properties of a coated filter were tested, and they were similar to those of the uncoated filter. Leaching tests as a function of airflow were conducted, and the main outcome was that the coating was stable and particles were not detached from the coated media. Extension to other air-conditioning systems was straightforward.

Show more

May 2022 • arXiv preprint arXiv:2205.09677

Reconstructing complex field through opaque scattering layer with structured light illumination

Aditya Chandra Mandal, Abhijeet Phatak, Zeev Zalevsky, Rakesh Kumar Singh

The wavefront is scrambled when coherent light propagates through a random scattering medium and which makes direct use of the conventional optical methods ineffective. In this paper, we propose and demonstrate a structured light illumination for imaging through an opaque scattering layer. Proposed technique is reference free and capable to recover the complex field from intensities of the speckle patterns. This is realized by making use of the phase-shifting in the structured light illumination and applying spatial averaging of the speckle pattern in the intensity correlation measurement. An experimental design is presented and simulated results based on the experimental design are shown to demonstrate imaging of different complex-valued objects through scattering layer.

Show more

May 2022 • ACS Applied Materials & Interfaces

CuO-Coated Antibacterial and Antiviral Car Air-Conditioning Filters

Ilana Perelshtein, Itsik Levi, Nina Perkas, Avi Pollak, Aharon Gedanken

The demand for improved indoor air quality, especially during the pandemic of Covid-19, has led to renewed interest in antiviral and antibacterial air-conditioning systems. Here, air filters of vehicles made of nonwoven polyester filter media were sonochemically coated with CuO nanoparticles by a roll-to-roll coating method. The product, aimed at providing commuters with high air quality, showed good stability and mechanical properties and potent activity against Escherichia coli and Staphylococcus aureus bacteria, H1N1 influenza, and two SARS-CoV-2 variants. The filtering properties of a coated filter were tested, and they were similar to those of the uncoated filter. Leaching tests as a function of airflow were conducted, and the main outcome was that the coating was stable and particles were not detached from the coated media. Extension to other air-conditioning systems was straightforward.

Show more

May 2022 • Global change biology

Urbanization comprehensively impairs biological rhythms in coral holobionts

Yaeli Rosenberg, Noa Simon‐Blecher, Maya Lalzar, Ruth Yam, Aldo Shemesh, Shahar Alon, Gabriela Perna, Anny Cárdenas, Christian R Voolstra, David J Miller, Oren Levy

Coral reefs are in global decline due to climate change and anthropogenic influences (Hughes et al., Conservation Biology, 27: 261–269, 2013). Near coastal cities or other densely populated areas, coral reefs face a range of additional challenges. While considerable progress has been made in understanding coral responses to acute individual stressors (Dominoni et al., Nature Ecology & Evolution, 4: 502–511, 2020), the impacts of chronic exposure to varying combinations of sensory pollutants are largely unknown. To investigate the impacts of urban proximity on corals, we conducted a year‐long in‐natura study—incorporating sampling at diel, monthly, and seasonal time points—in which we compared corals from an urban area to corals from a proximal non‐urban area. Here we reveal that despite appearing relatively healthy, natural biorhythms and environmental sensory systems were extensively disturbed …

Show more

May 2022 • J Clin Aesthet Dermatol

A Novel Facial Cream Based on Skin-penetrable Fibrillar Collagen Microparticles

Rachel Lubart, Inbar Yariv, Dror Fixler, Anat Lipovsky

Background. Collagen protein plays a notable role maintaining firm skin. Topical creams containing collagen fibers are widely available, but their usefulness is questionable due to limited skin penetration. When applied in a cream, collagen does not penetrate the skin leaving the skin structure unaffected.Objective. We formulated micronized collagen in a cream base. Using human skin samples, we sought to investigate the ability of the micronized collagen cream to penetrate human skin. Methods. Particle sizes of micronized marine collagen were evaluated using electron microscopy. Optical profilometry was conducted to evaluate skin topography and roughness. The antioxidant activity of the collagen was evaluated using the electron paramagnetic resonance technique by measuring the changes in free radical production. Collagen penetration depth in human skin samples was monitored using a non-invasive optical technique known as iterative multiplane optical property extraction, which works based on the detection of laser light phase changes following the presence of collagen particles in deep skin layers.Results. According to the electron microscopy, collagen particles were found to be of various sizes, the smallest being about 120nm in diameter. Skin topography measurements revealed that the treated collagen cream increased skin smoothness of the samples. Our results derived from the iterative multiplane optical property extraction indicated that micronized collagen in a cream base penetrates both the stratum corneum and the deep epidermal layers toward the dermis.Conclusion. Our investigation suggests that the collagen in the …

Show more

May 2022 • Biophysical Journal

Electrically controlling and optically observing the membrane potential of supported lipid bilayers

Shimon Yudovich, Adan Marzouqe, Joseph Kantorovitsch, Eti Teblum, Tao Chen, Jörg Enderlein, Evan W Miller, Shimon Weiss

Supported lipid bilayers are a well-developed model system for the study of membranes and their associated proteins, such as membrane channels, enzymes, and receptors. These versatile model membranes can be made from various components, ranging from simple synthetic phospholipids to complex mixtures of constituents, mimicking the cell membrane with its relevant physiochemical and molecular phenomena. In addition, the high stability of supported lipid bilayers allows for their study via a wide array of experimental probes. In this work, we describe a platform for supported lipid bilayers that is accessible both electrically and optically, and demonstrate direct optical observation of the transmembrane potential of supported lipid bilayers. We show that the polarization of the supported membrane can be electrically controlled and optically probed using voltage-sensitive dyes. Membrane polarization …

Show more

May 2022 • Journal of Lightwave Technology

Robust Directional Couplers for State Manipulation in Silicon Photonic-Integrated Circuits

Moshe Katzman, Yonatan Piasetzky, Evyatar Rubin, Ben Barenboim, Maayan Priel, Muhammad Erew, Avi Zadok, Haim Suchowski

Photonic integrated circuits play a central role in current and future applications such as communications, sensing, ranging, and information processing. Photonic quantum computing will also likely require an integrated optics architecture for improved stability, scalability, and performance. Fault-tolerant quantum computing mandates very accurate and robust quantum gates. In this work, we demonstrate high-fidelity directional couplers for single-qubit gates in photonic integrated waveguides, utilizing a novel scheme of detuning-modulated composite segments. Specific designs for reduced sensitivity to wavelength variations and real-world geometrical fabrication errors in waveguides width and depth are presented. Enhanced wavelength tolerance is demonstrated experimentally. The concept shows great promise for scaling high fidelity gates as part of integrated quantum optics architectures.

Show more

May 2022 • Micro-Structured and Specialty Optical Fibres VII 12140, 62-66, 2022

Optomechanical measurements of optical fiber coating for radiation dosimetry and structural health monitoring

Shlomi Zilberman, Yosef London, Alon Bernstein, Kavita Sharma, Hilel H Diamandi, Mirit Hen, Elad Zehavi, Gil Bashan, Garry Berkovic, Amnon Zentner, Moshe Mayoni, Ehud Shafir, Avi Zadok

In this work, we demonstrate optomechanical measurements of radiation induced alterations of the acoustic velocity in a fluoroacrylate polymer coating of a silica optical fiber. The optomechanical measurement is based on forward Brillouin scattering initiated in the fiber core which stimulates acoustic waves that reach the fiber coating. The measurement may serve as an additional metric to quantify the dose of ionizing radiation to which the fiber was exposed. We have demonstrated that the stiffness of the coating increases following gamma irradiation, as measured by the time of flight of radial acoustic waves through the coating. The measurement was performed on few meters long fiber, but can be extended to a spatially distributed analysis in longer fibers. The tests showed a linear dependence of the acoustic time-of flight on the overall dosage of gamma irradiation. The time of flight decreased by as much as 15 …

Show more

May 2022 • Colloids and Surfaces A: Physicochemical and Engineering Aspects

Design of silane-based UV-absorbing thin coatings on polyethylene films

Taly Iline-Vul, Naftali Kanovsky, Daniel Yom-Tov, Merav Nadav-Tsubery, Shlomo Margel

UV-absorbing surfaces have received much attention and focus due to their relevance in a variety of research applications and industrial fields. However, these surfaces currently suffer from drawbacks such as instability due to leakage of the entrapped UV-absorbing compounds, complicated non-green synthetic processes, and/or lack of good optical properties. We propose a modified Stöber method where UV absorbing silane monomers containing the group2-hydroxy-4-(3-triethoxysilylpropoxy) diphenylketone (SiUV) in presence of the mesoporous producing surfactant cetyltrimethyl ammonium chloride (CTAC) was polymerized in an ethanol/water continuous phase under basic conditions. UV absorbing thin coatings onto polyethylene (PE) films were then spread with the former dispersion on corona-treated PE, followed by a thermal drying process. These films were highly UV absorbent and durable with …

Show more

May 2022 • CLEO: QELS_Fundamental Science, FW5I. 7, 2022

Studying the interaction of J-aggregates with plasmonic nanoparticles using hyperspectral microscopy

D Beitner, I Carmeli, Z Zalevsky, S Richter, H Suchowski

Utilizing a combination of hyperspectral measurements and sorting K-means algorithms, we study coupled J-aggregate–plasmonic nanostructures system. The effect of proximity and cover ratio of the J-aggregates on the plasmonic resonance is shown and modeled.

Show more

May 2022 • Scientific Reports

Author Correction: Optical reciprocity induced wavefront shaping for axial and lateral shifting of focus through a scattering medium

Abhijit Sanjeev, Vismay Trivedi, Zeev Zalevsky

“However, this technique suffers from the fact that it requires a lot of image processing tools, and post processing”“Another interesting approach is to exploit the memory effect of speckles. Memory effect states that there exists a correlation between a speckle pattern even when the laser illumination is tilted within a given angular range. Freund12, 13 used the scattering media as a lens based on speckle intensity correlation. This idea was extended by Bertolotti et al. 14 to image a fluorescent object behind the media.” now reads:“Another interesting approach is to exploit the memory effect of speckles. Memory effect states that there exists a correlation between a speckle pattern even when the laser illumination is tilted within a given angular range. Freund12–14 used the scattering media as a lens based on speckle intensity correlation. This idea was extended by Bertolotti et al. 13 to image a fluorescent object behind …

Show more

May 2022 • Journal of Clinical and Aesthetical Dermatology

A Novel Facial Cream Based on Skin-penetrable Fibrillar Collagen Microparticles

Rachel Lubart, Inbar Yariv, Dror Fixler, Anat Lipovsky

Background. Collagen protein plays a notable role maintaining firm skin. Topical creams containing collagen fibers are widely available, but their usefulness is questionable due to limited skin penetration. When applied in a cream, collagen does not penetrate the skin leaving the skin structure unaffected.Objective. We formulated micronized collagen in a cream base. Using human skin samples, we sought to investigate the ability of the micronized collagen cream to penetrate human skin. Methods. Particle sizes of micronized marine collagen were evaluated using electron microscopy. Optical profilometry was conducted to evaluate skin topography and roughness. The antioxidant activity of the collagen was evaluated using the electron paramagnetic resonance technique by measuring the changes in free radical production. Collagen penetration depth in human skin samples was monitored using a non-invasive optical technique known as iterative multiplane optical property extraction, which works based on the detection of laser light phase changes following the presence of collagen particles in deep skin layers.Results. According to the electron microscopy, collagen particles were found to be of various sizes, the smallest being about 120nm in diameter. Skin topography measurements revealed that the treated collagen cream increased skin smoothness of the samples. Our results derived from the iterative multiplane optical property extraction indicated that micronized collagen in a cream base penetrates both the stratum corneum and the deep epidermal layers toward the dermis.Conclusion. Our investigation suggests that the collagen in the …

Show more

May 2022 • Optics Express

Analysis of peripheral arterial disease (PAD) patients by laser speckle measurement techniques

Mark Golberg, Ran Califa, Sagi Polani, Orit Goldstein, Zailer Aviram, Meir Niska, Zeev Zalevsky

Diabetic foot is a well-known problem among patients suffering from peripheral arterial diseases (PAD). This article presents an optical sensor for contactless measurement of the anatomical site based on laser speckle techniques. The sensor illuminates the inspected tissue and analyzes the captured back-reflected light from the time-changing speckle patterns. An occlusion test was implemented to provide a statistical parameter to differentiate between a low perfused and a healthy foot. A clinical study of 15 subjects was conducted. The video was analyzed by two methods: dynamic laser speckle (DLS) and laser speckle contrast analysis (LASCA). Data analysis included several classification models, where the KNN model exhibited maximum performance. These findings suggest that a simple and inexpensive system for PAD monitoring can be designed for home use and/or in community clinics.

Show more

May 2022 • arXiv preprint arXiv:2205.01974

Restart expedites quantum walk hitting times

Ruoyu Yin, Eli Barkai

Classical first-passage times under restart are used in a wide variety of models, yet the quantum version of the problem still misses key concepts. We study the quantum first detected passage time under restart protocol using a monitored quantum walk. The restart strategy eliminates the problem of dark states, i.e. cases where the particle is not detected at all, while maintaining the ballistic propagation which is important for fast search. We find profound effects of quantum oscillations on the restart problem, namely a type of instability of the mean detection time, and optimal restart times that form staircases, with sudden drops as the rate of sampling is modified. In the absence of restart and in the Zeno limit, the detection of the walker is not possible and we examine how restart overcomes this well-known problem, showing that the optimal restart time becomes insensitive to the sampling period.

Show more

May 2022 • Communications Biology

Statistical parametrization of cell cytoskeleton reveals lung cancer cytoskeletal phenotype with partial EMT signature

Arkaprabha Basu, Manash K Paul, Mitchel Alioscha-Perez, Anna Grosberg, Hichem Sahli, Steven M Dubinett, Shimon Weiss

Epithelial–mesenchymal Transition (EMT) is a multi-step process that involves cytoskeletal rearrangement. Here, developing and using an image quantification tool, Statistical Parametrization of Cell Cytoskeleton (SPOCC), we have identified an intermediate EMT state with a specific cytoskeletal signature. We have been able to partition EMT into two steps:(1) initial formation of transverse arcs and dorsal stress fibers and (2) their subsequent conversion to ventral stress fibers with a concurrent alignment of fibers. Using the Orientational Order Parameter (OOP) as a figure of merit, we have been able to track EMT progression in live cells as well as characterize and quantify their cytoskeletal response to drugs. SPOCC has improved throughput and is non-destructive, making it a viable candidate for studying a broad range of biological processes. Further, owing to the increased stiffness (and by inference invasiveness …

Show more

May 2022 • Microbiology Spectrum

PrrT/A, a Pseudomonas aeruginosa Bacterial Encoded Toxin-Antitoxin System Involved in Prophage Regulation and Biofilm Formation

Esther Shmidov, Ilana Lebenthal-Loinger, Shira Roth, Sarit Karako-Lampert, Itzhak Zander, Sivan Shoshani, Amos Danielli, Ehud Banin

Toxin-antitoxin (TA) systems are genetic modules that consist of a stable protein-toxin and an unstable antitoxin that neutralizes the toxic effect. In type II TA systems, the antitoxin is a protein that inhibits the toxin by direct binding. Type II TA systems, whose roles and functions are under intensive study, are highly distributed among bacterial chromosomes. Here, we identified and characterized a novel type II TA system PrrT/A encoded in the chromosome of the clinical isolate 39016 of the opportunistic pathogen Pseudomonas aeruginosa. We have shown that the PrrT/A system exhibits classical type II TA characteristics and novel regulatory properties. Following deletion of the prrA antitoxin, we discovered that the system is involved in a range of processes including (i) biofilm and motility, (ii) reduced prophage induction and bacteriophage production, and (iii) increased fitness for aminoglycosides. Taken together …

Show more

May 2022 • 2022 Conference on Lasers and Electro-Optics (CLEO), 1-2, 2022

Fiber Based Generic Photonic Computing Unit

Maya Yevnin, Eyal Cohen, Tomer Yanir, Zeev Zalevsky

We present a fiber-based photonic computing concept and system which rely on incoherent data encoding and scalable architecture. Our results suggest projected performance of> 1,000,000 Tera operations per second (TOPs) and efficiency of> 1000 TOPs/Watt.

Show more

May 2022 • CLEO: Science and Innovations, SW4O. 4, 2022

Surface Acoustic Wave Microwave Photonic Filters in Silicon-on-Insulator with 16 and 32 Taps

Moshe Katzman, Maayan Priel, Leroy Dokhanian, Inbar Shafir, Matan Slook, Saawan Kumar Bag, Avi Zadok

Integrated, discrete time microwave filters are realized in surface acoustic wave photonic devices in standard silicon on insulator. The devices are scaled to 16 and 32 taps. A single 7 MHz-wide passband is demonstrated.

Show more

May 2022 • CLEO: QELS_Fundamental Science, JW3B. 66, 2022

Investigation of Localized lasing modes of a One Dimensional strongly scattering gain medium

Bhupesh Kumar, Patrick Sebbah

We shows, how real time spatial shaping of pump profile imposed on a strongly scattering gain medium can be used to achieve single mode lasing at pre-selected target wavelength. Simultaneously, near field imaging of the sample surface from the top allow us to record field distribution of the localized modes. We show that slope efficiency of Ander-son localized lasing mode enhanced by one order magnitude under selective pumping.

Show more

May 2022 • Microbiology Spectrum

PrrT/A, a Pseudomonas aeruginosa Bacterial Encoded Toxin-Antitoxin System Involved in Prophage Regulation and Biofilm Formation

Esther Shmidov, Ilana Lebenthal-Loinger, Shira Roth, Sarit Karako-Lampert, Itzhak Zander, Sivan Shoshani, Amos Danielli, Ehud Banin

Toxin-antitoxin (TA) systems are genetic modules that consist of a stable protein-toxin and an unstable antitoxin that neutralizes the toxic effect. In type II TA systems, the antitoxin is a protein that inhibits the toxin by direct binding. Type II TA systems, whose roles and functions are under intensive study, are highly distributed among bacterial chromosomes. Here, we identified and characterized a novel type II TA system PrrT/A encoded in the chromosome of the clinical isolate 39016 of the opportunistic pathogen Pseudomonas aeruginosa. We have shown that the PrrT/A system exhibits classical type II TA characteristics and novel regulatory properties. Following deletion of the prrA antitoxin, we discovered that the system is involved in a range of processes including (i) biofilm and motility, (ii) reduced prophage induction and bacteriophage production, and (iii) increased fitness for aminoglycosides. Taken together …

Show more

May 2022 • Aquaculture

On genome editing in embryos and cells of the freshwater prawn Macrobrachium rosenbergii

Jonathan Molcho, Rivka Manor, Maayan Shamsian, Gurucharan Sudarshan, Rivka Ofir, Danit Parker, Simy Weil, Hanin Wattad, Emily Hayun, Tom Levy, Eliahu D Aflalo, Ayal Hendel, Amir Sagi

The clustered regularly interspaced short palindromic repeats (CRISPR) technology provides the means for accurate genomic editing. It has been applied in many kinds of cells and animals for functional genomic studies and for precise selective breeding. Nonetheless, this method has not yet been applied in one of the most important – and well studied – decapod crustacean aquaculture species, the giant freshwater prawn Macrobrachium rosenbergii. We thus established two CRISPR platforms for M. rosenbergii—the first through direct injection into early-stage embryos (entire organism genome editing) and the second by electroporation of a primary embryonic cell culture. The systems were calibrated by optimizing Cas9 concentrations, delivery methods and editing efficiencies. Editing patterns utilizing multiple guides were examined through next generation sequencing. Our results showed a wide range of …

Show more

logo
Articali

Powered by Articali

TermsPrivacy