BINA

3946 articles

77 publishers

Join mailing list

Oct 2023 • 244th ECS Meeting (October 8-12, 2023), 2023

L08-Materials Chemistry for Electrocatalysis

Lior Elbaz, Petr Krtil

Show more

Oct 2023 • Authorea Preprints

Effect of Coil Dimensions on Dynamic Wireless Power Transfer for Electric Vehicles

Sahar Bareli, Lidor Geri, Yasha Nikulshin, Oren E Nahum, Yuval Hadas, Yosef Yeshurun, Eyal Yaniv, Shuki Wolfus

We explore the effects of various receiver coil dimensions and configurations on power transfer efficiency and cost of operation, using advanced simulation tools. We demonstrate that the spatial distribution of the magnetic field leads to a non-monotonic dependence of the coupling coefficient on coil size. Thus, an optimal coil size, where the coupling coefficient peaks, should be regarded a crucial design parameter which affects the entire system performances. The incorporation of our findings into a multi-objective optimization algorithm is also discussed.

Show more

Oct 2023 • 244th ECS Meeting (October 8-12, 2023)

A Scalable Approach to Synthesize Cobalt-Free LNMO Cathode Materials for High Energy Density Lithium Ion Batteries

Tao Hu, Yan Lin, Pekka Tynjälä, Shubo Wang, Gayathri Peta, Harishchandra Singh, Doron Aurbach, Ulla Lassi


Oct 2023 • bioRxiv

Simulation of adaptive immune receptors and repertoires with complex immune information to guide the development and benchmarking of AIRR machine learning

Maria Chernigovskaya, Milena Pavlović, Chakravarthi Kanduri, Sofie Gielis, Philippe A Robert, Lonneke Scheffer, Andrei Slabodkin, Ingrid Hobæk Haff, Pieter Meysman, Gur Yaari, Geir Kjetil Sandve, Victor Greiff

Machine-learning methods (ML) have shown great potential in the adaptive immune receptor repertoire (AIRR) field. However, there is a lack of large-scale ground-truth experimental AIRR data suitable for AIRR-ML-based disease diagnostics and therapeutics discovery. Simulated ground-truth AIRR data are required to complement the development and benchmarking of robust and interpretable AIRR-ML approaches where experimental data is inaccessible or insufficient as of yet. The challenge for simulated data to be useful is the ability to incorporate key features observed in experimental repertoires. These features, such as complex antigen or disease-associated immune information, cause AIRR-ML problems to be challenging. Here, we introduce LIgO, a modular software suite, which simulates AIRR data for the development and benchmarking of AIRR-based machine learning. LIgO incorporates different types of immune information both on the receptor and the repertoire level and preserves native-like generation probability distribution. Additionally, LIgO assists users in determining the computational feasibility of their simulations. We show two examples where LIgO simulation supports the development and validation of AIRR-ML methods: (1) how individuals carrying out-of-distribution immune information impacts receptor-level prediction performance and (2) how immune information co-occurring in the same AIRs have an impact on the performance of conventional receptor-level encoding and repertoire-level classification approaches. The LIgO software guides the advancement and assessment of interpretable AIRR-ML methods.

Show more

Oct 2023 • Physical Chemistry of Semiconductor Materials and Interfaces XXII, PC126500Q, 2023

All-optical photoacoustic measurement of localized chirality in crystal suspensions

Gil Otis, Matan Benyamin, Yitzhak Mastai, Zeev Zalevsky

In this research we present a novel method to measure local optical dichroism in opaque crystal powder suspensions using the photoacoustic effect. Our method is based upon the laser speckle contrast technique, a novel technique to perform photoacoustic measurements that do not require contact with the sample. The main novelty of our work is the development of a simple statistical approach for measuring the chirality of crystal suspensions using the photoacoustic effect, which does not require arranging the crystals with a specific orientation on surfaces. A model chiral system was used to demonstrate our method, we have used Cobalt doped L-Histidine crystals that are photoacoustic active and established our ability to measure their optical dichroism in solution under completely random orientation.

Show more

Oct 2023 • 244th ECS Meeting (October 8-12, 2023)

High Entropy Configuration Strategy: Boosting Kinetics, Air Stability and Suppressing Phase Transition in Co-Free O3-Layered Cathode for Sodium-Ion Batteries

Akanksha Joshi, Sankalpita Chakrabarty, Sri Harsha Akella, Arka Saha, Ayan Mukherjee, Rosy Sharma, Malachi Noked


Oct 2023 • Sensors

Optical Multimode Fiber-Based Pipe Leakage Sensor Using Speckle Pattern Analysis

Jonathan Philosof, Yevgeny Beiderman, Sergey Agdarov, Yafim Beiderman, Zeev Zalevsky


Oct 2023 • Laser & Photonics Reviews 17 (12), 2200029, 2023

Roadmap on Label‐Free Super‐Resolution Imaging

Vasily N Astratov, Yair Ben Sahel, Yonina C Eldar, Luzhe Huang, Aydogan Ozcan, Nikolay Zheludev, Junxiang Zhao, Zachary Burns, Zhaowei Liu, Evgenii Narimanov, Neha Goswami, Gabriel Popescu, Emanuel Pfitzner, Philipp Kukura, Yi‐Teng Hsiao, Chia‐Lung Hsieh, Brian Abbey, Alberto Diaspro, Aymeric LeGratiet, Paolo Bianchini, Natan T Shaked, Bertrand Simon, Nicolas Verrier, Matthieu Debailleul, Olivier Haeberlé, Sheng Wang, Mengkun Liu, Yeran Bai, Ji‐Xin Cheng, Behjat S Kariman, Katsumasa Fujita, Moshe Sinvani, Zeev Zalevsky, Xiangping Li, Guan‐Jie Huang, Shi‐Wei Chu, Omer Tzang, Dror Hershkovitz, Ori Cheshnovsky, Mikko J Huttunen, Stefan G Stanciu, Vera N Smolyaninova, Igor I Smolyaninov, Ulf Leonhardt, Sahar Sahebdivan, Zengbo Wang, Boris Luk'yanchuk, Limin Wu, Alexey V Maslov, Boya Jin, Constantin R Simovski, Stephane Perrin, Paul Montgomery, Sylvain Lecler

Label‐free super‐resolution (LFSR) imaging relies on light‐scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super‐resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state‐of‐the‐art in this field, and to discuss the resolution boundaries and hurdles that need to be overcome to break the classical diffraction limit of the label‐free imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction‐limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super‐resolution capability that are based on understanding resolution as an information science problem, on using novel structured illumination, near‐field scanning, and nonlinear optics approaches, and on designing superlenses based …

Show more

Oct 2023 • 244th ECS Meeting (October 8-12, 2023)

(Energy Technology Division Walter van Schalkwijk Award in Sustainable Energy Technology Address) Exploring New Electrode Designs with Nanofibers

Peter N Pintauro, Xiaozong Fan, Krysta Waldrop, John Slack, Ethan Self, John Waugh, Ryszard Wycisk, Kobby Saadi, David Zitoun


Oct 2023 • ACS Omega

Synthesis and Characterization of Durable Antibiofilm and Antiviral Silane-Phosphonium Thin Coatings for Medical and Agricultural Applications

Matan Nissim, Taly lline-Vul, Sivan Shoshani, Gila Jacobi, Eyal Malka, Aviv Dombrovsky, Ehud Banin, Shlomo Margel

Pathogens such as bacteria and viruses cause disease in a range of hosts, from humans to plants. Bacterial biofilms, communities of bacteria, e.g., Staphylococcus aureusand Escherichia coli, attached to the surface, create a protective layer that enhances their survival in harsh environments and resistance to antibiotics and the host’s immune system. Biofilms are commonly associated with food spoilage and chronic infections, posing challenges for treatment and prevention. Tomato brown rugose fruit virus (ToBRFV), a newly discovered tobamovirus, infects tomato plants, causing unique symptoms on the fruit, posing a risk for tomato production. The present study focuses on the effectiveness of silane-phosphonium thin coatings on polymeric films, e.g., polypropylene. Phosphonium has significant antibacterial activity and is less susceptible to antibacterial resistance, making it a safer alternative with a reduced …

Show more

Oct 2023 • Frontiers in Microbiology

Corrigendum: Comparative genomics of Bacillus cereus sensu lato spp. biocontrol strains in correlation to in-vitro phenotypes and plant pathogen antagonistic …

Maya Moshe, Chhedi Lal Gupta, Rakeshkumar Manojkumar Jain, Noa Sela, Dror Minz, Ehud Banin, Omer Frenkel, Eddie Cytryn

MM: conducted experiments, data and bioinformatics analyses, and wrote manuscript. CG: bioinformatics analysis. NS: genome assembly. DM: project idea and funding acquisition. EB: supervision. EC: experimental design, supervision, funding acquisition, writing, and revisions. OF: participating in experimental design, supervision, funding acquisition, writing, and revisions. RJ: isolation and conducting of the initial in-vitro antifungal analysis on three of the five bacteria investigated in the manuscript. All authors contributed to the article and approved the submitted version.

Show more

Oct 2023 • arXiv preprint arXiv:2210.02743

Tracking nanoscale perturbation in active disordered media

Renu Yadav, Patrick Sebbah, Maruthi M Brundavanam

The disorder induced feedback makes random lasers very susceptible to any changes in the scattering medium. The sensitivity of the lasing modes to perturbations in the disordered systems have been utilized to map the regions of perturbation. A tracking parameter, that takes into account the cumulative effect of changes in the spatial distribution of the lasing modes of the system has been defined to locate the region in which a scatterer is displaced by a few nanometers. We show numerically that the precision of the method increases with the number of modes. The proposed method opens up the possibility of application of random lasers as a tool for monitoring locations of nanoscale displacement which can be useful for single particle detection and monitoring.

Show more

Oct 2023 • Journal of Energy Storage

Influence of strong bromine binding complexing agent in electrolytes on the performance of hydrogen/bromine redox flow batteries

Michael Küttinger, Kobby Saadi, Théo Faverge, Nagaprasad Reddy Samala, Ilya Grinberg, David Zitoun, Peter Fischer

1-n-Hexylpyridin-1-ium bromide [C6Py]Br is investigated in this work as bromine complexing agent (BCA) in aqueous bromine electrolytes on its influence on hydrogen bromine redox flow battery (H2/Br2-RFB) performance. [C6Py]+-cations bind bromine of aqueous polybromide solutions safely in an additional fused salt phase limiting the vapor pressure of Br2. Dissolved in aqueous electrolyte solutions, however, [BCA]+ cations drastically lower PFSA membranes' conductivity in the H2/Br2-RFB. In this work the combination of the very strong bromine-binding [C6Py]+cation and an excess of bromine in the electrolyte lead to an almost complete absorption of 99.6 mol% [C6Py]+ into the fused salt within the electrolyte's operation range. In comparison to similar application of short side chain 1-ethylpyridinium bromide, adverse effects are stronger compensated by use of [C6Py]Br. Increases in membrane resistance of …

Show more

Oct 2023 • ACS Omega

Revealing the DNA Binding Modes of CsoR by EPR Spectroscopy

Yasmin Igbaria-Jaber, Lukas Hofmann, Lada Gevorkyan-Airapetov, Yulia Shenberger, Sharon Ruthstein

In pathogens, a unique class of metalloregulator proteins, called gene regulatory proteins, sense specific metal ions that initiate gene transcription of proteins that export metal ions from the cell, thereby preventing toxicity and cell death. CsoR is a metalloregulator protein found in various bacterial systems that “sense” Cu(I) ions with high affinity. Upon copper binding, CsoR dissociates from the DNA promoter region, resulting in initiation of gene transcription. Crystal structures of CsoR in the presence and absence of Cu(I) from various bacterial systems have been reported, suggesting either a dimeric or tetrameric structure of these helical proteins. However, structural information about the CsoR-DNA complex is missing. Here, we applied electron paramagnetic resonance (EPR) spectroscopy to follow the conformational and dynamical changes that Mycobacterium tuberculosis CsoR undergoes upon DNA binding in …

Show more

Oct 2023 • arXiv preprint arXiv:2210.02739

High energy-resolution transient ghost absorption spectroscopy

Alok Kumar Tripathi, Yishai Klein, Edward Strizhevsky, Flavio Capotondi, Dario De Angelis, Luca Giannessi, Matteo Pancaldi, Emanuele Pedersoli, Kevin C Prince, Or Sefi, Young Yong Kim, Ivan A Vartanyants, Sharon Shwartz

We demonstrate the measurement of ultrafast dynamics using ghost spectroscopy and a pump-probe approach with an optical pump and a short-wavelength radiation probe. The ghost spectroscopy approach is used to overcome the challenge of the strong intensity and spectrum fluctuations at free-electron lasers and to provide high -spectral resolution, which enables the measurement of small energy shifts in the absorption spectrum. We exploit the high resolution to explore the dynamics of the charge carrier excitations and relaxations and their impact on the photoinduced structural changes in silicon by measuring the variation of the absorption spectrum of a Si(100) membrane near the silicon L2,3 edge and the accompanying edge shifts in response to the optical illumination.

Show more

Oct 2023 • arXiv preprint arXiv:2210.10935

Brownian particles in periodic potentials: Coarse-graining versus fine structure

Lucianno Defaveri, Eli Barkai, David A Kessler

We study the motion of an overdamped particle connected to a thermal heat bath in the presence of an external periodic potential. When the coarse-graining is larger than the periodicity of the potential, the packet of spreading particles, all starting from a common origin, converges to a normal distribution centered at the origin with a mean-squared displacement that grows like , with an effective diffusion constant that is smaller than that of a freely diffusing particle. We examine the interplay between this coarse-grained description and the fine structure of the density, which is given by the Boltzmann-Gibbs factor , the latter being non-normalizable. We explain this result and construct a theory of observables using the Fokker-Planck equation. These observables are classified as those that are related to the BG fine structure, like the energy or occupation times, while others, like the positional moments, for long times, converge to those of the large-scale description. Entropy falls into a special category as it has a coarse-grained and a fine structure description. The basic thermodynamic formula is extended to this far from equilibrium system. The ergodic properties are also studied using tools from infinite ergodic theory.

Show more

Oct 2023 • Nature Nanotechnology

High-energy all-solid-state lithium batteries enabled by Co-free LiNiO2 cathodes with robust outside-in structures

Longlong Wang, Ayan Mukherjee, Chang-Yang Kuo, Sankalpita Chakrabarty, Reut Yemini, Arrelaine A Dameron, Jaime W DuMont, Sri Harsha Akella, Arka Saha, Sarah Taragin, Hagit Aviv, Doron Naveh, Daniel Sharon, Ting-Shan Chan, Hong-Ji Lin, Jyh-Fu Lee, Chien-Te Chen, Boyang Liu, Xiangwen Gao, Suddhasatwa Basu, Zhiwei Hu, Doron Aurbach, Peter G Bruce, Malachi Noked

A critical current challenge in the development of all-solid-state lithium batteries (ASSLBs) is reducing the cost of fabrication without compromising the performance. Here we report a sulfide ASSLB based on a high-energy, Co-free LiNiO2 cathode with a robust outside-in structure. This promising cathode is enabled by the high-pressure O2 synthesis and subsequent atomic layer deposition of a unique ultrathin LixAlyZnzOδ protective layer comprising a LixAlyZnzOδ surface coating region and an Al and Zn near-surface doping region. This high-quality artificial interphase enhances the structural stability and interfacial dynamics of the cathode as it mitigates the contact loss and continuous side reactions at the cathode/solid electrolyte interface. As a result, our ASSLBs exhibit a high areal capacity (4.65 mAh cm−2), a high specific cathode capacity (203 mAh g−1), superior cycling stability (92% capacity retention …

Show more

Oct 2023 • arXiv preprint arXiv:2310.17819

Multiplexed Processing of Quantum Information Across an Ultra-wide Optical Bandwidth

Alon Eldan, Ofek Gilon, Asher Lagimi, Elai Forman, Avi Pe'er

Quantum information processing is the foundation of quantum technology. Protocols of quantum information share secrets between two distant parties for secure communication (quantum key distribution), teleport quantum states, and stand at the heart of quantum computation. While various protocols of quantum communication have already been realized, and even commercialized, their communication speed is generally low, limited by the narrow electronic bandwidth of the measurement apparatus in the MHz-to-GHz range, which is orders-of-magnitude lower than the optical bandwidth of available quantum optical sources (10-100 THz). We present and demonstrate an efficient method to process quantum information with such broadband sources in parallel over multiplexed frequency channels using parametric homodyne detection for simultaneous measurement of all the channels. Specifically, we propose two basic protocols: A multiplexed Continuous-Variable Quantum Key Distribution (CV-QKD) and A multiplexed continuous-variable quantum teleportation protocol. We demonstrate the multiplexed CV-QKD protocol in a proof-of-principle experiment, where we successfully carry out QKD over 23 uncorrelated spectral channels and show the ability to detect eavesdropping in any of them. These multiplexed methods (and similar) will enable to carry out quantum processing in parallel over hundreds of channels, potentially increasing the throughput of quantum protocols by orders of magnitude

Show more

Oct 2023 • ACS nano

ZnO Quantum Photoinitiators as an All-in-One Solution for Multifunctional Photopolymer Nanocomposites

Tom Naor, Shira Gigi, Nir Waiskopf, Gila Jacobi, Sivan Shoshani, Doron Kam, Shlomo Magdassi, Ehud Banin, Uri Banin

Nanocomposites are constructed from a matrix material combined with dispersed nanosized filler particles. Such a combination yields a powerful ability to tailor the desired mechanical, optical, electrical, thermodynamic, and antimicrobial material properties. Colloidal semiconductor nanocrystals (SCNCs) are exciting potential fillers, as they display size-, shape-, and composition-controlled properties and are easily embedded in diverse matrices. Here we present their role as quantum photoinitiators (QPIs) in acrylate-based polymer, where they act as a catalytic radical initiator and endow the system with mechanical, photocatalytic, and antimicrobial properties. By utilizing ZnO nanorods (NRs) as QPIs, we were able to increase the tensile strength and elongation at break of poly(ethylene glycol) diacrylate (PEGDA) hydrogels by up to 85%, unlike the use of the same ZnO NRs acting merely as fillers. Simultaneously …

Show more

Oct 2023 • Materials Today Energy

Aqueous proton batteries based on acetic acid solutions: mechanistic insights

Bar Gavriel, Gil Bergman, Meital Turgeman, Amey Nimkar, Yuval Elias, Mikhael D Levi, Daniel Sharon, Netanel Shpigel, Doron Aurbach

Large grid energy storage devices are critical for the success of the clean and sustainable energy revolution. As Li-ion batteries are earmarked for electric vehicles and portable devices such as laptops and cellphones, other electrochemical systems should be developed that enable cost-effective, safe, and durable large-scale energy storage. Due to the low cost and non-flammability of aqueous electrolyte solutions, much effort is being put into development of 'beyond-Li' batteries and supercapacitors that can work in these environments. Here, we propose new proton batteries comprising an acetic acid electrolyte solution, NiII[FeIII(CN)6]2/3·4H2O Prussian blue analog cathodes, and Ti3C2Tx MXene anodes. Both electrodes were investigated independently to discover ideal settings for electrochemical performance and stability. Significant attention was given to the cathodes' protons storage mechanism. In-situ …

Show more

Oct 2023 • ACS nano

ZnO quantum photoinitiators as an all-in-one solution for multifunctional photopolymer nanocomposites

Tom Naor, Shira Gigi, Nir Waiskopf, Gila Jacobi, Sivan Shoshani, Doron Kam, Shlomo Magdassi, Ehud Banin, Uri Banin


logo
Articali

Powered by Articali

TermsPrivacy