May 2024 • Nature Reviews Materials 9 (5), 305-320, 2024
Xia Hu, Zhijia Zhang, Xiang Zhang, Yao Wang, Xu Yang, Xia Wang, Miryam Fayena-Greenstein, Hadas Alon Yehezkel, Steven Langford, Dong Zhou, Baohua Li, Guoxiu Wang, Doron Aurbach
Solid-state lithium metal batteries (SSLBs) using inorganic solid-state electrolytes (SSEs) have attracted extensive scientific and commercial interest owing to their potential to provide higher energy density and safety than conventional Li-ion batteries. These batteries are subject to external pressure during both their manufacturing processes (fabrication pressure) and their operation (stack pressure). This pressure not only affects the intrinsic properties of both the electrolytes (such as ionic conductivity and electrochemical voltage window) and the electrodes (such as ion transport and structural variation) but also determines the cyclability and safety of the whole battery. Hence, understanding the effect of pressure is essential when designing high-performance SSLBs. This Review aims to elucidate the coupling between external pressure and electrochemistry in these batteries. We summarize the effects of external …
Show moreMay 2024 • Briefings in Bioinformatics
Ayelet Peres, Vered Klein, Boaz Frankel, William Lees, Pazit Polak, Mark Meehan, Artur Rocha, João Correia Lopes, Gur Yaari
May 2024 • Energy Storage Materials
Elad Ballas, Amey Nimkar, Gil Bergman, Ran Elazari, Racheli Wakshlak, Daniel Sharon, Mikhael D Levi, Dan Thomas Major, Daniel Mandler, Netanel Shpigel, Doron Aurbach
Several decades after the invention of the flow Zn-Br2 systems persistent attempts have been made to develop stationary Zn-Br2 batteries. Such development should increase the energy density of the system simultaneously significantly reducing their cost and opening new challenges associated with the cell design and its performance. One of the major concerns is the rapid self-discharge of stationary systems leading to spontaneous charge loss during battery storage time. While self-discharge in flow cells is generally attributed to the chemical oxidation of the Zn anode, we show that the origin of self-discharge in a static configuration is completely different. By systematic investigations of activated carbon with different surface areas under varied charging conditions, mechanistic insights into this phenomenon were provided. Based on this understanding, we proposed herein an effective way to suppress the cathode …
Show moreMay 2024 • 245th ECS Meeting (May 26-30, 2024)
Nils Heppe, Charlotte Gallenkamp, Rifael Z Snitkoff-Sol, Stephen Daniel Paul, Nicole Segura Salas, Vasily Potapkin, Atefeh Jafari, Olaf Leupold, Volker Schuenemann, Lior Elbaz, Vera Krewald, Ulrike I Kramm
May 2024 • Sensors and Actuators B: Chemical
Abderrahim Moumen, Rajashree Konar, Dario Zappa, Eti Teblum, Gilbert Daniel Nessim, Elisabetta Comini
Layered transition metal dichalcogenides (TMDCs) are considered among the next-generation materials for gas sensing. Here, we report exfoliated 2 H-WS 2 nanosheets for the fabrication of highly performing NO 2 sensors. Thermal annealing at several temperatures was performed to investigate the oxidation of WS 2. The long-term stability of 2 H-WS 2 bulk was verified. Using droplet variation method, three batches of conductometric sensors from 2 H-WS 2 dispersions were fabricated on electrical transducers, namely two layers (2 L), five layers (5 L) and ten layers (10 L) WS 2 nanosheets. These sensors were tested towards low NO 2 concentrations at different temperatures (Room Temperature (20℃), 50℃ and 100℃) and relative humidity (RH) levels (20%, 40%, 60%, 80% and 90% RH). 2 L-WS 2 based sensor showed the highest response at room temperature (RT). Excellent repeatability (4 cycles) towards 1 …
Show moreMay 2024 • ACS Catalysis
Rifael Z Snitkoff-Sol, Alan M Bond, Lior Elbaz
Electrocatalysts play a critical role in energy technologies, but the development of active, efficient, and durable catalysts is impeded by the lack of methodologies to deconvolute the complex interplay between various aspects influencing the activity of the catalysts, e.g., the number of active sites, turnover frequency, and the reaction pathways. Fourier-transformed alternating current voltammetry (FTacV) is an emerging tool for the analysis of electroactive species and has been successfully applied to a variety of reactions such as the oxygen reduction reaction, oxygen evolution reaction, carbon dioxide reduction reaction, hydrogen evolution reaction, and hydrogen oxidation reaction. The harmonics generated from FTacV measurements neatly detect underlaying processes not visible by other, more commonly employed techniques for analysis of electrocatalysts, such as the rotating disc electrode and dc voltammetry …
Show moreMay 2024 • Briefings in Bioinformatics
Ayelet Peres, Vered Klein, Boaz Frankel, William Lees, Pazit Polak, Mark Meehan, Artur Rocha, João Correia Lopes, Gur Yaari
Enhancing the reproducibility and comprehension of adaptive immune receptor repertoire sequencing (AIRR-seq) data analysis is critical for scientific progress. This study presents guidelines for reproducible AIRR-seq data analysis, and a collection of ready-to-use pipelines with comprehensive documentation. To this end, ten common pipelines were implemented using ViaFoundry, a user-friendly interface for pipeline management and automation. This is accompanied by versioned containers, documentation and archiving capabilities. The automation of pre-processing analysis steps and the ability to modify pipeline parameters according to specific research needs are emphasized. AIRR-seq data analysis is highly sensitive to varying parameters and setups; using the guidelines presented here, the ability to reproduce previously published results is demonstrated. This work promotes transparency …
Show moreMay 2024 • Journal of Clinical Microbiology
Michael Margulis, Hanan Rohana, Oran Erster, Michal Mandelboim, Asaf Biber, Eli Schwartz, Avi Peretz, Amos Danielli
The COVID-19 pandemic highlighted the necessity of fast, sensitive, and efficient methods to test large populations for respiratory viruses. The “gold standard” molecular assays for detecting respiratory viruses, such as quantitative polymerase chain reaction (qPCR) and reverse transcription qPCR (RT-qPCR), rely on invasive swab samples and require time-consuming and labor-intensive extraction processes. Moreover, the turnaround time for RT-qPCR-based assays is too lengthy for rapid screening. Extraction-free saliva-based methods provide a non-invasive sampling process with a fast turnaround time and are suitable for high-throughput applications. However, when used with a standard RT-qPCR system, the absence of extraction significantly reduces the assays’ sensitivity. Here, using a novel optical modulation biosensing (OMB) platform, we developed a rapid and highly sensitive extraction-free saliva …
Show moreMay 2024 • 2024 Conference on Lasers and Electro-Optics (CLEO), 1-2, 2024
L Dokhanian, S Kumar Bag, M Hen, A Zadok
Thermoelastic stimulation of surface acoustic waves in standard silicon photonic circuits is enhanced through the absorption of pump light in surface plasmon resonant unit cells. Transmission losses are reduced by 20 dB.
Show moreMay 2024 • CLEO: Fundamental Science, FM2R. 1, 2024
Y Klein, E Strizhevsky, H Aknin, M Deutsch, E Cohen, A Peer, K Tamasaku, T Schulli, E Karimi, S Shwartz
We demonstrate the pioneering use of a quantum interferometer with x-rays, highlighting its effectiveness in precisely measuring the phase accumulated in opaque media. Our work uncovers novel opportunities for measuring sub-Angstrom optical-path differences.
Show moreMay 2024 • Beilstein Journal of Organic Chemistry
Naziha Tarannam, Prashant Kumar Gupta, Shani Zev, Dan Thomas Major
In the current work, we analyzed the origin of difference in stabilities among the germacrene A and hedycaryol-derived carbocations. This study focused on twelve hydrocarbons derived from germacrene A and twelve from hedycaryol, which can be divided into three groups: four molecules containing 6-6 bicyclic rings, four 5-7 bicyclic compounds with the carbocation being on the seven-membered ring and the remaining four 5-7 bicyclic compounds with the carbocation on the five-membered ring. The variations in energy within the groups of carbocations (ie, 6-6 and two kinds of 5-7 bicyclic carbocations) can be ascribed to intramolecular repulsion interactions, as seen from non-covalent interactions plots. Despite the structural similarities between germacrene A and hedycaryol cations, they possess a somewhat different stability trend. These differences are attributed to C+··· OH intramolecular interactions present in some hedycaryol cations, which are absent in the carbocations derived from germecrene A.
Show moreMay 2024 • CLEO: Fundamental Science, FM2R. 1, 2024
Y Klein, E Strizhevsky, H Aknin, M Deutsch, E Cohen, A Peer, K Tamasaku, T Schulli, E Karimi, S Shwartz
We demonstrate the pioneering use of a quantum interferometer with x-rays, highlighting its effectiveness in precisely measuring the phase accumulated in opaque media. Our work uncovers novel opportunities for measuring sub-Angstrom optical-path differences.
Show moreMay 2024 • Angewandte Chemie International Edition
Renana Schwartz, Shani Zev, Dan T Major
Terpene synthases (TPSs) catalyze the first step in the formation of terpenoids, which comprise the largest class of natural products in nature. TPSs employ a family of universal natural substrates, composed of isoprenoid units bound to a diphosphate moiety. The intricate structures generated by TPSs are the result of substrate binding and folding in the active site, enzyme‐controlled carbocation reaction cascades, and final reaction quenching. A key unaddressed question in class I TPSs is the asymmetric nature of the diphosphate‐(Mg2+)3 cluster, which forms a critical part of the active site. In this asymmetric ion cluster, two diphosphate oxygen atoms protrude into the active site pocket. The substrate hydrocarbon tail, which is eventually molded into terpenes, can bind to either of these oxygen atoms, yet to which is unknown. Herein, we employ structural, bioinformatics, and EnzyDock docking tools to address this …
Show moreMay 2024 • Langmuir
Adan Marzouq, Lion Morgenstein, Carlos A Huang-Zhu, Shimon Yudovich, Ayelet Atkins, Asaf Grupi, Reid C Van Lehn, Shimon Weiss
Insertion of hydrophobic nanoparticles into phospholipid bilayers is limited to small particles that can incorporate into a hydrophobic membrane core between two lipid leaflets. Incorporation of nanoparticles above this size limit requires the development of challenging surface engineering methodologies. In principle, increasing the long-chain lipid component in the lipid mixture should facilitate incorporation of larger nanoparticles. Here, we explore the effect of incorporating very long phospholipids (C24:1) into small unilamellar vesicles on the membrane insertion efficiency of hydrophobic nanoparticles that are 5–11 nm in diameter. To this end, we improve an existing vesicle preparation protocol and utilized cryogenic electron microscopy imaging to examine the mode of interaction and evaluate the insertion efficiency of membrane-inserted nanoparticles. We also perform classical coarse-grained molecular …
Show moreMay 2024 • 2024 IEEE International Magnetic Conference-Short papers (INTERMAG Short …, 2024
PT Das, H Nhalil, V Mor, M Schultz, N Hasidim, A Grosz, L Klein
Magnetic sensors based on the planar Hall effect (PHE) are attractive for applications where sub nano-Tesla field resolution is required. Here we present detailed noise study of PHE sensors made of two crossing masnetic ellipses that measure two axes of the magnetic field in the sensor plane with equivalent magnetic noise level better than 350 at 10 Hz in exactly the same region while keeping the size and noise level of a single axis sensor.
Show moreMay 2024 • Molecular Catalysis
Or Rimon, Wenjamin Moschkowitsch, Gili Cohen Taguri, Lior Elbaz, Maytal Caspary Toroker
May 2024 • The Journal of Immunology
Scott Christley, Felix Breden, Kevin Burns, Brian Corrie, William Lees, James Overton, Bjoern Peters, Eve Richardson, Krishna Roskin, Randi Vita, Corey Watson, Gur Yaari, Lindsay Cowell
The Adaptive Immune Receptor Repertoire Knowledge Commons (AKC) is a publicly accessible repository of data and knowledge about 1) adaptive immune receptors (AIRs) and AIR repertoires, 2) the complex genomic loci encoding AIR genes, and 3) the antigens and epitopes bound by AIR. It empowers research questions that require the integration of data across these three domains to evaluate their interplay and relative contributions across a broad range of health and disease states. The AKC is being established by merging data from existing, community-backed repositories and applying existing and novel, cross-cutting knowledge-generation algorithms to the integrated data. The AKC currently includes 1) data from the AIRR Data Commons, which contains~ 10,000 repertoires with billions of AIRs, integrated with 2) AIR germline allele, genotype, haplotype, and population genetic data from the OGRDB and …
Show moreMay 2024 • Nucleic Acids Research
Mor Angel, Eden Fleshler, Mohammad Khaled Atrash, Noa Kinor, Jennifer IC Benichou, Yaron Shav-Tal
Stress granules (SGs) are cytoplasmic assemblies formed under various stress conditions as a consequence of translation arrest. SGs contain RNA-binding proteins, ribosomal subunits and messenger RNAs (mRNAs). It is well known that mRNAs contribute to SG formation; however, the connection between SG assembly and nuclear processes that involve mRNAs is not well established. Here, we examine the effects of inhibiting mRNA transcription, splicing and export on the assembly of SGs and the related cytoplasmic P body (PB). We demonstrate that inhibition of mRNA transcription, splicing and export reduces the formation of canonical SGs in a eukaryotic initiation factor 2α phosphorylation-independent manner, and alters PB size and quantity. We find that the splicing inhibitor madrasin promotes the assembly of stress-like granules. We show that the addition of synthetic mRNAs directly to the cytoplasm …
Show moreMay 2024 • Nature Communications
DV Christensen, TS Steegemans, T D. Pomar, YZ Chen, A Smith, VN Strocov, B Kalisky, N Pryds
Magnetic field-induced changes in the electrical resistance of materials reveal insights into the fundamental properties governing their electronic and magnetic behavior. Various classes of magnetoresistance have been realized, including giant, colossal, and extraordinary magnetoresistance, each with distinct physical origins. In recent years, extreme magnetoresistance (XMR) has been observed in topological and non-topological materials displaying a non-saturating magnetoresistance reaching 103−108% in magnetic fields up to 60 T. XMR is often intimately linked to a gapless band structure with steep bands and charge compensation. Here, we show that a linear XMR of 80,000% at 15 T and 2 K emerges at the high-mobility interface between the large band-gap oxides γ-Al2O3 and SrTiO3. Despite the chemically and electronically very dissimilar environment, the temperature/field phase diagrams of γ-Al2O …
Show moreMay 2024 • Langmuir
Adan Marzouq, Lion Morgenstein, Carlos A Huang-Zhu, Shimon Yudovich, Ayelet Atkins, Asaf Grupi, Reid C Van Lehn, Shimon Weiss
Insertion of hydrophobic nanoparticles into phospholipid bilayers is limited to small particles that can incorporate into a hydrophobic membrane core between two lipid leaflets. Incorporation of nanoparticles above this size limit requires the development of challenging surface engineering methodologies. In principle, increasing the long-chain lipid component in the lipid mixture should facilitate incorporation of larger nanoparticles. Here, we explore the effect of incorporating very long phospholipids (C24:1) into small unilamellar vesicles on the membrane insertion efficiency of hydrophobic nanoparticles that are 5–11 nm in diameter. To this end, we improve an existing vesicle preparation protocol and utilized cryogenic electron microscopy imaging to examine the mode of interaction and evaluate the insertion efficiency of membrane-inserted nanoparticles. We also perform classical coarse-grained molecular …
Show more