BINA

2708 articles

72 publishers

Join mailing list

Jun 2022 • Science Advances

A long noncoding RNA promotes parasite differentiation in African trypanosomes

Fabien Guegan, K Shanmugha Rajan, Fábio Bento, Daniel Pinto-Neves, Mariana Sequeira, Natalia Gumińska, Seweryn Mroczek, Andrzej Dziembowski, Smadar Cohen-Chalamish, Tirza Doniger, Beathrice Galili, Antonio M Estévez, Cedric Notredame, Shulamit Michaeli, Luisa M Figueiredo

The parasite Trypanosoma brucei causes African sleeping sickness that is fatal to patients if untreated. Parasite differentiation from a replicative slender form into a quiescent stumpy form promotes host survival and parasite transmission. Long noncoding RNAs (lncRNAs) are known to regulate cell differentiation in other eukaryotes. To determine whether lncRNAs are also involved in parasite differentiation, we used RNA sequencing to survey the T. brucei genome, identifying 1428 previously uncharacterized lncRNA genes. We find that grumpy lncRNA is a key regulator that promotes parasite differentiation into the quiescent stumpy form. This function is promoted by a small nucleolar RNA encoded within the grumpy lncRNA. snoGRUMPY binds to messenger RNAs of at least two stumpy regulatory genes, promoting their expression. grumpy overexpression reduces parasitemia in infected mice. Our analyses …

Show more

Jun 2022 • Bulletin of the American Physical Society

Multichannel nature of Efimov physics with ultracold 7Li atoms

Jose D'Incao, Yaakov Yudkin, Paul Julienne, Lev Khaykovich

We present our current understanding of various aspects of Efimov physics originating from the complex multichannel hyperfine structure and overlap of Feshbach resonances for 7Li atoms. This further help us to explain puzzling experimental observations with ultracold gases. We have characterized the energies of Efimov states and corresponding interference and resonance scattering phenomena associated to them as a function of an external magnetic field. Our results also indicate that Efimov states in the 7Li system can have a unique mixed hyperfine character which strongly affect their near-threshold behavior for repulsive interatomic interactions.[1] Y. Yudkin, R. Elbaz, L. Khaykovich, arXiv: 2004.02723.

Show more

Jun 2022 • Sexual Development 16 (2-3), 80-91, 2022

SOX genes and their role in disorders of sex development

Rajini Sreenivasan, Nitzan Gonen, Andrew Sinclair

SOX genesare master regulatory genes controlling development and are fundamental to the establishment of sex determination in a multitude of organisms. The discovery of the master sex-determining gene SRY in 1990 was pivotal for the understanding of how testis development is initiated in mammals. With this discovery, an entire family of SOX factors were uncovered that play crucial roles in cell fate decisions during development. The importance of SOX genes in human reproductive development is evident from the various disorders of sex development (DSD) upon loss or overexpression of SOX gene function. Here, we review the roles that SOX genes play in gonad development and their involvement in DSD. We start with an overview of sex determination and differentiation, DSDs, and the SOX gene family and function. We then provide detailed information and discussion on SOX genes that have been …

Show more

Jun 2022 • Journal of Solid State Electrochemistry, 1-19, 2022

Recent advances in solid-state beyond lithium batteries

Mary York, Karl Larson, Kailot C Harris, Eric Carmona, Paul Albertus, Rosy Sharma, Malachi Noked, Ela Strauss, Heftsi Ragones, Diana Golodnitsky

As battery technologies are in continuous development, and especially due to the rapid growth in vehicle electrification, which requires large (e.g., 100 s of kg) battery packs, there has been a growing demand for more efficient, reliable, and environmentally friendly materials. Solid-state post-lithium-ion batteries are considered a possible next-generation energy storage technology. One immediate advantage of these power sources over commercial lithium-ion batteries is the potential of solving the resource issues facing LIBs, especially as cost-effective alternatives. The second advantage is the removal of flammable liquid electrolytes. The solid electrolytes are more resistant to changes in temperature and physical damage, produce up to 80% less heat, and are able to handle more charge/discharge cycles before degradation makes them unusable. All these features point towards a longer battery life. Other …

Show more

Jun 2022 • Langmuir

Lysozyme is Sterically Trapped Within the Silica Cage in Bioinspired Silica–Lysozyme Composites: A Multi-Technique Understanding of Elusive Protein–Material Interactions

Francesco Bruno, Lucia Gigli, Giovanni Ferraro, Andrea Cavallo, Vladimir K Michaelis, Gil Goobes, Emiliano Fratini, Enrico Ravera

Lysozyme is widely known to promote the formation of condensed silica networks from solutions containing silicic acid, in a reproducible and cost-effective way. However, little is known about the fate of the protein after the formation of the silica particles. Also, the relative arrangement of the different components in the resulting material is a matter of debate. In this study, we investigate the nature of the protein–silica interactions by means of solid-state nuclear magnetic resonance spectroscopy, small-angle X-ray scattering, and electron microscopy. We find that lysozyme and silica are in intimate contact and strongly interacting, but their interaction is neither covalent nor electrostatic: lysozyme is mostly trapped inside the silica by steric effects.

Show more

Jun 2022 • JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM 42 (1_ SUPPL), 263-264, 2022

Advanced theranostic nanocarrier-mediated delivery of NGF in a combination therapy trigger enhanced recovery after stroke

M Wacker, F Wetterling, T Feczko, K Arkelius, A Arnou, J Lellouche, S Ansar


Jun 2022 • Sensors 22 (12), 4497, 2022

Recent Advances in Rapid and Highly Sensitive Detection of Proteins and Specific DNA Sequences Using a Magnetic Modulation Biosensing System

Shira Roth, Michael Margulis, Amos Danielli

In early disease stages, biomolecules of interest exist in very low concentrations, presenting a significant challenge for analytical devices and methods. Here, we provide a comprehensive overview of an innovative optical biosensing technology, termed magnetic modulation biosensing (MMB), its biomedical applications, and its ongoing development. In MMB, magnetic beads are attached to fluorescently labeled target molecules. A controlled magnetic force aggregates the magnetic beads and transports them in and out of an excitation laser beam, generating a periodic fluorescent signal that is detected and demodulated. MMB applications include rapid and highly sensitive detection of specific nucleic acid sequences, antibodies, proteins, and protein interactions. Compared with other established analytical methodologies, MMB provides improved sensitivity, shorter processing time, and simpler protocols.

Show more

Jun 2022 • Nature Communications

A forward Brillouin fibre laser

Gil Bashan, H Hagai Diamandi, Elad Zehavi, Kavita Sharma, Yosef London, Avi Zadok

Fibre lasers based on backward stimulated Brillouin scattering provide narrow linewidths and serve in signal processing and sensing applications. Stimulated Brillouin scattering in fibres takes place in the forward direction as well, with amplification bandwidths that are narrower by two orders of magnitude. However, forward Brillouin lasers have yet to be realized in any fibre platform. In this work, we report a first forward Brillouin fibre laser, using a bare off-the-shelf, panda-type polarisation maintaining fibre. Pump light in one principal axis provides Brillouin amplification for a co-propagating lasing signal of the orthogonal polarisation. Feedback is provided by Bragg gratings at both ends of the fibre cavity. Single-mode, few-modes and multi-mode regimes of operation are observed. The lasing threshold exhibits a unique environmental sensitivity: it is elevated when the fibre is partially immersed in water due to the …

Show more

Jun 2022 • arXiv preprint arXiv:2206.07730

Magnetic memory and spontaneous vortices in a van der Waals superconductor

Eylon Persky, Anders V Bjørlig, Irena Feldman, Avior Almoalem, Ehud Altman, Erez Berg, Itamar Kimchi, Jonathan Ruhman, Amit Kanigel, Beena Kalisky

Doped Mott insulators exhibit some of the most intriguing quantum phases of matter, including quantum spin-liquids, unconventional superconductors, and non-Fermi liquid metals. Such phases often arise when itinerant electrons are close to a Mott insulating state, and thus experience strong spatial correlations. Proximity between different layers of van der Waals heterostructures naturally realizes a platform for experimentally studying the relationship between localized, correlated electrons and itinerant electrons. Here, we explore this relationship by studying the magnetic landscape of 4Hb-TaS2, which realizes an alternate stack of a candidate spin liquid and a superconductor. We report on a spontaneous vortex phase whose vortex density can be trained in the normal state. We show that time reversal symmetry is broken above Tc, indicating the presence of a magnetic phase independent of the superconductor. Strikingly, this phase does not generate detectable magnetic signals. We use scanning superconducting quantum interference device (SQUID) microscopy to show that it is incompatible with ferromagnetic ordering. The discovery of this new form of hidden magnetism illustrates how combining superconductivity with a strongly correlated system can lead to new, unexpected physics.

Show more

Jun 2022 • Journal of Cell Science

Glucocorticoids enhance chemotherapy-driven stress granule assembly and impair granule dynamics, leading to cell death

Avital Schwed-Gross, Hila Hamiel, Gabriel P Faber, Mor Angel, Rakefet Ben-Yishay, Jennifer IC Benichou, Dana Ishay-Ronen, Yaron Shav-Tal

Stress granules (SGs) can assemble in cancer cells upon chemotoxic stress. Glucocorticoids function during stress responses and are administered with chemotherapies. The roles of glucocorticoids in SG assembly and disassembly pathways are unknown. We examined whether combining glucocorticoids such as cortisone with chemotherapies from the vinca-alkaloid family that dismantle the microtubule network, will affect SG assembly and disassembly pathways and influence cell viability in cancer cells and in human-derived organoids. Cortisone augmented SG formation when combined with Vinorelbine (VRB). Live-cell imaging showed that cortisone increased SG assembly rates but reduced SG clearance rates after stress, by increasing protein residence times within the SGs. Mechanistically, VRB and cortisone signaled through the eIF2α-mediated integrated stress response yet induced different kinases …

Show more

Jun 2022 • Elsevier, 2022

SBS-based fiber sensors

A Zadok, X Bao, Z Yang, L Thevenaz

The spectra of Brillouin scattering processes in optical fibers are affected by temperature, axial strain, and other quantities of interest. This dependence forms the basis for optical Brillouin scattering based optical fiber sensors. Since the first proposition of such sensors in 1989, several protocols have been established for the spatially distributed analysis of Brillouin scattering spectra along fibers installed in structures of interest. Sensor systems cover hundreds of kilometers, reach sub-millimeter resolution, follow dynamic vibrations at MHz rates, and resolve sub-degree temperature changes and micro-strain elongations. Optical fiber sensors represent the most successful commercial application of Brillouin scattering physics to-date. This chapter reviews the principles, state of the art, performance trade-offs and recent breakthroughs in Brillouin scattering-based optical fiber sensors.

Show more

Jun 2022 • Annals of the Rheumatic Diseases 81 (Suppl 1), 488-488, 2022

POS0468 EXTRACELLULAR VESICLES FROM SERUM OF MYOSITIS PATIENTS AS CIRCULATING BIOMARKERS AND DISEASE MEDIATORS

S Kivity, H Kravitz, C Cohen, D Margoulis, M Amar, G Kazimirsky, D Ozeri, A Dori, C Brodie

Background Inflammatory myopathies (IM) are a heterogeneous group of disorders characterized by autoimmune inflammatory destruction of skeletal muscles. It is many times associated with lung, skin and joint involvement. Identifying biomarkers that can differentiate IM from other muscle disorders may elucidate the pathophysiology of IM, guide novel therapies, monitor disease activity/response to treatments and predict prognosis. Exosomes are membrane-bound nanovesicles with diameters of 30-150 nm that contain multiple proteins, nucleic acid, lipids and other molecules in a tissue- and cell-specific manner. Exosomes are secreted by a large variety of cells, play major roles in cell-cell interactions, and have recently emerged as circulating biomarkers in a variety of pathological conditions, including several autoimmune diseases.Objectives To characterize exosomes from serum of IM patients, analyze protein …

Show more

Jun 2022 • Advanced Functional Materials

Operating Highly Stable LiCoO2 Cathodes up to 4.6 V by Using an Effective Integration of Surface Engineering and Electrolyte Solutions Selection

Tianju Fan, Wang Kai, Villa Krishna Harika, Cunsheng Liu, Amey Nimkar, Nicole Leifer, Sandipan Maiti, Judith Grinblat, Merav Nadav Tsubery, Xiaolang Liu, Meng Wang, Leimin Xu, Yuhao Lu, Yonggang Min, Netanel Shpigel, Doron Aurbach

The need for high power density cathodes for Li‐ion batteries can be fulfilled by application of a high charging voltage above 4.5 V. As lithium cobalt oxide (LCO) remains a dominant commercial cathode material, tremendous efforts are invested to increase its charging potential toward 4.6 V. Yet, the long‐term performance of high voltage LCO cathodes still remains poor. Here, an integrated approach combining the application of an aluminum fluoride coating and the use of electrolyte solutions comprising 1:1:8 mixtures of difluoroethylene:fluoroethylene carbonate:dimethyl carbonate and 1 m LiPF6 is reported. This results in superior behavior of LCO cathodes charged at 4.6 V with high initial capacity of 223 mAh g−1, excellent long‐term performance, and 78% capacity retention after 500 cycles. Impressive stability is also found at 450 °C with an initial capacity of 220 mAh g−1 and around 84% capacity retention …

Show more

Jun 2022 • SCIENTIFIC REPORTS

Sourcing Herod the Great's calcite-alabaster bathtubs by a multi-analytic approach (vol 12, 7524, 2022)

Ayala Amir, Amos Frumkin, Boaz Zissu, Aren M Maeir, Gil Goobes, Amnon Albeck


Jun 2022 • 2022 International Conference Laser Optics (ICLO), 01-01, 2022

Immunoglobulin-based hybrid targeted nanoagents for in vitro and in vivo multimodal imaging

AV Lunin, ES Korenkov, T Sadan, R Popovtzer, EN Mochalova, VR Cherkasov

Nanomedicine constantly broadens horizons of modern therapy and diagnostics. However, imaging nanoagents are of especial interest. Here, we report on novel, facile, and sustainable way to fabricate targeted multimodal imaging nanoparticles. Specifically, we synthesize nanoparticles using immunoglobulins and introduce nanoparticles of different nature into immunoglobulin-based matrix. We demonstrate applicability of the nanoparticles both in vitro and in vivo.

Show more

Jun 2022 • SCIENTIFIC REPORTS

Sourcing Herod the Great's calcite-alabaster bathtubs by a multi-analytic approach (vol 12, 7524, 2022)

Ayala Amir, Amos Frumkin, Boaz Zissu, Aren M Maeir, Gil Goobes, Amnon Albeck


Jun 2022 • Scientific Reports 12 (1), 14874, 2022

Passive symmetry breaking of the space–time propagation in cavity dissipative solitons

I Parshani, L Bello, M Meller, A Pe'er

Dissipative solitons are fundamental wave-pulses that preserve their form in the presence of periodic loss and gain. The canonical realization of dissipative solitons is Kerr-lens mode locking (KLM) in lasers, which delicately balance nonlinear and linear propagation in both time and space to generate ultrashort optical pulses. This linear-nonlinear balance dictates a unique pulse energy, which cannot be increased (say by elevated pumping), indicating that excess energy is expected to be radiated in the form of dispersive or diffractive waves. Here we show that KLM lasers can overcome this expectation. Specifically, by breaking the spatial symmetry between the forward and backward halves of the round-trip in a linear cavity, the laser can modify the soliton in space to incorporate the excess energy. Increasing the pump power leads therefore to a different soliton solution, rather than to dispersive/diffractive loss. We predict the symmetry breaking by a complete numerical simulation of the spatio-temporal dynamics in the cavity, and confirm it experimentally in a KLM Ti: Sapphire laser with quantitative agreement to the simulation. The simulation opens a window to directly observe the nonlinear space-time dynamics that molds the soliton pulse, and possibly to optimize it.

Show more

Jun 2022 • ACS Applied Materials & Interfaces

Lead Sequestration from Halide Perovskite Solar Cells with a Low-Cost Thiol-Containing Encapsulant

Rene D Mendez L, Barry N Breen, David Cahen

Perovskite solar cells (PSCs) are being studied and developed because of the outstanding properties of halide perovskites as photovoltaic materials and high conversion efficiencies achieved with the best PSCs. However, leaching out of lead (Pb) ions into the environment presents potential public health risks. We show that thiol-functionalized nanoparticles provide an economic way of minimizing Pb leaching in the case of PSC module damage and subsequent water exposure (at most, ∼2.5% of today’s crystal silicon solar panel production cost per square meter). Using commercial materials and methods, we retain ∼90% of Pb without degrading the photovoltaic performance of the cells, compared with nonencapsulated devices, yielding a worst-case scenario of top-soil pollution below natural Pb levels and well below the U.S. Environmental Protection Agency limits.

Show more

Jun 2022 • ACS Applied Materials & Interfaces

Lead Sequestration from Halide Perovskite Solar Cells with a Low-Cost Thiol-Containing Encapsulant

Rene D Mendez L, Barry N Breen, David Cahen

Perovskite solar cells (PSCs) are being studied and developed because of the outstanding properties of halide perovskites as photovoltaic materials and high conversion efficiencies achieved with the best PSCs. However, leaching out of lead (Pb) ions into the environment presents potential public health risks. We show that thiol-functionalized nanoparticles provide an economic way of minimizing Pb leaching in the case of PSC module damage and subsequent water exposure (at most, ∼2.5% of today’s crystal silicon solar panel production cost per square meter). Using commercial materials and methods, we retain ∼90% of Pb without degrading the photovoltaic performance of the cells, compared with nonencapsulated devices, yielding a worst-case scenario of top-soil pollution below natural Pb levels and well below the U.S. Environmental Protection Agency limits.

Show more

Jun 2022 • Investigative Ophthalmology & Visual Science

Investigating the survival and function of retinal ganglion cells in an organotypic culture: An in-vitro model for studying synaptogenesis

Nairouz Farah, Efrat Simon, Yossi Mandel

Purpose: Stem cells replacement therapy is becoming a promising pursued avenue for vision restoration in people with degenerative diseases of the outer retina. However, the integration and survival of the transplanted cells and the formation of fully functioning synapses remain a challenge. Our aim is to develop an in-vitro experimental paradigm which will allow us to address these issues while working under experimentally controlled conditions and avoiding immune system reactions faced in-vivoMethods: As a first step, we are utilizing organotypic retinal cultures from transgenic rats expressing the calcium indicator GCaMP6f while monitoring the survival of the retinal ganglion cells (RGCs) using both extracellular recordings (multi electrode arrays), and calcium imaging at various time points.Results: Our calcium imaging revealed robust spontaneous activity of the RGCs up to 72hrs, albeit decreasing throughout …

Show more

Jun 2022 • ChemistrySelect

Boron‐doped Carbon Dots with Surface Oxygen Functional Groups as a Highly Sensitive and Label‐free Photoluminescence Probe for the Enhanced Detection of Mg2+ Ions

Hari Krishna Sadhanala, Sudhakar Pagidi, Suhas Yadav, Marianna Beiderman, Ilya Grinberg, Dror Fixler, Aharon Gedanken

Magnesium ion (Mg2+) is one of the most significant cations in living systems with involvement in many biochemical reactions and cellular processes and hence, sensitive and specific detection of Mg2+ is therefore essential for various applications. Here, we report the solvothermal synthesis of boron‐doped carbon dots (BC10) with more oxygen surface states by using salicylaldehyde and naphthalene‐1‐boronic acid. The as‐prepared BC10 showed greenish‐white luminescence under 365 nm UV illumination with quantum yield (QY) of 5.5 % at optimum dilution with dimethyl sulfur oxide (DMSO) solvent. The BC10 in DMSO (DS‐BC10) have shown high selectivity and sensitivity towards Mg2+ ion through the increased PL intensity due to chelation‐enhanced photoluminescence (CHEP). The enhanced PL intensity was further supported by the increased QY by a factor of 12 after the addition of Mg2+ ions to 65 …

Show more

logo
Articali

Powered by Articali

TermsPrivacy