BINA

3964 articles

77 publishers

Join mailing list

Nov 2023 • Micromachines 14 (12), 2173, 2023

Fabrication and applications of magnetic polymer composites for soft robotics

Sayan Ganguly, Shlomo Margel

The emergence of magnetic polymer composites has had a transformative impact on the field of soft robotics. This overview will examine the various methods by which innovative materials can be synthesized and utilized. The advancement of soft robotic systems has been significantly enhanced by the utilization of magnetic polymer composites, which amalgamate the pliability of polymers with the reactivity of magnetic materials. This study extensively examines the production methodologies involved in dispersing magnetic particles within polymer matrices and controlling their spatial distribution. The objective is to gain insights into the strategies required to attain the desired mechanical and magnetic properties. Additionally, this study delves into the potential applications of these composites in the field of soft robotics, encompassing various devices such as soft actuators, grippers, and wearable gadgets. The study emphasizes the transformative capabilities of magnetic polymer composites, which offer a novel framework for the advancement of biocompatible, versatile soft robotic systems that utilize magnetic actuation.

Show more

Nov 2023 • Advanced Optical Materials

Optical Properties and Ultrafast Near‐Infrared Localized Surface Plasmon Dynamics in Naturally p‐Type Digenite Films

Andrea Villa, Madina Telkhozhayeva, Fabio Marangi, Eti Teblum, Aaron M Ross, Mirko Prato, Luca Andena, Roberto Frassine, Francesco Scotognella, Gilbert Daniel Nessim

Copper chalcogenides are materials characterized by intrinsic doping properties, allowing them to display high carrier concentrations due to their defect‐heavy structures, independent of the preparation method. Such high doping enables these materials to display plasmonic resonances, tunable by varying their stoichiometry. Here, plasmonic dynamics is studied in drop‐cast Cu9S5 (digenite) nanocrystals (NCs) film using ultrafast pump–probe spectroscopy. The NCs are synthesized by thermal annealing of copper foil using chemical vapor deposition (CVD), followed by sonication and drop‐casting of the isolated few‐layered flakes on different substrates. The samples display a broad localized surface plasmon resonance (LSPR) in the near‐infrared (NIR), peaking at 2100 nm. The free carrier response is further confirmed by fitting the linear absorption with a Drude–Lorentz effective medium approximation model …

Show more

Nov 2023 • arXiv preprint arXiv:2311.13915

First passage times in compact domains exhibits bi-scaling

Talia Baravi, Eli Barkai

The study of first passage times for diffusing particles reaching target states is foundational in various practical applications, including diffusion-controlled reactions. In this work, we present a bi-scaling theory for the probability density function of first passage times in confined compact processes, applicable to both Euclidean and Fractal domains, diverse geometries, and scenarios with or without external force fields, accommodating Markovian and semi-Markovian random walks. In large systems, first passage time statistics exhibit a bi-scaling behavior, challenging the use of a single time scale. Our theory employs two distinct scaling functions: one for short times, capturing initial dynamics in unbounded systems, and the other for long times is sensitive to finite size effects. The combined framework provides a complete expression for first passage time statistics across all time scales.

Show more

Nov 2023 • MDPI-Multidisciplinary Digital Publishing Institute, 2023

Acceleration of Biodiesel Production

Indra Neel Pulidindi, Aharon Gedanken

The development of renewable energy sources will help alleviate the twin problems of energy appetite and environmental pollution. Among such renewable sources, biofuels standout. Biodiesel is at the top of the list of biofuels that have the potential to substitute conventional fossil-based transportation fuels. The reprint comprises 11 chapters in total dealing with a variety of feedstock needed for the sustainable production of biodiesel, various catalysts that could be used for the accelerated production of biodiesel, and advances in reactor technology for the demand-based production of biodiesel. Indebtedness is due to various research groups, namely: Fahad Rehman and co-workers from Pakistan, Qatar, and the UK; Tao Lyu and co-workers from the UK, China, and Germany; Sandro L. Barbosa and co-workers from Brazil and the USA; Anita Salic and co-workers from Croatia; Fabrizio Roncaglia and co-workers …

Show more

Nov 2023 • Optical Fiber Sensors, W5. 3, 2023

Tensor attributes of forward Brillouin fiber sensors

Alon Bernstein, Elad Zehavi, Yosef London, Rafael Suna, Shai Ben-Ami, Mirit Hen, Avi Zadok

Forward Brillouin scattering through torsional radial modes is studied in bare and coated fibers in liquids. Tensor characteristics distinguish between two mode types. Shear dominated modes are significantly less affected by liquids outside the fiber.

Show more

Nov 2023 • Journal of Electronic Imaging 32 (6), 060101-060101, 2023

JEI Updates Research Topic Categories

Zeev Zalevsky, Jenny Benois-Pineau, Laura Boucheron, Atanas Gotchev, Walter G Kropatsch, Alexander C Loui

Editor-in-Chief Zeev Zalevsky and the journal’s team of senior editors introduce an updated slate of research topic categories appropriate for JEI.

Show more

Nov 2023 • Micromachines 14 (12), 2173, 2023

Fabrication and Applications of Magnetic Polymer Composites for Soft Robotics

Sayan Ganguly, Shlomo Margel

The emergence of magnetic polymer composites has had a transformative impact on the field of soft robotics. This overview will examine the various methods by which innovative materials can be synthesized and utilized. The advancement of soft robotic systems has been significantly enhanced by the utilization of magnetic polymer composites, which amalgamate the pliability of polymers with the reactivity of magnetic materials. This study extensively examines the production methodologies involved in dispersing magnetic particles within polymer matrices and controlling their spatial distribution. The objective is to gain insights into the strategies required to attain the desired mechanical and magnetic properties. Additionally, this study delves into the potential applications of these composites in the field of soft robotics, encompassing various devices such as soft actuators, grippers, and wearable gadgets. The study emphasizes the transformative capabilities of magnetic polymer composites, which offer a novel framework for the advancement of biocompatible, versatile soft robotic systems that utilize magnetic actuation.

Show more

Nov 2023 • Light, science & applications

Weak measurements and quantum-to-classical transitions in free electron-photon interactions

Yiming Pan, Eliahu Cohen, Ebrahim Karimi, Avraham Gover, Norbert Schönenberger, Tomáš Chlouba, Kangpeng Wang, Saar Nehemia, Peter Hommelhoff, Ido Kaminer, Yakir Aharonov

How does the quantum-to-classical transition of measurement occur? This question is vital for both foundations and applications of quantum mechanics. Here, we develop a new measurement-based framework for characterizing the classical and quantum free electron–photon interactions and then experimentally test it. We first analyze the transition from projective to weak measurement in generic light–matter interactions and show that any classical electron-laser-beam interaction can be represented as an outcome of weak measurement. In particular, the appearance of classical point-particle acceleration is an example of an amplified weak value resulting from weak measurement. A universal factor, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek …

Show more

Nov 2023 • Nature Communications

A single pseudouridine on rRNA regulates ribosome structure and function in the mammalian parasite Trypanosoma brucei

K Shanmugha Rajan, Hava Madmoni, Anat Bashan, Masato Taoka, Saurav Aryal, Yuko Nobe, Tirza Doniger, Beathrice Galili Kostin, Amit Blumberg, Smadar Cohen-Chalamish, Schraga Schwartz, Andre Rivalta, Ella Zimmerman, Ron Unger, Toshiaki Isobe, Ada Yonath, Shulamit Michaeli

Trypanosomes are protozoan parasites that cycle between insect and mammalian hosts and are the causative agent of sleeping sickness. Here, we describe the changes of pseudouridine (Ψ) modification on rRNA in the two life stages of the parasite using four different genome-wide approaches. CRISPR-Cas9 knock-outs of all four snoRNAs guiding Ψ on helix 69 (H69) of the large rRNA subunit were lethal. A single knock-out of a snoRNA guiding Ψ530 on H69 altered the composition of the 80S monosome. These changes specifically affected the translation of only a subset of proteins. This study correlates a single site Ψ modification with changes in ribosomal protein stoichiometry, supported by a high-resolution cryo-EM structure. We propose that alteration in rRNA modifications could generate ribosomes preferentially translating state-beneficial proteins.

Show more

Nov 2023 • arXiv preprint arXiv:2311.00845

Floquet engineering with spatially non-uniform driving fields

Stella Tallula Schindler, Hanan Herzig Sheinfux

We generalize the scope of Floquet engineering to include spatially-dependent modulations of an optical system. As an application, we show that we can transform large classes of Hamiltonians into one another by driving them in a time-periodic but spatially non-uniform manner. We propose several experimental realizations in 1D optical lattices, including freeing disordered lattices from Anderson localization, as well as effectively disconnecting all their sites. These techniques straightforwardly extend to more complex classes of systems.

Show more

Nov 2023 • Angewandte Chemie

Is “water in salt” electrolytes the ultimate solution? Achieving high stability of organic anodes in diluted electrolyte solutions via a wise anions selection

Amey Nimkar, Khorsed Alam, Gil Bergman, Mikhael D Levi, Dan Thomas Major, Netanel Shpigel, Doron Aurbach

The introduction of the water‐in‐salt (WIS) electrolytes concept to prevent water splitting and widen the electrochemical stability window, has spurred extensive research efforts toward development of improved aqueous batteries. The successful implementation of these electrolyte solutions in many electrochemical systems shifts the focus from diluted to WIS electrolyte solutions. Considering the high costs and the tendency of these nearly saturated solutions to crystallize, this trend can be carefully re‐evaluated. Herein we show that the stability of organic electrodes comprising the active material perylene‐3,4,9,10‐tetracarboxylic dianhydride (PTCDA), is strongly influenced by the solvation character of the anions rather than the concentration of the electrolyte solution. Even though the charging process of PTCDA involves solely insertion of cations (i.e., principal counter‐ions), surprisingly, the dominant factor …

Show more

Nov 2023 • ACS Applied Bio Materials

Zirconium-Coated β-Cyclodextrin Nanomaterials for Biofilm Eradication

Akanksha Gupta, John HT Luong, Aharon Gedanken

Under alkaline treatment, zirconyl chloride (ZrOCl2.8H2O) became a zirconia gel and formed a stable complex with beta-cyclodextrin (βCD). This complex was highly active in reactive oxygen species (ROS) formation via H2O2 decomposition. Its surface with numerous hydroxyl groups acts as an ionic sponge to capture the charged reaction intermediates, including superoxide (O2–•) and the hydroxyl radical (•OH). ROS, especially •OH radicals, are harmful to living microorganisms because of their kinetic instability, high oxidation potential, and chemical nonselectivity. Therefore, •OH radicals can engage in fast reactions with virtually any adjacent biomolecule. With H2O2, the complex with cationic and hydrophobic moieties interacted with the anionic bacterial membrane of two Gram-positive (Staphylococcus aureus and S. epidermidis) and two Gram-negative (Escherichia coli and Klebsiella pneumoniae) strains …

Show more

Nov 2023 • arXiv preprint arXiv:2311.13915

First passage times in compact domains exhibits bi-scaling

Talia Baravi, Eli Barkai

The study of first passage times for diffusing particles reaching target states is foundational in various practical applications, including diffusion-controlled reactions. In this work, we present a bi-scaling theory for the probability density function of first passage times in confined compact processes, applicable to both Euclidean and Fractal domains, diverse geometries, and scenarios with or without external force fields, accommodating Markovian and semi-Markovian random walks. In large systems, first passage time statistics exhibit a bi-scaling behavior, challenging the use of a single time scale. Our theory employs two distinct scaling functions: one for short times, capturing initial dynamics in unbounded systems, and the other for long times is sensitive to finite size effects. The combined framework provides a complete expression for first passage time statistics across all time scales.

Show more

Nov 2023 • Light, science & applications

Weak measurements and quantum-to-classical transitions in free electron-photon interactions

Yiming Pan, Eliahu Cohen, Ebrahim Karimi, Avraham Gover, Norbert Schönenberger, Tomáš Chlouba, Kangpeng Wang, Saar Nehemia, Peter Hommelhoff, Ido Kaminer, Yakir Aharonov

How does the quantum-to-classical transition of measurement occur? This question is vital for both foundations and applications of quantum mechanics. Here, we develop a new measurement-based framework for characterizing the classical and quantum free electron–photon interactions and then experimentally test it. We first analyze the transition from projective to weak measurement in generic light–matter interactions and show that any classical electron-laser-beam interaction can be represented as an outcome of weak measurement. In particular, the appearance of classical point-particle acceleration is an example of an amplified weak value resulting from weak measurement. A universal factor, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek …

Show more

Nov 2023 • Ultrasonics Sonochemistry

Ultrasonic-assisted synthesis of lignin-capped Cu2O nanocomposite with antibiofilm properties

Moorthy Maruthapandi, Akanksha Gupta, Arumugam Saravanan, Gila Jacobi, Ehud Banin, John HT Luong, Aharon Gedanken

Under ultrasonication, cuprous oxide (Cu2O) microparticles (<5 µm) were fragmented into nanoparticles (NPs, ranging from 10 to 30 nm in diameter), and interacted strongly with alkali lignin (Mw= 10 kDa) to form a nanocomposite. The ultrasonic wave generates strong binding interaction between lignin and Cu2O. The L-Cu nanocomposite exhibited synergistic effects with enhanced antibiofilm activities against E. coli, multidrug-resistant (MDR) E. coli, S. aureus (SA), methicillin-resistant SA, and P. aeruginosa (PA). The lignin-Cu2O (L-Cu) nanocomposite also imparted notable eradication of such bacterial biofilms. Experimental evidence unraveled the destruction of bacterial cell walls by L-Cu, which interacted strongly with the bacterial membrane. After exposure to L-Cu, the bacterial cells lost the integrated structural morphology. The estimated MIC for biofilm inhibition for the five tested pathogens was 1 mg/mL L …

Show more

Nov 2023 • 2023 Asia Communications and Photonics Conference/2023 International …, 2023

Forward Brillouin Scattering Fiber Sensors

Avi Zadok

Sensors based on forward Brillouin scattering processes allow for quantitative analysis of liquid media and coating layers outside the cladding of standard, unmodified fibers. Point measurements and spatially distributed analysis have been demonstrated.

Show more

Nov 2023 • Scientific Reports

Integration of high-resolution imaging through scattering medium into a disposable micro-endoscope via projection of 2D spots-array

Shimon Elkabetz, Oran Herman, Amihai Meiri, Asaf Shahmoon, Zeev Zalevsky

The objective of this research includes integration of high-resolution imaging through scattering medium, such as blood, into a disposable micro-endoscope. A fiber laser integrated into the micro-endoscope as part of its illumination channel, allows to project a tunable array of spots of light onto an object, that is located behind the scattering medium. We have a laser fiber as part of the illumination channel of a disposable micro-endoscope. By using proper optics, we convert the temporal modulation of the laser into spatial distribution. Thus, the result is generation of spatial spots when using a pulsed laser. The detection channel is a holographic recording of the collected back scattered light, that allows extraction of the electrical field. By time integrating the field we obtain the realization of the spatial array of illumination spots formed on top of the inspected object and behind the scattering medium. By changing the …

Show more

Nov 2023 • Molecular Reproduction and Development 90 (12), 785-803, 2023

Epigenetic aging of mammalian gametes

Michael Klutstein, Nitzan Gonen

The process of aging refers to physiological changes that occur to an organism as time progresses and involves changes to DNA, proteins, metabolism, cells, and organs. Like the rest of the cells in the body, gametes age, and it is well established that there is a decline in reproductive capabilities in females and males with aging. One of the major pathways known to be involved in aging is epigenetic changes. The epigenome is the multitude of chemical modifications performed on DNA and chromatin that affect the ability of chromatin to be transcribed. In this review, we explore the effects of aging on female and male gametes with a focus on the epigenetic changes that occur in gametes throughout aging. Quality decline in oocytes occurs at a relatively early age. Epigenetic changes constitute an important part of oocyte aging. DNA methylation is reduced with age, along with reduced expression of DNA …

Show more

Nov 2023 • MDPI-Multidisciplinary Digital Publishing Institute, 2023

Catalytic Methods for the Synthesis of Carbon Nanodots and Their Applications

Indra Neel Pulidindi, Archana Deokar, Aharon Gedanken

The current endeavor of publishing a reprint on the astounding field of research on carbon dots has its roots in the launch of the Special Issue entitled" Catalytic methods for the synthesis of carbon nanodots and their applications”. Ever since this Special Issue was launched on 29th August 2022, it has attracted great attention from researchers worldwide. Grateful thanks are due to Dr. Nimala Kumar Jangid and coworkers from India; Dr. Syed Hadi Hasan and coworkers from India; Dr. Lerato L Mokoloko and coworkers from South Africa; Dr. Siti Kastom Kamarudin and coworkers from Malaysia; Dr. Selvaraj Roomani and coworkers from India; Dr. Ahmad Umar and coworkers from India, Saudi Arabia and USA; Dr. Ramon Moreno-Tost and coworkers from Spain; Dr. Jae Hong Kim and coworkers from South Korea and Japan; Dr. Yong RokLee and coworkers from India, South Korea and UAE; and Dr. Joydeep Das from …

Show more

Nov 2023 • Physical Review B

Periodically driven open quantum systems with vibronic interaction: Resonance effects and vibrationally mediated decoupling

Jakob Bätge, Yu Wang, Amikam Levy, Wenjie Dou, Michael Thoss

Periodic driving and Floquet engineering have emerged as invaluable tools for controlling and uncovering novel phenomena in quantum systems. In this study, we adopt these methods to manipulate nonequilibrium processes within electronic-vibronic open quantum systems. Through resonance mechanisms and by focusing on the limit-cycle dynamics and quantum thermodynamic properties, we illustrate the intricate interplay between the driving field and vibronic states and its overall influence on the electronic system. Specifically, we observe an effective decoupling of the electronic system from the periodic driving at specific frequencies, a phenomenon that is mediated by the vibrational mode interaction. Additionally, we engineer the driving field to obtain a partial removal of the Franck-Condon blockade. These insights hold promise for efficient charge current control. Our results are obtained from numerically …

Show more

Nov 2023 • ACS Applied Bio Materials

Zirconium-Coated β-Cyclodextrin Nanomaterials for Biofilm Eradication

Akanksha Gupta, John HT Luong, Aharon Gedanken

Under alkaline treatment, zirconyl chloride (ZrOCl2.8H2O) became a zirconia gel and formed a stable complex with beta-cyclodextrin (βCD). This complex was highly active in reactive oxygen species (ROS) formation via H2O2 decomposition. Its surface with numerous hydroxyl groups acts as an ionic sponge to capture the charged reaction intermediates, including superoxide (O2–•) and the hydroxyl radical (•OH). ROS, especially •OH radicals, are harmful to living microorganisms because of their kinetic instability, high oxidation potential, and chemical nonselectivity. Therefore, •OH radicals can engage in fast reactions with virtually any adjacent biomolecule. With H2O2, the complex with cationic and hydrophobic moieties interacted with the anionic bacterial membrane of two Gram-positive (Staphylococcus aureus and S. epidermidis) and two Gram-negative (Escherichia coli and Klebsiella pneumoniae) strains …

Show more

logo
Articali

Powered by Articali

TermsPrivacy