Oct 2024 • Optics & Laser Technology
Ricardo Rubio-Oliver, Vicente Micó, Zeev Zalevsky, Javier García, Jose Angel Picazo-Bueno
Digital holographic microscopy (DHM) is a very popular interferometric technique for quantitative phase imaging (QPI). In DHM, an interferometer is combined with a microscope to create interference between an imaging beam containing information about the analysed sample and a clear reference beam carrying no sample information. To exploit the capability of reference beam in terms of useful sample information, we have recently proposed Cepstrum-based Interferometric Microscopy (CIM) [Opt. Las. Tech. 174, 110,626 (2024)] as a novel methodology involving the interference of two imaging beams carrying different sample information and to accurately retrieve quantitative phase data of both beams. In the earlier implementation, proof-of-concept of CIM was demonstrated for a Michelson-based layout requiring manual adjustments during the CIM methodology and validated only for low numerical aperture (NA …
Show moreOct 2024 • arXiv preprint arXiv:2310.02644
Lorenzo Orsini, Hanan Herzig Sheinfux, Yandong Li, Seojoo Lee, Gian Marcello Andolina, Orazio Scarlatella, Matteo Ceccanti, Karuppasamy Soundarapandian, Eli Janzen, James H Edgar, Gennady Shvets, Frank HL Koppens
Topological nanophotonics presents the potential for cutting-edge photonic systems, with a core aim revolving around the emergence of topological edge states. These states are primed to propagate robustly while embracing deep subwavelength confinement that defies diffraction limits. Such attributes make them particularly appealing for nanoscale applications, where achieving these elusive states has remained challenging. We unveil the first experimental proof of deep subwavelength topological edge states by implementing periodic modulation of hyperbolic phonon polaritons within a Van der Waals heterostructure. This finding represents a significant milestone in the field of nanophotonics, and it can be directly extended to and hybridized with other Van der Waals materials in various applications. The extensive scope for material substitution facilitates broadened operational frequency ranges, streamlined integration of diverse polaritonic materials, and compatibility with electronic and excitonic systems.
Show moreOct 2024 • PRiME 2024 (October 6-11, 2024)
David A Cullen, Haoran Yu, Raphael P Hermann, Xiang Lyu, Alexey Serov, Luigi Osmieri, Piotr Zelenay, Jaehyung Park, A Jeremy Kropf, Matthew Sweers, Deborah J Myers, Melissa E Kreider, Shaun M Alia, Michael Mizrahi, Lior Elbaz
Oct 2024 • PRiME 2024 (October 6-11, 2024), 2024
Lior Elbaz, Masahiro Yasutake
Oct 2024 • Nature Nanotechnology
Lorenzo Orsini, Hanan Herzig Sheinfux, Yandong Li, Seojoo Lee, Gian Marcello Andolina, Orazio Scarlatella, Matteo Ceccanti, Karuppasamy Soundarapandian, Eli Janzen, James H Edgar, Gennady Shvets, Frank HL Koppens
Topological photonics offers the opportunity to control light propagation in a way that is robust from fabrication disorders and imperfections. However, experimental demonstrations have remained on the order of the vacuum wavelength. Theoretical proposals have shown topological edge states that can propagate robustly while embracing deep subwavelength confinement that defies diffraction limits. Here we show the experimental proof of these deep subwavelength topological edge states by implementing periodic modulation of hyperbolic phonon polaritons within a van der Waals heterostructure composed of isotopically pure hexagonal boron nitride flakes on patterned gold films. The topological edge state is confined in a subdiffraction volume of 0.021 µm3, which is four orders of magnitude smaller than the free-space excitation wavelength volume used to probe the system, while maintaining the resonance …
Show moreOct 2024 • mBio
Alessandra Lo Sciuto, Francesca D'Angelo, Maria Concetta Spinnato, Pierre Simon Garcia, Shirley Genah, Cervoni Matteo, Emmanuel Séchet, Ehud Banin, Frédéric Barras, Francesco Imperi
Iron-sulfur [Fe-S] clusters are essential protein cofactors allowing bacteria to perceive environmental redox modification and to adapt to iron limitation. Escherichia coli, which served as a bacterial model, contains two [Fe-S] cluster biogenesis systems, ISC and SUF, which ensure [Fe-S] cluster synthesis under balanced and stress conditions, respectively. However, our recent phylogenomic analyses revealed that most bacteria possess only one [Fe-S] cluster biogenesis system, most often SUF. The opportunist human pathogen Pseudomonas aeruginosa is atypical as it harbors only ISC. Here, we confirmed the essentiality of ISC in P. aeruginosa under both normal and stress conditions. Moreover, P. aeruginosa ISC restored viability, under balanced growth conditions, to an E. coli strain lacking both ISC and SUF. Reciprocally, the E. coli SUF system sustained growth and [Fe-S] cluster-dependent enzyme activities of …
Show moreOct 2024 • Cells
Basel Obied, Stephen Richard, Alon Zahavi, Dror Fixler, Olga Girshevitz, Nitza Goldenberg-Cohen
Cobalt toxicity is difficult to detect and therefore often underdiagnosed. The aim of this study was to explore the pathophysiology of cobalt-induced oxidative stress in the brain and its impact on structure and function. Thirty-five wild-type C57B16 mice received intraperitoneal cobalt chloride injections: a single high dose with evaluations at 24, 48, and 72 h (n = 5, each) or daily low doses for 28 (n = 5) or 56 days (n = 15). A part of the 56-day group also received minocycline (n = 5), while 10 mice served as controls. Behavioral changes were evaluated, and cobalt levels in tissues were measured with particle-induced X-ray emission. Brain sections underwent magnetic resonance imaging (MRI), electron microscopy, and histological, immunohistochemical, and molecular analyses. High-dose cobalt caused transient illness, whereas chronic daily low-dose administration led to long-term elevations in cobalt levels …
Show moreSep 2024 • SciPost Physics Core
Judith F Stein, Aviad Frydman, Richard Berkovits
Analyzing complex experimental data with multiple parameters is challenging. We propose using Singular Value Decomposition (SVD) as an effective solution. This method, demonstrated through real experimental data analysis, surpasses conventional approaches in understanding complex physics data. Singular values and vectors distinguish and highlight various physical mechanisms and scales, revealing previously challenging elements. SVD emerges as a powerful tool for navigating complex experimental landscapes, showing promise for diverse experimental measurements.
Show moreSep 2024 • SciPost Physics Core
Judith F Stein, Aviad Frydman, Richard Berkovits
Analyzing complex experimental data with multiple parameters is challenging. We propose using Singular Value Decomposition (SVD) as an effective solution. This method, demonstrated through real experimental data analysis, surpasses conventional approaches in understanding complex physics data. Singular values and vectors distinguish and highlight various physical mechanisms and scales, revealing previously challenging elements. SVD emerges as a powerful tool for navigating complex experimental landscapes, showing promise for diverse experimental measurements.
Show moreSep 2024 • Science Advances
Hila Zak, Eyal Rozenfeld, Mali Levi, Patricia Deng, David Gorelick, Hadar Pozeilov, Shai Israel, Yoav Paas, Yoav Paas, Jin Billy Li, Moshe Parnas, Galit Shohat-Ophir
A-to-I RNA editing is a cellular mechanism that generates transcriptomic and proteomic diversity, which is essential for neuronal and immune functions. It involves the conversion of specific adenosines in RNA molecules to inosines, which are recognized as guanosines by cellular machinery. Despite the vast number of editing sites observed across the animal kingdom, pinpointing critical sites and understanding their in vivo functions remains challenging. Here, we study the function of an evolutionary conserved editing site in Drosophila, located in glutamate-gated chloride channel (GluClα). Our findings reveal that flies lacking editing at this site exhibit reduced olfactory responses to odors and impaired pheromone-dependent social interactions. Moreover, we demonstrate that editing of this site is crucial for the proper processing of olfactory information in projection neurons. Our results highlight the value of using …
Show moreSep 2024 • Energy Technology
Ravindra Kumar Bhardwaj, Yuri Mikhlin, David Zitoun
The performance of lithium–sulfur (Li–S) rechargeable batteries is strongly dependent on the entrapment of the higher‐order intermediate polysulfides at the sulfur cathode. An attracting way of preventing the polysulfide shuttle is by introducing a polar host which can form a Lewis acid–base complex with polysulfides. Herein, the Li–S battery by incorporating iron sulfides (FeS2) as a polar Lewis acid to entrap higher‐order polysulfides at the cathode center is investigated. FeS2/S cathode demonstrates largely improved retention of capacity compared to C/S cathode (capacity fading per cycle of 0.12% and 0.80% for FeS2/S and C/S respectively) and good rate performance in Li–S batteries compared to conventional carbon–sulfur (C/S) cathode. This is attributed to the decrease in polysulfide dissolution and better retention of active sulfur in the cathode during battery cycling which is due to the polar FeS2 additive …
Show moreSep 2024 • The Journal of Physical Chemistry B
Shelly Meron, Shahaf Peleg, Yulia Shenberger, Lukas Hofmann, Lada Gevorkyan-Airapetov, Sharon Ruthstein
In-cell electron paramagnetic resonance (EPR) spectroscopy experiments provide high-resolution data about conformational changes of proteins within the cell. However, one of the limitations of EPR is the requisite of stable paramagnetic centers in a reducing environment. We recently showed that histidine-rich sites in proteins hold a high affinity to Cu(II) ions complexed with a chelator. Using a chelator prevents the reduction of Cu(II) ions. Moreover, this spin-labeling methodology can be performed within the native cellular environment on any overexpressed protein without protein purification and delivery to the cell. Herein, we use this novel methodology to gain spatial information on the extracellular domain of the human copper transporter, hCtr1. Limited structural information on the transmembrane domain of the human Ctr1 (hCtr1) was obtained using X-ray crystallography and cryo-EM. However, these …
Show moreSep 2024 • SciPost Physics Core
Judith F Stein, Aviad Frydman, Richard Berkovits
Analyzing complex experimental data with multiple parameters is challenging. We propose using Singular Value Decomposition (SVD) as an effective solution. This method, demonstrated through real experimental data analysis, surpasses conventional approaches in understanding complex physics data. Singular values and vectors distinguish and highlight various physical mechanisms and scales, revealing previously challenging elements. SVD emerges as a powerful tool for navigating complex experimental landscapes, showing promise for diverse experimental measurements.
Show moreSep 2024 • EUROPEAN JOURNAL OF IMMUNOLOGY 54, 782-782, 2024
Or Zohar, Maria Castro, Adi Anaki, Rachela Popovtzer, Dinorah Friedmann-Morvinski
Sep 2024 • Materials
Yeela Elbaz, Taly Iline-Vul, Aviv Dombrovsky, Ayelet Caspi, Shlomo Margel
Silica (SiO2) particles are widely used in various industries due to their chemical inertness, thermal stability, and wear resistance. The present study describes the preparation and potential use of porous hydrophobic and hydrophilic SiO2 microcapsules (MCs) of a narrow size distribution. First, various layers of SiO2 micro/nano-particles (M/NPs) were grafted onto monodispersed polystyrene (PS) microspheres of a narrow size distribution. Hydrophobic and hydrophilic sintered SiO2 MCs were then prepared by removing the core PS from the PS/SiO2 core–shell microspheres by burning off under normal atmospheric conditions or organic solvent dissolution, respectively. We examined how the size and quantity of the SiO2 M/NPs influence the MC’s properties. Additionally, we utilized two forms of hollow SiO2 MC for different applications; one form was incorporated into polymer films, and the other was free-floating …
Show moreSep 2024 • SciPost Physics Core
Judith F Stein, Aviad Frydman, Richard Berkovits
Analyzing complex experimental data with multiple parameters is challenging. We propose using Singular Value Decomposition (SVD) as an effective solution. This method, demonstrated through real experimental data analysis, surpasses conventional approaches in understanding complex physics data. Singular values and vectors distinguish and highlight various physical mechanisms and scales, revealing previously challenging elements. SVD emerges as a powerful tool for navigating complex experimental landscapes, showing promise for diverse experimental measurements.
Show moreSep 2024 • Physical Review A
Rain Lenny, Dana Ben Porath, Eliahu Cohen
Despite their importance, there is an ongoing challenge characterizing multipartite quantum correlations. The Seevinck-Svetlichny (SS) and Mermin-Klyshko (MK) inequalities present constraints on correlations in multipartite systems, a violation of which allows to classify the correlations by using the nonseparability property. In this work we present refined Tsirelson (quantum) bounds on these inequalities, derived from inequalities stemming from a fundamental constraint, tightly akin to quantum uncertainty. Unlike the original, known inequalities, our bounds do not consist of a single constant point but rather depend on correlations in specific subsystems (being local correlations for our bounds on the SS operators and bipartite correlations for our bounds on the MK operators). We analyze concrete examples in which our bounds are strictly tighter than the known bounds, i.e., lie beneath the previously found constants …
Show moreSep 2024 • Viruses
Odelia Orbaum-Harel, Anna Sloutskin, Inna Kalt, Ronit Sarid
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a cancer-causing virus that establishes life-long infection. KSHV is implicated in the etiology of Kaposi’s sarcoma, and a number of rare hematopoietic malignancies. The present study focuses on the KSHV open reading frame 20 (ORF20), a member of the conserved herpesvirus UL24 protein family containing five conserved homology domains and a conserved PD-(D/E)XK putative endonuclease motif, whose nuclease function has not been established to date. ORF20 encodes three co-linear protein isoforms, full length, intermediate, and short, though their differential functions are unknown. In an effort to determine the role of ORF20 during KSHV infection, we generated a recombinant ORF20-Null KSHV genome, which fails to express all three ORF20 isoforms. This genome was reconstituted in iSLK cells to establish a latent infection, which resulted in an accelerated transcription of viral mRNAs, an earlier accumulation of viral lytic proteins, an increase in the quantity of viral DNA copies, and a significant decrease in viral yield upon lytic reactivation. This was accompanied by early cell death of cells infected with the ORF20-Null virus. Functional complementation of the ORF20-Null mutant with the short ORF20 isoform rescued KSHV production, whereas its endonuclease mutant form failed to enhance lytic reactivation. Complementation with the short isoform further revealed a decrease in cell death as compared with ORF20-Null virus. Finally, expression of IL6 and CXCL8, previously shown to be affected by the hCMV UL24 homolog, was relatively low upon reactivation of cells infected with …
Show moreSep 2024 • 2024 49th International Conference on Infrared, Millimeter, and Terahertz …, 2024
Shiran Levy, Nathalie Lander Gower, Silvia Piperno, Sadhvikas J Addamane, John L Reno, Asaf Albo
This study explores the effect of doping density on the performance of split-well resonant-phonon (SWRP) Terahertz Quantum Cascade Lasers (THz QCLs) through non-equilibrium Green’s functions (NEGF) analysis. Experimental research showed that increasing the doping concentration in these designs led to better results compared to the split-well direct-phonon (SWDP) design, which has a larger overlap between its active laser states and the doping profile. We also found that electron-electron (e-e) scattering is a major factor in performance limitation. By identifying key scattering mechanisms, we propose optimization strategies for doping profiles and material quality to enhance operational temperatures. This research offers insights into overcoming current limitations in THz QCLs, setting a foundation for future technological advancements.
Show moreSep 2024 • Nucleic Acids Research
Guy Assa, Nechama Kalter, Michael Rosenberg, Avigail Beck, Oshry Markovich, Tanya Gontmakher, Ayal Hendel, Zohar Yakhini
Off-target effects present a significant impediment to the safe and efficient use of CRISPR-Cas genome editing. Since off-target activity is influenced by the genomic sequence, the presence of sequence variants leads to varying on- and off-target profiles among different alleles or individuals. However, a reliable tool that quantifies genome editing activity in an allelic context is not available. Here, we introduce CRISPECTOR2.0, an extended version of our previously published software tool CRISPECTOR, with an allele-specific editing activity quantification option. CRISPECTOR2.0 enables reference-free, allele-aware, precise quantification of on- and off-target activity, by using de novo sample-specific single nucleotide variant (SNV) detection and statistical-based allele-calling algorithms. We demonstrate CRISPECTOR2.0 efficacy in analyzing samples containing multiple alleles and quantifying allele-specific …
Show moreSep 2024 • ACS Applied Materials & Interfaces
Raz Cohen, Madina Pirmatova, Karthik Mani Ananth, Gila Jacobi, Einat Zelinger, Eduard Belausov, Mohamed Samara, Sivan Shoshani, Ehud Banin, Guy Mechrez
There is agreement that every colloidal structure produces its own set of unique characteristics, properties, and applications. A colloidal phenomenon of latex-bridged water in a dimethyl carbonate (DMC) Pickering emulsion stabilized by R202 hydrophobic silica was investigated for its ability to act as a superhydrophobic coating (SHC) for cellulose substrates. First, various emulsion compositions were screened for their stability and droplet size. The final composition was then cross-examined by cryogenic scanning electron microscopy and optical and fluorescent microscopy to verify the colloidal structure. The drying pattern of the coating was investigated by using labeled samples under a fluorescent microscope and by scanning electron microscopy on a paper substrate. After the final ∼3 μm of dry coating was applied, it exhibited superhydrophobicity (advancing contact angle = 155°) and full functionality after 5 …
Show more