BINA

4707 articles

79 publishers

Join mailing list

Oct 2024 • Journal of the American Chemical Society 146 (18), 12496-12510, 2024

Applying Nuclear Forward Scattering as In Situ and Operando Tool for the Characterization of FeN4 Moieties in the Hydrogen Evolution Reaction

Nils Heppe, Charlotte Gallenkamp, Rifael Snitkoff-Sol, Stephen Paul, Nicole Segura-Salas, Dominik Moritz, Bernd Kaiser, Wolfram Jaegermann, Vasily Potapkin, Atefeh Jafari, Volker Schünemann, Olaf Leupold, Lior Elbaz, Vera Krewald, Ulrike Kramm

Nuclear forward scattering (NFS) is a synchrotron-based technique relying on the recoil-free nuclear resonance effect similar to Mössbauer spectroscopy. In this work, we introduce NFS for in situ and operando measurements during electrocatalytic reactions. The technique enables faster data acquisition and better discrimination of certain iron sites in comparison to Mössbauer spectroscopy. It is directly accessible at various synchrotrons to a broad community of researchers and applicable to multiple metal isotopes. We demonstrate the power of this technique with the hydrogen evolution mechanism of an immobilized iron porphyrin supported on carbon. Such catalysts are often considered as model systems for iron-nitrogen-carbon (FeNC) catalysts. Using in situ and operando NFS in combination with theoretical predictions of spectroscopic data enables the identification of the intermediate that is formed prior to the rate determining step. The conclusions on the reaction mechanism can be used for future optimization of immobilized molecular catalysts and metal-nitrogen-carbon (MNC) catalysts.

Show more

Oct 2024 • Nature Nanotechnology

Deep subwavelength topological edge state in a hyperbolic medium

Lorenzo Orsini, Hanan Herzig Sheinfux, Yandong Li, Seojoo Lee, Gian Marcello Andolina, Orazio Scarlatella, Matteo Ceccanti, Karuppasamy Soundarapandian, Eli Janzen, James H Edgar, Gennady Shvets, Frank HL Koppens

Topological photonics offers the opportunity to control light propagation in a way that is robust from fabrication disorders and imperfections. However, experimental demonstrations have remained on the order of the vacuum wavelength. Theoretical proposals have shown topological edge states that can propagate robustly while embracing deep subwavelength confinement that defies diffraction limits. Here we show the experimental proof of these deep subwavelength topological edge states by implementing periodic modulation of hyperbolic phonon polaritons within a van der Waals heterostructure composed of isotopically pure hexagonal boron nitride flakes on patterned gold films. The topological edge state is confined in a subdiffraction volume of 0.021 µm3, which is four orders of magnitude smaller than the free-space excitation wavelength volume used to probe the system, while maintaining the resonance …

Show more

Oct 2024 • Active Photonic Platforms (APP) 2024 13110, 1311002, 2024

Dynamics of optical vortices in Van der Waals materials

T Bucher, Y Kurman, K Wang, Q Yan, A Niedermayr, R Ruimy, H Nahari, R Dahan, H Herzig Sheinfux, GM Vanacore, I Kaminer

Recent advancements in ultrafast electron microscopy have provided direct access to polariton dynamics, visualizing such dynamics in space and time. This work presents new experimental results revealing a myriad of phenomena involving interactions of vortex-anti-vortex pairs, their creation and annihilation. We show new behaviors that became accessible thanks to a new development in electron microscopy - Free-Electron Ramsey Imaging (FERI) - which enabled extracting both the sub-cycle and group dynamics of polariton wavepackets. Our demonstrations involve optical phonon-polaritons in hexagonal boron nitride (hBN) and Molybdenum oxide, renowned for their unique dispersion and novel wavepacket propagations behaviors. These discoveries not only enhance our understanding of vortex phenomena across various systems, but also offer promising avenues for accessing new kinds of light-matter …

Show more

Oct 2024 • Optics & Laser Technology

Quantitative phase imaging by automated Cepstrum-based interferometric microscopy (CIM)

Ricardo Rubio-Oliver, Vicente Micó, Zeev Zalevsky, Javier García, Jose Angel Picazo-Bueno

Digital holographic microscopy (DHM) is a very popular interferometric technique for quantitative phase imaging (QPI). In DHM, an interferometer is combined with a microscope to create interference between an imaging beam containing information about the analysed sample and a clear reference beam carrying no sample information. To exploit the capability of reference beam in terms of useful sample information, we have recently proposed Cepstrum-based Interferometric Microscopy (CIM) [Opt. Las. Tech. 174, 110,626 (2024)] as a novel methodology involving the interference of two imaging beams carrying different sample information and to accurately retrieve quantitative phase data of both beams. In the earlier implementation, proof-of-concept of CIM was demonstrated for a Michelson-based layout requiring manual adjustments during the CIM methodology and validated only for low numerical aperture (NA …

Show more

Oct 2024 • Journal of Magnesium and Alloys, 2024

Magnesium alloys as alternative anode materials for rechargeable magnesium-ion batteries: Review on the alloying phase and reaction mechanisms

Dedy Setiawan, Hyeonjun Lee, Jangwook Pyun, Amey Nimkar, Netanel Shpigel, Daniel Sharon, Seung-Tae Hong, Doron Aurbach, Munseok S Chae

Magnesium-ion batteries (MIBs) are promising candidates for lithium-ion batteries because of their abundance, non-toxicity, and favorable electrochemical properties. This review explores the reaction mechanisms and electrochemical characteristics of Mg-alloy anode materials. While Mg metal anodes provide high volumetric capacity and dendrite-free electrodeposition, their practical application is hindered by challenges such as sluggish Mg²⁺ ion diffusion and electrolyte compatibility. Alloy-type anodes that incorporate groups XIII, XIV, and XV elements have the potential to overcome these limitations. We review various Mg alloys, emphasizing their alloying/dealloying reaction mechanisms, their theoretical capacities, and the practical aspects of MIBs. Furthermore, we discuss the influence of the electrolyte composition on the reversibility and efficiency of these alloy anodes. Emphasis is placed on overcoming …

Show more

Oct 2024 • Small

Fluorinated Co‐Solvents Enable Excellent Performances of Practical Cells Comprising LixSiO‐Graphite Composite Anodes and LiNi0. 89Co0. 05Mn0. 05Al0. 01O2 (NCMA) Cathodes

Naresh Vangapally, David Lusztig, Suman Rathod, Amreen Bano, Hadar Scalar, Sri Harsha Akella, Malachi Noked, Dan T Major, Ion C Halalay, Suresh Sriramulu, Shalom Luski, Doron Aurbach

Li‐ion batteries based on high specific capacity LixSiO‐Graphite anodes and LiNi0.89Co0.05 Mn0.05Al0.01O2 (NCMA) cathodes may have numerous practical applications owing to high energy density without a necessary compromise on safety. SiO, which is an attractive Li insertion anode material, offers more cycling stability than Si and a higher capacity than graphite. Therefore, a new trend has emerged for developing composite C‐Si anodes, possessing the excellent cyclability of graphite coupled with high capacity SiO. The composite structure described herein prevents the volume expansion of SiO and maintains the structural integrity during prolonged cycling. However, graphite electrodes suffer from exfoliation in propylene carbonate (PC) based electrolyte solutions, which avoids well known safety benefits related to a possible use of PC based electrolyte solutions in all kinds of Li batteries. Herein, it is …

Show more

Oct 2024 • PRiME 2024 (October 6-11, 2024)

Tracking the Evolving Structure of Nickel–Iron Oxyhydroxide Oxygen Evolution Electrocatalysts in Alkaline Media

David A Cullen, Haoran Yu, Raphael P Hermann, Xiang Lyu, Alexey Serov, Luigi Osmieri, Piotr Zelenay, Jaehyung Park, A Jeremy Kropf, Matthew Sweers, Deborah J Myers, Melissa E Kreider, Shaun M Alia, Michael Mizrahi, Lior Elbaz


Oct 2024 • bioRxiv

Resolving haplotype variation and complex genetic architecture in the human immunoglobulin kappa chain locus in individuals of diverse ancestry

Eric Engelbrecht, Oscar L Rodriguez, Kaitlyn Shields, Steven Schulze, David Tieri, Uddalok Jana, Gur Yaari, William Lees, Melissa L Smith, Corey T Watson

Immunoglobulins (IGs), critical components of the human immune system, are composed of heavy and light protein chains encoded at three genomic loci. The IG Kappa (IGK) chain locus consists of two large, inverted segmental duplications. The complexity of IG loci has hindered effective use of standard high-throughput methods for characterizing genetic variation within these regions. To overcome these limitations, we leverage long-read sequencing to create haplotype-resolved IGK assemblies in an ancestrally diverse cohort (n=36), representing the first comprehensive description of IGK haplotype variation at population-scale. We identify extensive locus polymorphism, including novel single nucleotide variants (SNVs) and a common novel ~24.7 Kbp structural variant harboring a functional IGKV gene. Among 47 functional IGKV genes, we identify 141 alleles, 64 (45.4%) of which were not previously curated. We report inter-population differences in allele frequencies for 14 of the IGKV genes, including alleles unique to specific populations within this dataset. Finally, we identify haplotypes carrying signatures of gene conversion that associate with enrichment of SNVs in the IGK distal region. These data provide a critical resource of curated genomic reference information from diverse ancestries, laying a foundation for advancing our understanding of population-level genetic variation in the IGK locus.

Show more

Oct 2024 • Bulletin of the American Physical Society

Down-Converted X-ray Pair Generation at an X-ray Free Electron Laser

Nicholas Hartley, Andrew Aquila, James Baxter, Scott Curtis, Arianna Gleason, Siegfried Glenzer, Justin Goodrich, Alex Halavanau, Janita Hussain, Abigail Hardy, Taito Osaka, Norimasa Ozaki, Sharon Shwartz, Richard Sandberg

ZP12. 00011: Down-Converted X-ray Pair Generation at an X-ray Free Electron Laser*AbstractPresenter:Nicholas John Hartley(SLAC-Natl Accelerator Lab)Authors:Nicholas John Hartley(SLAC-Natl Accelerator Lab)Andrew L Aquila(Linac Coherent Light Source, SLAC National Accelerator Laboratory)James Baxter(Linac Coherent Light Source, SLAC National Accelerator Laboratory)Scott Curtis(Brigham Young University)Arianna E Gleason(SLAC-Natl Accelerator Lab)Siegfried H Glenzer(SLAC National Accelerator Laboratory)Justin Goodrich(Brookhaven National Laboratory)Alex Halavanau(SLAC National Accelerator Laboratory)Janita Hussain(SLAC National Accelerator Laboratory)Abigail M Hardy(Brigham Young University)Taito Osaka(RIKEN SPring-8 Center)Norimasa Ozaki(Osaka Univ)Sharon Shwartz(Bar-Ilan University)Richard Lunt Sandberg(Brigham Young University)Spontaneous Parametric Down …

Show more

Oct 2024 • Nature Medicine

A multi-modal single-cell and spatial expression map of metastatic breast cancer biopsies across clinicopathological features

Johanna Klughammer, Daniel L Abravanel, Åsa Segerstolpe, Timothy R Blosser, Yury Goltsev, Yi Cui, Daniel R Goodwin, Anubhav Sinha, Orr Ashenberg, Michal Slyper, Sébastien Vigneau, Judit Jané‐Valbuena, Shahar Alon, Chiara Caraccio, Judy Chen, Ofir Cohen, Nicole Cullen, Laura K DelloStritto, Danielle Dionne, Janet Files, Allison Frangieh, Karla Helvie, Melissa E Hughes, Stephanie Inga, Abhay Kanodia, Ana Lako, Colin MacKichan, Simon Mages, Noa Moriel, Evan Murray, Sara Napolitano, Kyleen Nguyen, Mor Nitzan, Rebecca Ortiz, Miraj Patel, Kathleen L Pfaff, Caroline Porter, Asaf Rotem, Sarah Strauss, Robert Strasser, Aaron R Thorner, Madison Turner, Isaac Wakiro, Julia Waldman, Jingyi Wu, Jorge Gómez Tejeda Zañudo, Diane Zhang, Nancy U Lin, Sara M Tolaney, Eric P Winer, Edward S Boyden, Fei Chen, Garry P Nolan, Scott J Rodig, Xiaowei Zhuang, Orit Rozenblatt-Rosen, Bruce E Johnson, Aviv Regev, Nikhil Wagle

Although metastatic disease is the leading cause of cancer-related deaths, its tumor microenvironment remains poorly characterized due to technical and biospecimen limitations. In this study, we assembled a multi-modal spatial and cellular map of 67 tumor biopsies from 60 patients with metastatic breast cancer across diverse clinicopathological features and nine anatomic sites with detailed clinical annotations. We combined single-cell or single-nucleus RNA sequencing for all biopsies with a panel of four spatial expression assays (Slide-seq, MERFISH, ExSeq and CODEX) and H&E staining of consecutive serial sections from up to 15 of these biopsies. We leveraged the coupled measurements to provide reference points for the utility and integration of different experimental techniques and used them to assess variability in cell type composition and expression as well as emerging spatial expression …

Show more

Oct 2024 • Cells

Structure–Function Correlation in Cobalt-Induced Brain Toxicity

Basel Obied, Stephen Richard, Alon Zahavi, Dror Fixler, Olga Girshevitz, Nitza Goldenberg-Cohen

Cobalt toxicity is difficult to detect and therefore often underdiagnosed. The aim of this study was to explore the pathophysiology of cobalt-induced oxidative stress in the brain and its impact on structure and function. Thirty-five wild-type C57B16 mice received intraperitoneal cobalt chloride injections: a single high dose with evaluations at 24, 48, and 72 h (n = 5, each) or daily low doses for 28 (n = 5) or 56 days (n = 15). A part of the 56-day group also received minocycline (n = 5), while 10 mice served as controls. Behavioral changes were evaluated, and cobalt levels in tissues were measured with particle-induced X-ray emission. Brain sections underwent magnetic resonance imaging (MRI), electron microscopy, and histological, immunohistochemical, and molecular analyses. High-dose cobalt caused transient illness, whereas chronic daily low-dose administration led to long-term elevations in cobalt levels …

Show more

Oct 2024 • International Journal of Molecular Sciences 25 (20), 11268, 2024

Comparative Review of the Conserved UL24 Protein Family in Herpesviruses

Odelia Orbaum-Harel, Ronit Sarid

The UL24 protein family, conserved across all subfamilies of Orthoherpesviridae, plays diverse and significant roles in viral replication, host–virus interactions and pathogenesis. Understanding the molecular mechanisms and interactions of UL24 proteins is key to unraveling the complex interplay between herpesviruses and their hosts. This review provides a comparative and comprehensive overview of current knowledge on UL24 family members, including their conservation, expression patterns, cellular localization, and functional roles upon their expression and during viral infection, highlighting their significance in herpesvirus biology and their potential functions.

Show more

Oct 2024 • Optics Express

Addressing broadening challenges in m-plane GaN two-well terahertz quantum cascade laser

Shiran Levy, Nathalie Lander Gower, Silvia Piperno, Asaf Albo

In this study, we address the challenges that result from line broadening on m-plane GaN terahertz quantum cascade lasers (THz QCLs). While past research has highlighted the difficulty of line broadening in GaN THz QCLs, our work varies from previous studies in that it questions the primary impact attributed to the strong longitudinal-optical (LO) phonon coupling. We investigate carrier transport in an m-plane GaN two-well (TW) THz QCL, using non-equilibrium Green's functions (NEGF) to quantify gain while accounting for correlation effects in level broadening. Our study reveals that LO-phonon is not the primary contributor to line broadening at relatively high doping levels in our model. Moreover, despite the observed substantial broadening, increasing the doping density by an order of magnitude over the value of GaAs-based THz QCLs leads to a substantial gain rise. These results suggest the feasibility of …

Show more

Oct 2024 • Advanced Materials Interfaces

Efficient Reduction of Casimir Forces by Self‐Assembled Bio‐Molecular Thin Films

René IP Sedmik, Alexander Urech, Zeev Zalevsky, Itai Carmeli

Casimir forces arise if the spectrum of electromagnetic fluctuations are restricted by boundaries. There is great interest both in fundamental science and technical applications to better understand and technically control these forces. In this work, the influence of five different self‐assembled bio and organic monolayer thin films on the Casimir force between a plate and a sphere is experimentally investigated. It is found that the films, despite being a mere few nanometers thick, reduce the Casimir force by up to 14%. Spectroscopic data indicate a broad absorption band whose presence can be attributed to the mixing of electronic states of the underlying gold layer and those of the molecular film due to charge rearrangement. Using Lifshitz theory, it is calculated that the observed change in the Casimir force is consistent with the measured change in the effective dielectric properties. The nanometer‐sized molecules can …

Show more

Oct 2024 • Chirality

Experimental Determination of the Chiral and Achiral Shape Diagrams of Tellurium Nanocrystals

Daniel Vasiliev, Shay Tirosh, Assaf Ben‐Moshe

The interface between chirality and crystallization and mechanisms by which chirality propagates from crystal structure to overall shapes of crystals are a key topic in crystallography and stereochemistry. Recently, nanocrystals attracted attention as useful model systems for this kind of studies. Specifically, tellurium nanocrystals have been used to address questions on relations between chirality of the crystal structure and that of the overall shape. Previous studies of this system did not offer a comprehensive shape diagram and did not survey all the factors that determine whether shapes that form are chiral or not. In the current report, the distribution of chiral and achiral shapes in this system as a function of different physical and chemical parameters is determined experimentally. It is shown that there is a common logic for formation of chiral shapes, that is, growth at conditions that favor the growth of more reactive …

Show more

Oct 2024 • PRiME 2024 (October 6-11, 2024)

High-Entropy Co-Free Air-Stable Cathode for Sodium-Ion Batteries

Malachi Noked, Akanksha Joshi, Sankalpita Chakraborty, Sri Harsha Akella, Mia Ramos


Sep 2024 • arXiv preprint arXiv:2409.15549

Oracle problems as communication tasks and optimization of quantum algorithms

Amit Te'eni, Zohar Schwartzman-Nowik, Marcin Nowakowski, Paweł Horodecki, Eliahu Cohen

Quantum query complexity mainly studies the number of queries needed to learn some property of a black box with high probability. A closely related question is how well an algorithm can succeed with this learning task using only a fixed number of queries. In this work, we propose measuring an algorithm's performance using the mutual information between the output and the actual value. A key observation is that if an algorithm is only allowed to make a single query and the goal is to optimize this mutual information, then we obtain a task which is similar to a basic task of quantum communication, where one attempts to maximize the mutual information of the sender and receiver. We make this analogy precise by formally considering the oracle as a separate subsystem, whose state records the unknown oracle identity. The oracle query prepares a state, which is then measured; and the target property of the oracle plays the role of a message that should be deduced from the measurement outcome. Thus we obtain a link between the optimal single-query algorithm and minimization of the extent of quantum correlations between the oracle and the computer subsystems. We also find a lower bound on this mutual information, which is related to quantum coherence. These results extend to multiple-query non-adaptive algorithms. As a result, we gain insight into the task of finding the optimal non-adaptive algorithm that uses at most a fixed number of queries, for any oracle problem.

Show more

Sep 2024 • SciPost Physics Core

Unraveling complexity: Singular value decomposition in complex experimental data analysis

Judith F Stein, Aviad Frydman, Richard Berkovits

Analyzing complex experimental data with multiple parameters is challenging. We propose using Singular Value Decomposition (SVD) as an effective solution. This method, demonstrated through real experimental data analysis, surpasses conventional approaches in understanding complex physics data. Singular values and vectors distinguish and highlight various physical mechanisms and scales, revealing previously challenging elements. SVD emerges as a powerful tool for navigating complex experimental landscapes, showing promise for diverse experimental measurements.

Show more

Sep 2024 • Energy Technology

Investigation of Polysulfide Adsorption on FeS2 Additive in Sulfur Cathode of Li–S Battery by Ex situ UV–Visible Spectroscopy

Ravindra Kumar Bhardwaj, Yuri Mikhlin, David Zitoun

The performance of lithium–sulfur (Li–S) rechargeable batteries is strongly dependent on the entrapment of the higher‐order intermediate polysulfides at the sulfur cathode. An attracting way of preventing the polysulfide shuttle is by introducing a polar host which can form a Lewis acid–base complex with polysulfides. Herein, the Li–S battery by incorporating iron sulfides (FeS2) as a polar Lewis acid to entrap higher‐order polysulfides at the cathode center is investigated. FeS2/S cathode demonstrates largely improved retention of capacity compared to C/S cathode (capacity fading per cycle of 0.12% and 0.80% for FeS2/S and C/S respectively) and good rate performance in Li–S batteries compared to conventional carbon–sulfur (C/S) cathode. This is attributed to the decrease in polysulfide dissolution and better retention of active sulfur in the cathode during battery cycling which is due to the polar FeS2 additive …

Show more

Sep 2024 • Sensors

Penetrating Barriers: Noncontact Measurement of Vital Bio Signs Using Radio Frequency Technology

Kobi Aflalo, Zeev Zalevsky

The noninvasive measurement and sensing of vital bio signs, such as respiration and cardiopulmonary parameters, has become an essential part of the evaluation of a patient’s physiological condition. The demand for new technologies that facilitate remote and noninvasive techniques for such measurements continues to grow. While previous research has made strides in the continuous monitoring of vital bio signs using lasers, this paper introduces a novel technique for remote noncontact measurements based on radio frequencies. Unlike laser-based methods, this innovative approach offers the advantage of penetrating through walls and tissues, enabling the measurement of respiration and heart rate. Our method, diverging from traditional radar systems, introduces a unique sensing concept that enables the detection of micro-movements in all directions, including those parallel to the antenna surface. The main goal of this work is to present a novel, simple, and cost-effective measurement tool capable of indicating changes in a subject’s condition. By leveraging the unique properties of radio frequencies, this technique allows for the noninvasive monitoring of vital bio signs without the need for physical contact or invasive procedures. Moreover, the ability to penetrate barriers such as walls and tissues opens new possibilities for remote monitoring in various settings, including home healthcare, hospital environments, and even search and rescue operations. In order to validate the effectiveness of this technique, a series of experiments were conducted using a prototype device. The results demonstrated the feasibility of accurately measuring …

Show more

logo
Articali

Powered by Articali

TermsPrivacy