BINA

2708 articles

72 publishers

Join mailing list

Sep 2022 • arXiv preprint arXiv:2209.00480

Coherence and realism in the Aharonov-Bohm effect

Ismael L Paiva, Pedro R Dieguez, Renato M Angelo, Eliahu Cohen

The Aharonov-Bohm effect is a fundamental topological phenomenon with a wide range of applications. It consists of a charge encircling a region with a magnetic flux in a superposition of wavepackets having their relative phase affected by the flux. In this work, we analyze this effect using an entropic measure known as realism, originally introduced as a quantifier of a system's degree of reality and mathematically related to notions of global and local quantum coherence. More precisely, we look for observables that lead to gauge-invariant realism associated with the charge before it completes its loop. We find that the realism of these operators has a sudden change when the line connecting the center of both wavepackets crosses the solenoid. Moreover, we consider the case of a quantized magnetic field source, pointing out similarities and differences between the two cases. Finally, we discuss the implications of these results to the understanding of the effect.

Show more

Sep 2022 • arXiv preprint arXiv:2109.13038

Discrete sampling of extreme events modifies their statistics

Lior Zarfaty, Eli Barkai, David A Kessler

We explore the extreme value (EV) statistics of correlated random variables modeled via Langevin equations. Starting with an Ornstein-Uhlenbeck process, we find that when the trajectory is sampled discretely, long measurement times make the EV distribution converge to that originating from independent and identically distributed variables drawn from the process' equilibrium measure. A transition occurs when the sampling interval vanishes, for which case the EV statistics corresponds to that of the continuous process. We expand these findings to general potential fields, revealing that processes with a force that diminishes for large distances exhibit an opposite trend. Hence, we unveil a second transition, this time with respect to the potential's behavior at large displacements.

Show more

Sep 2022 • Advanced Energy Materials

Superstructure Variation and Improved Cycling of Anion Redox Active Sodium Manganese Oxides Due to Doping by Iron

Xiaodong Qi, Langyuan Wu, Zhiwei Li, Yuxuan Xiang, Yunan Liu, Kangsheng Huang, Elias Yuval, Doron Aurbach, Xiaogang Zhang

Anionic redox provides an effective way to overcome the capacity bottleneck of sodium‐ion batteries. A dominant role is played by the arrangement of alkali A and transition metal M in the NaxAyM1‐yO2 superstructure. Here, in situ X‐ray diffraction and ex situ 7Li nuclear magnetic resonance of P2 type Na0.6Li0.2Mn0.8O2 with ribbon‐ordered superstructure illustrate structural changes and explain the evolution of the electrochemical behavior of electrodes comprising this active mass, during cycling. Upon substitution of a small amount of manganese by iron, Na0.67Li0.2Mn0.73Fe0.07O2 is formed with a honeycomb‐ordered superstructure. Experimental characterizations and theoretical calculations elucidate the effect of iron on oxygen redox activity. The iron‐doped material considerably outperforms the undoped Na0.6Li0.2Mn0.8O2 as a cathode material for rechargeable Na‐ion batteries. This research reveals …

Show more

Sep 2022 • Journal of Nanotheranostics

Antibody Delivery into the Brain by Radiosensitizer Nanoparticles for Targeted Glioblastoma Therapy

Omer Gal, Oshra Betzer, Liat Rousso-Noori, Tamar Sadan, Menachem Motiei, Maxim Nikitin, Dinorah Friedmann-Morvinski, Rachela Popovtzer, Aron Popovtzer

Background: Glioblastoma is the most lethal primary brain malignancy in adults. Standard of care treatment, consisting of temozolomide (TMZ) and adjuvant radiotherapy (RT), mostly does not prevent local recurrence. The inability of drugs to enter the brain, in particular antibody-based drugs and radiosensitizers, is a crucial limitation to effective glioblastoma therapy. Methods: Here, we developed a combined strategy using radiosensitizer gold nanoparticles coated with insulin to cross the blood–brain barrier and shuttle tumor-targeting antibodies (cetuximab) into the brain. Results: Following intravenous injection to an orthotopic glioblastoma mouse model, the nanoparticles specifically accumulated within the tumor. Combining targeted nanoparticle injection with TMZ and RT standard of care significantly inhibited tumor growth and extended survival, as compared to standard of care alone. Histological analysis of tumors showed that the combined treatment eradicated tumor cells, and decreased tumor vascularization, proliferation, and repair. Conclusions: Our findings demonstrate radiosensitizer nanoparticles that effectively deliver antibodies into the brain, target the tumor, and effectively improve standard of care treatment outcome in glioblastoma.

Show more

Sep 2022 • Small Methods

Stabilizing High‐Voltage LiNi0.5Mn1.5O4 Cathodes for High Energy Rechargeable Li Batteries by Coating With Organic Aromatic Acids and Their Li Salts

Sandipan Maiti, Hadar Sclar, Judith Grinblat, Michael Talianker, Yuval Elias, Xiaohan Wu, Aleksandr Kondrakov, Doron Aurbach

Here, three types of surface coatings based on adsorption of organic aromatic acids or their Li salts are applied as functional coating substrates to engineer the surface properties of high voltage LiNi0.5Mn1.5O4 (LNMO) spinel cathodes. The materials used as coating include 1,3,5‐benzene‐tricarboxylic acid (trimesic acid [TMA]), its Li‐salt, and 1,4‐benzene‐dicarboxylic acid (terephthalic acid). The surface coating involves simple ethanol liquid‐phase mixing and low‐temperature heat treatment under nitrogen flow. In typical comparative studies, TMA‐coated (3–5%) LNMO cathodes deliver >90% capacity retention after 400 cycles with significantly improved rate performance in Li‐coin cells at 30 °C compared to uncoated material with capacity retention of ≈40%. The cathode coating also prevents the rapid drop in the electrochemical activity of high voltage Li cells at 55 °C. Studies of high voltage full cells …

Show more

Sep 2022 • arXiv preprint arXiv:2209.03410

Exponential Tails and Asymmetry Relations for the Spread of Biased Random Walks

Stanislav Burov, Wanli Wang, Eli Barkai

Exponential, and not Gaussian, decay of probability density functions was studied by Laplace in the context of his analysis of errors. Such Laplace propagators for the diffusive motion of single particles in disordered media were recently observed in numerous experimental systems. What will happen to this universality when an external driving force is applied? Using the ubiquitous continuous time random walk with bias, and the Crooks relation in conjunction with large deviations theory, we derive two properties of the positional probability density function that hold for a wide spectrum of random walk models: (I) Universal asymmetric exponential decay of for large , and (II) Existence of a time transformation that for large allows to express in terms of the propagator of the unbiased process (measured at a shorter time). These findings allow us to establish how the symmetric exponential-like tails, measured in many unbiased processes, will transform into asymmetric Laplace tails when an external force is applied.

Show more

Sep 2022 • European Journal of Cancer

Elevated A-to-I RNA editing in leukemic cutaneous T-cell lymphoma

L Moyal, M Karmon, E Levanon, E Hodak

Results: First, we confirmed that A to G alteration in the RNAseq-data are indeed RNA editing and not mismatch mutations. Next, we found that the global blood cytoplasmic editing was higher in leukemic CTCL patients compared to healthy controls (p= 0.006). The expression of ADAR1 and ADAR2 enzymes was not altered, but the expression of the most abundant putative ADAR inhibitor-DDX6, found in the healthy cohort, was reduced in leukemic CTCL patients (p= 8× 10-8). Using Random Forest algorithm with machine learning, we managed to discriminate in all between patients and healthy individuals, based on editing level and regulators. Specific edited genes and ncRNAs are now under evaluation as diagnostic and prognostic biomarkers for leukemic CTCL and their relevancy for T cell exhaustion as was shown in Park et al. Conclusions: We propose that RNA editing is involved in the pathomechanism of …

Show more

Sep 2022 • bioRxiv

FLAIRR-seq: A novel method for single molecule resolution of near full-length immunoglobulin heavy chain repertoires

Easton E Ford, David Tieri, Oscar Rodriguez, Nancy Francoeur, Juan Soto, Justin Kos, Ayelet Peres, William Gibson, Catherine A Silver, Gintaras Deikus, Elizabeth Hudson, Cassandra R Woolley, Noam Beckmann, Alexander Charney, Thomas C Mitchell, Gur Yaari, Robert P Sebra, Corey T Watson, Melissa L Smith

Current Adaptive Immune Receptor Repertoire Sequencing (AIRR-seq) strategies resolve expressed antibody (Ab) transcripts with limited resolution of the constant region. Here we present a novel near full-length AIRR-seq (FLAIRR-Seq) method that utilizes targeted amplification by 5’ rapid amplification of cDNA ends (RACE), combined with single molecule, real-time sequencing to generate highly accurate (>Q40, 99.99%) IG heavy chain transcripts. FLAIRR-seq was benchmarked by comparing IG heavy chain variable (IGHV), diversity (IGHD), and joining (IGHJ) gene usage, complementarity-determining region 3 (CDR3) length, and somatic hypermutation to matched datasets generated with standard 5’ RACE AIRR-seq and full-length isoform sequencing. Together these data demonstrate robust, unbiased FLAIRR-seq performance using RNA samples derived from peripheral blood mononuclear cells, purified B cells, and whole blood, which recapitulated results generated by commonly used methods, while additionally resolving novel IG heavy chain constant (IGHC) gene features. FLAIRR-seq data provides, for the first time, simultaneous, single-molecule characterization of IGHV, IGHD, IGHJ, and IGHC region genes and alleles, allele-resolved subisotype definition, and high-resolution identification of class-switch recombination within a clonal lineage. In conjunction with genomic sequencing and genotyping of IGHC genes, FLAIRR-seq of the IgM and IgG repertoires from 10 individuals resulted in the identification of 32 unique IGHC alleles, 28 (87%) of which were previously uncharacterized. Together, these data demonstrate the …

Show more

Sep 2022 • Journal of Colloid and Interface Science

Salt-induced stability and modified interfacial energetics in self-faceting emulsion droplets

Pilkhaz M Nanikashvili, Alexander V Butenko, Moshe Deutsch, Daeyeon Lee, Eli Sloutskin


Sep 2022 • Colloids and Surfaces A: Physicochemical and Engineering Aspects

Design of silane-based UV-absorbing thin coatings on polyethylene films

Taly Iline-Vul, Naftali Kanovsky, Daniel Yom-Tov, Merav Nadav-Tsubery, Shlomo Margel

UV-absorbing surfaces have received much attention and focus due to their relevance in a variety of research applications and industrial fields. However, these surfaces currently suffer from drawbacks such as instability due to leakage of the entrapped UV-absorbing compounds, complicated non-green synthetic processes, and/or lack of good optical properties. We propose a modified Stöber method where UV absorbing silane monomers containing the group2-hydroxy-4-(3-triethoxysilylpropoxy) diphenylketone (SiUV) in presence of the mesoporous producing surfactant cetyltrimethyl ammonium chloride (CTAC) was polymerized in an ethanol/water continuous phase under basic conditions. UV absorbing thin coatings onto polyethylene (PE) films were then spread with the former dispersion on corona-treated PE, followed by a thermal drying process. These films were highly UV absorbent and durable with …

Show more

Sep 2022 • arXiv preprint arXiv:2209.00480

Coherence and realism in the Aharonov-Bohm effect

Ismael L Paiva, Pedro R Dieguez, Renato M Angelo, Eliahu Cohen

The Aharonov-Bohm effect is a fundamental topological phenomenon with a wide range of applications. It consists of a charge encircling a region with a magnetic flux in a superposition of wavepackets having their relative phase affected by the flux. In this work, we analyze this effect using an entropic measure known as realism, originally introduced as a quantifier of a system's degree of reality and mathematically related to notions of global and local quantum coherence. More precisely, we look for observables that lead to gauge-invariant realism associated with the charge before it completes its loop. We find that the realism of these operators has a sudden change when the line connecting the center of both wavepackets crosses the solenoid. Moreover, we consider the case of a quantized magnetic field source, pointing out similarities and differences between the two cases. Finally, we discuss the implications of these results to the understanding of the effect.

Show more

Aug 2022 • ACS Applied Bio Materials

Cuprous Oxide Nanoparticles Decorated Fabric Materials with Anti-Biofilm Properties

Akanksha Gupta, Moorthy Maruthapandi, Poushali Das, Arumugam Saravanan, Gila Jacobi, Michal Natan, Ehud Banin, John HT Luong, Aharon Gedanken

Considering the global spread of bacterial infections, the development of anti-biofilm surfaces with high antimicrobial activities is highly desired. This work unraveled a simple, sonochemical method for coating Cu2O nanoparticles (NPs) on three different flexible substrates: polyester (PE), nylon 2 (N2), and polyethylene (PEL). The introduction of Cu2O NPs on these substrates enhanced their surface hydrophobicity, induced ROS generation, and completely inhibited the growth of sensitive (Escherichia coli and Staphyloccocus aureus) and drug-resistant (MDR E. coli and MRSA) planktonic and biofilm. The experimental results confirmed that Cu2O-PE exhibited complete biofilm mass reduction ability for all four strains, whereas Cu2O-N2 showed more than 99% biomass inhibition against both drug-resistant and sensitive pathogens in 6 h. Moreover, Cu2O-PEL also indicated a 99.95, 97.73, 98.00, and 99.20 …

Show more

Aug 2022 • ACS Applied Bio Materials

Cuprous Oxide Nanoparticles Decorated Fabric Materials with Anti-biofilm Properties

Akanksha Gupta, Moorthy Maruthapandi, Poushali Das, Arumugam Saravanan, Gila Jacobi, Michal Natan, Ehud Banin, John HT Luong, Aharon Gedanken

Considering the global spread of bacterial infections, the development of anti-biofilm surfaces with high antimicrobial activities is highly desired. This work unraveled a simple, sonochemical method for coating Cu2O nanoparticles (NPs) on three different flexible substrates: polyester (PE), nylon 2 (N2), and polyethylene (PEL). The introduction of Cu2O NPs on these substrates enhanced their surface hydrophobicity, induced ROS generation, and completely inhibited the growth of sensitive (Escherichia coli and Staphyloccocus aureus) and drug-resistant (MDR E. coli and MRSA) planktonic and biofilm. The experimental results confirmed that Cu2O-PE exhibited complete biofilm mass reduction ability for all four strains, whereas Cu2O-N2 showed more than 99% biomass inhibition against both drug-resistant and sensitive pathogens in 6 h. Moreover, Cu2O-PEL also indicated a 99.95, 97.73, 98.00, and 99.20 …

Show more

Aug 2022 • ACS Applied Nano Materials

Dealloyed Octahedral PtCu Nanoparticles as High-Efficiency Electrocatalysts for the Oxygen Reduction Reaction

Melina Zysler, Enrique Carbo-Argibay, Paulo J Ferreira, David Zitoun

Pt-based nanoparticles (NPs) are used as electrocatalysts for the oxygen reduction reaction (ORR) that occurs at the cathode of a proton exchange membrane fuel cell, because of their high efficiency. Among these NPs, PtCu electrocatalysts are an important subclass, in which composition, morphology, size, crystal structure, and atomic distribution are tuned to optimize the performance and durability of the catalyst. Most of the efforts so far in the field have been dedicated toward increasing the catalytic activity and stability of these NPs, while reducing the amount of precious material. In this paper, we present a solvothermal method used for the synthesis of carbon-supported octahedral PtCu NPs that show high efficiency toward the ORR. In particular, a specific activity of 1.02 mA cm–2 was achieved after 10,000 cycles (accelerated degradation test) in which 84% of the electrochemical surface area was maintained …

Show more

Aug 2022 • International Journal of Hydrogen Energy

Adsorption of bromine complexing agents on platinum electrocatalysts and prevention through polydopamine coatings

Samuel S Hardisty, Nagaprasad Reddy Samala, Ilya Grinberg, David Zitoun

Bromine complexing agents (BCAs) are seen as a promising route to mitigate the potential health and environmental risks of the bromine-based redox-flow batteries, like the hydrogen bromine redox flow battery (H2–Br2 RFB). The most studied BCAs are based on the pyridinium anion, which may adsorb and inhibit the Pt catalyst required in the H2–Br2 RFB system for the hydrogen reactions. Herein the effect of two BCAs (ethyl-pyridinium bromide and hexyl-pyridinium bromide) on a Pt electrocatalyst are studied, along with a potential methodology to prevent adsorption of the BCA through a polydopamine (PDA) coating. The results show that the pyridinium anion is adsorbed on Pt throughout a large potential range (−0.02 to 1.0 V), reducing the availability of the surface for the adsorption of other species. The PDA coating prevented this adsorption, but itself experiences adsorption of the BCA leading to some …

Show more

Aug 2022 • Advanced Functional Materials

The Saga of Water and Halide Perovskites: Evidence of Water in Methylammonium Lead Tri‐Iodide

Naga Prathibha Jasti, Gennady E Shter, Yishay Feldman, Davide Raffaele Ceratti, Adi Kama, Isaac Buchine, Gideon S Grader, David Cahen

The environment humidity effects on performance of halide perovskites (HaPs), especially MAPbI3, are known. Nevertheless, it is hard to find direct experimental evidence of H2O in the bulk materials at the levels lower than that of Monohydrate (MAPbI3.H2O). Here, for the first time, direct experimental evidence of water being released from bulk (µm‐s deep) of MAPbI3 single crystal is reported. The thermogravimetric analysis coupled with mass spectrometry (TGA‐MS) of evolved gases is used to detect the MS signal of H2O from the penetrable depth and correlate it with the TGA mass loss due to H2O leaving the material. These measurements yield an estimate of the average H2O content of 1 H2O molecule per three MAPbI3 formula units (MAPbI3.0.33H2O). Under the relatively low temperature conditions no other evolved gases that can correspond to MAPbI3 decomposition products, are observed in the MS. In …

Show more

Aug 2022 • Optical Fiber Sensors, Th4. 67, 2022

Forward Brillouin Point Sensor in a Multi-Core Fiber

Keren Shemer, Gil Bashan, Elad Zehavi, Hilel Hagai Diamandi, Alon Bernstein, Kavita Sharma, Yosef London, David Barrera, Salvador Sales, Avi Zadok

Forward Brillouin point sensing is demonstrated in a multi-core fiber. Acoustic waves are stimulated by light in one core and monitored using a grating in another. Measurements distinguish between ethanol and water outside the cladding.

Show more

Aug 2022 • Nature Physics

Topology-driven surface patterning of liquid spheres

Subhomoy Das, Alexander V Butenko, Yitzhak Mastai, Moshe Deutsch, Eli Sloutskin

Surfaces of classical spherical liquid droplets are isotropic, promoting the random distribution of surface-adsorbed molecules. Here we demonstrate a counterintuitive temperature-controlled self-assembly of well-defined and highly ordered patterns of surface-adsorbed fluorescent molecules on the surfaces of water-suspended spherical oil droplets. These patterns are induced by precisely self-positioned, topology-dictated structural defects in a crystalline monolayer covering these droplets’ surfaces over a wide temperature range. We elucidate the pattern formation mechanism, visualize the defects’ positions and map the stress fields within the surface crystal. The observed phenomena provide insights into the interfacial freezing effect on curved surfaces, enable precise positioning of functional ligands on droplets for their self-assembly into higher-hierarchy structures– and may also play an important role in vital …

Show more

Aug 2022 • Scientific Reports 12 (1), 1-9, 2022

Remote photonic detection of human senses using secondary speckle patterns

Zeev Kalyuzhner, Sergey Agdarov, Itai Orr, Yafim Beiderman, Aviya Bennett, Zeev Zalevsky

Neural activity research has recently gained signi cant attention due to its association with sensory information and behavior control. However, current methods of brain activity sensing require expensive equipment and physical contact with the subject.We propose a novel photonic-based method for remote detection of human senses. Physiological processes associated with hemodynamic activity due to activation of the cerebral cortex affected by different senses have been detected by remote monitoring of nano‐vibrations generated due to the transient blood ow to speci c regions of the brain. We have found that combination of defocused, self‐interference random speckle patterns with a spatiotemporal analysis using Deep Neural Network (DNN) allows associating between the activated sense and the seemingly random speckle patterns.

Show more

Aug 2022 • Physical Review Letters

Discrete sampling of extreme events modifies their statistics

Lior Zarfaty, Eli Barkai, David A Kessler

Extreme value (EV) statistics of correlated systems are widely investigated in many fields, spanning the spectrum from weather forecasting to earthquake prediction. Does the unavoidable discrete sampling of a continuous correlated stochastic process change its EV distribution? We explore this question for correlated random variables modeled via Langevin dynamics for a particle in a potential field. For potentials growing at infinity faster than linearly and for long measurement times, we find that the EV distribution of the discretely sampled process diverges from that of the full continuous dataset and converges to that of independent and identically distributed random variables drawn from the process’s equilibrium measure. However, for processes with sublinear potentials, the long-time limit is the EV statistics of the continuously sampled data. We treat processes whose equilibrium measures belong to the three EV …

Show more

Aug 2022 • Nature Physics

Topology-driven surface patterning of liquid spheres

Subhomoy Das, Alexander V Butenko, Yitzhak Mastai, Moshe Deutsch, Eli Sloutskin

Surfaces of classical spherical liquid droplets are isotropic, promoting the random distribution of surface-adsorbed molecules. Here we demonstrate a counterintuitive temperature-controlled self-assembly of well-defined and highly ordered patterns of surface-adsorbed fluorescent molecules on the surfaces of water-suspended spherical oil droplets. These patterns are induced by precisely self-positioned, topology-dictated structural defects in a crystalline monolayer covering these droplets’ surfaces over a wide temperature range. We elucidate the pattern formation mechanism, visualize the defects’ positions and map the stress fields within the surface crystal. The observed phenomena provide insights into the interfacial freezing effect on curved surfaces, enable precise positioning of functional ligands on droplets for their self-assembly into higher-hierarchy structures– and may also play an important role in vital …

Show more

logo
Articali

Powered by Articali

TermsPrivacy