BINA

2708 articles

72 publishers

Join mailing list

Oct 2022 • arXiv preprint arXiv:2010.12220

Light chaotic dynamics in the transformation from curved to flat surfaces

Chenni Xu, Itzhack Dana, Li-Gang Wang, Patrick Sebbah

Light propagation on a two-dimensional curved surface embedded in a three-dimensional space has attracted increasing attention as an analog model of four-dimensional curved spacetime in laboratory. Despite recent developments in modern cosmology on the dynamics and evolution of the universe, investigation of nonlinear dynamics of light in non-Euclidean geometry is still scarce and remains challenging. Here, we study classical and wave chaotic dynamics on a family of surfaces of revolution by considering its equivalent conformally transformed flat billiard, with nonuniform distribution of refractive index. This equivalence is established by showing how these two systems have the same equations and the same dynamics. By exploring the Poincar\'{e} surface of section, the Lyapunov exponent and the statistics of eigenmodes and eigenfrequency spectrum in the transformed inhomogeneous table billiard, we find that the degree of chaos is fully controlled by a single geometric parameter of the curved surface. A simple interpretation of our findings in transformed billiards, the "fictitious force", allows to extend our prediction to other class of curved surfaces. This powerful analogy between two a prior unrelated systems not only brings forward a novel approach to control the degree of chaos, but also provides potentialities for further studies and applications in various fields, such as billiards design, optical fibers, or laser microcavities.

Show more

Oct 2022 • Protein Science

Copper coordination states affect the flexibility of copper Metallochaperone Atox1: Insights from molecular dynamics simulations

Renana Schwartz, Sharon Ruthstein, Dan Thomas Major

Copper is an essential element in nature but in excess it is toxic to the living cell. The human metallochaperone Atox1 participates in copper homeostasis and is responsible for copper transmission. In a previous multiscale simulation study, we noticed a change in the coordination state of the Cu(I) ion, from 4 bound cysteine residues to 3, in agreement with earlier studies. Here we perform and analyse classical molecular dynamic simulations of various coordination states: 2, 3, and 4. The main observation is an increase in protein flexibility as a result of a decrease in coordination state. Additionally, we identified several populated conformations that correlate well with double electron‐electron resonance distance distributions or an X‐ray structure of Cu(I)‐bound Atox1. We suggest that the increased flexibility might benefit the process of ion transmission between interacting proteins. Further experiments can …

Show more

Oct 2022 • Journal of The Electrochemical Society

Improving Li Anode Reversibility in Li–S Batteries by ZnO Coated Separators Using Atomic Layer Deposition

Shalev Blanga, Reut Yemini, Eti Teblum, Merav Nadav Tsubery, Sarah Taragin, Malachi Noked

Lithium-sulfur batteries (LSBs) are considered a very attractive alternative to lithium-ion batteries due to their high theoretical capacity and the low cost of the active materials. However, the realization of LSBs remains hostage to many challenges associated with the cathode and anode response to the electrochemical conditions inside the battery cell. While working with LSBs, elemental sulfur undergoes multielectron reduction reactions until it is reduced to Li2S. The intermediate long chain lithium-polysulfide (LiPS) species are soluble, and hence diffuse through the electrolyte solution from the cathode side to the anode. This “shuttle” phenomenon is considered to be one of the main issues of LSB. Most effort in investigating LSBs has focused on the cathode side while few have considered the importance of the lithium anode reversibility and the separator role in preventing the “shuttle” phenomenon. In the current …

Show more

Oct 2022 • Applied Sciences

Kerr-Lens Mode-Locking: Numerical Simulation of the Spatio-Temporal Dynamics on All Time Scales

Idan Parshani, Leon Bello, Mallachi-Elia Meller, Avi Pe’er

We present a complete numerical analysis and simulation of the full spatio-temporal dynamics of Kerr-lens mode-locking in a laser. This dynamic, which is the workhorse mechanism for generating ultrashort pulses, relies on the intricate coupling between the spatial nonlinear propagation and the temporal nonlinear compression. Our numerical tool emulates the dynamical evolution of the optical field in the cavity on all time-scales: the fast time scale of the pulse envelope within a single round trip, and the slow time-scale between round-trips. We employ a nonlinear ABCD formalism that fully handles all relevant effects in the laser, namely—self focusing and diffraction, dispersion and self-phase modulation, and space-dependent loss and gain saturation. We confirm the validity of our model by reproducing the pulse-formation in all aspects: The evolution of the pulse energy, duration, and gain during the entire cavity buildup, demonstrating the nonlinear mode competition in full, as well as the dependence of the final pulse in steady state on the interplay between gain bandwidth, dispersion, and self-phase modulation. The direct observation of the nonlinear evolution of the pulse in space-time is a key enabler to analyze and optimize the Kerr-lens mode-locking operation, as well as to explore new nonlinear phenomena.

Show more

Sep 2022 • arXiv preprint arXiv:2209.00480

Coherence and realism in the Aharonov-Bohm effect

Ismael L Paiva, Pedro R Dieguez, Renato M Angelo, Eliahu Cohen

The Aharonov-Bohm effect is a fundamental topological phenomenon with a wide range of applications. It consists of a charge encircling a region with a magnetic flux in a superposition of wavepackets having their relative phase affected by the flux. In this work, we analyze this effect using an entropic measure known as realism, originally introduced as a quantifier of a system's degree of reality and mathematically related to notions of global and local quantum coherence. More precisely, we look for observables that lead to gauge-invariant realism associated with the charge before it completes its loop. We find that the realism of these operators has a sudden change when the line connecting the center of both wavepackets crosses the solenoid. Moreover, we consider the case of a quantized magnetic field source, pointing out similarities and differences between the two cases. Finally, we discuss the implications of these results to the understanding of the effect.

Show more

Sep 2022 • The Journal of Physical Chemistry B 126 (39), 7486-7494, 2022

EPR Spectroscopy Provides New Insights into Complex Biological Reaction Mechanisms

Lukas Hofmann, Sharon Ruthstein

In the last 20 years, the use of electron paramagnetic resonance (EPR) has made a pronounced and lasting impact in the field of structural biology. The advantage of EPR spectroscopy over other structural techniques is its ability to target even minor conformational changes in any biomolecule or macromolecular complex, independent of its size or complexity, or whether it is in solution or in the cell during a biological or chemical reaction. Here, we focus on the use of EPR spectroscopy to study transmembrane transport and transcription mechanisms. We discuss experimental and analytical concerns when referring to studies of two biological reaction mechanisms, namely, transfer of copper ions by the human copper transporter hCtr1 and the mechanism of action of the Escherichia coli copper-dependent transcription factor CueR. Last, we elaborate on future avenues in the field of EPR structural biology.

Show more

Sep 2022 • ACS Catalysis

Mixed-Metal Nickel–Iron Oxide Aerogels for Oxygen Evolution Reaction

Wenjamin Moschkowitsch, Noam Zion, Hilah C Honig, Naomi Levy, David A Cullen, Lior Elbaz

Alkaline electrolyte membrane electrolyzers are a promising technology to efficiently produce clean hydrogen without the use of critical raw materials. At the heart of these electrolyzers are the electrocatalysts, which facilitate the cathodic and anodic reactions, with the latter oxygen evolution reaction (OER) being the most sluggish. In recent years, aerogels have become a very well-studied class of materials due to their unique properties, including very high surface area. Until now, aerogels have not been used to catalyze the OER by themselves but were mainly considered catalyst supports. Here, mixed-metal nickel–iron oxide aerogels were synthesized with a modified epoxide route synthesis and tested as OER catalysts. Depending on the Ni/Fe ratio, they show very high catalytic activity and low overpotential to reach 10 mA cm–2 (at η = 380 mV). This activity is beyond that of the existing state-of-the-art platinum …

Show more

Sep 2022 • The Journal of Physical Chemistry B 126 (39), 7486-7494, 2022

EPR Spectroscopy Provides New Insights into Complex Biological Reaction Mechanisms

Lukas Hofmann, Sharon Ruthstein

In the last 20 years, the use of electron paramagnetic resonance (EPR) has made a pronounced and lasting impact in the field of structural biology. The advantage of EPR spectroscopy over other structural techniques is its ability to target even minor conformational changes in any biomolecule or macromolecular complex, independent of its size or complexity, or whether it is in solution or in the cell during a biological or chemical reaction. Here, we focus on the use of EPR spectroscopy to study transmembrane transport and transcription mechanisms. We discuss experimental and analytical concerns when referring to studies of two biological reaction mechanisms, namely, transfer of copper ions by the human copper transporter hCtr1 and the mechanism of action of the Escherichia coli copper-dependent transcription factor CueR. Last, we elaborate on future avenues in the field of EPR structural biology.

Show more

Sep 2022 • arXiv preprint arXiv:2109.13038

Discrete sampling of extreme events modifies their statistics

Lior Zarfaty, Eli Barkai, David A Kessler

We explore the extreme value (EV) statistics of correlated random variables modeled via Langevin equations. Starting with an Ornstein-Uhlenbeck process, we find that when the trajectory is sampled discretely, long measurement times make the EV distribution converge to that originating from independent and identically distributed variables drawn from the process' equilibrium measure. A transition occurs when the sampling interval vanishes, for which case the EV statistics corresponds to that of the continuous process. We expand these findings to general potential fields, revealing that processes with a force that diminishes for large distances exhibit an opposite trend. Hence, we unveil a second transition, this time with respect to the potential's behavior at large displacements.

Show more

Sep 2022 • Journal of Nanotheranostics

Antibody Delivery into the Brain by Radiosensitizer Nanoparticles for Targeted Glioblastoma Therapy

Omer Gal, Oshra Betzer, Liat Rousso-Noori, Tamar Sadan, Menachem Motiei, Maxim Nikitin, Dinorah Friedmann-Morvinski, Rachela Popovtzer, Aron Popovtzer

Background: Glioblastoma is the most lethal primary brain malignancy in adults. Standard of care treatment, consisting of temozolomide (TMZ) and adjuvant radiotherapy (RT), mostly does not prevent local recurrence. The inability of drugs to enter the brain, in particular antibody-based drugs and radiosensitizers, is a crucial limitation to effective glioblastoma therapy. Methods: Here, we developed a combined strategy using radiosensitizer gold nanoparticles coated with insulin to cross the blood–brain barrier and shuttle tumor-targeting antibodies (cetuximab) into the brain. Results: Following intravenous injection to an orthotopic glioblastoma mouse model, the nanoparticles specifically accumulated within the tumor. Combining targeted nanoparticle injection with TMZ and RT standard of care significantly inhibited tumor growth and extended survival, as compared to standard of care alone. Histological analysis of tumors showed that the combined treatment eradicated tumor cells, and decreased tumor vascularization, proliferation, and repair. Conclusions: Our findings demonstrate radiosensitizer nanoparticles that effectively deliver antibodies into the brain, target the tumor, and effectively improve standard of care treatment outcome in glioblastoma.

Show more

Sep 2022 • Journal of Colloid and Interface Science

Salt-induced stability and modified interfacial energetics in self-faceting emulsion droplets

Pilkhaz M Nanikashvili, Alexander V Butenko, Moshe Deutsch, Daeyeon Lee, Eli Sloutskin


Sep 2022 • ACS Catalysis

Mixed-Metal Nickel–Iron Oxide Aerogels for Oxygen Evolution Reaction

Wenjamin Moschkowitsch, Noam Zion, Hilah C Honig, Naomi Levy, David A Cullen, Lior Elbaz

Alkaline electrolyte membrane electrolyzers are a promising technology to efficiently produce clean hydrogen without the use of critical raw materials. At the heart of these electrolyzers are the electrocatalysts, which facilitate the cathodic and anodic reactions, with the latter oxygen evolution reaction (OER) being the most sluggish. In recent years, aerogels have become a very well-studied class of materials due to their unique properties, including very high surface area. Until now, aerogels have not been used to catalyze the OER by themselves but were mainly considered catalyst supports. Here, mixed-metal nickel–iron oxide aerogels were synthesized with a modified epoxide route synthesis and tested as OER catalysts. Depending on the Ni/Fe ratio, they show very high catalytic activity and low overpotential to reach 10 mA cm–2 (at η = 380 mV). This activity is beyond that of the existing state-of-the-art platinum …

Show more

Sep 2022

Fabrication of a 3D high-resolution implant for neural stimulation-challenges and solutions

Gal Shpun, Nairouz Farah, Yoav Chemla, Amos Markus, Doron Gerber, Zeev Zalevsky, Yossi Mandel

Background-Tissue-integrated micro-electronic devices for neural stimulation hold a great potential in restoring the functionality of degenerated organs, speci cally, retinal prostheses, which are aimed at vision restoration. The fabrication process of 3D polymer-metal devices with high resolution and a high aspect-ratio (AR) is very complex and faces many challenges that impair its functionality.Approach-

Show more

Sep 2022 • Small Methods

Stabilizing High‐Voltage LiNi0.5Mn1.5O4 Cathodes for High Energy Rechargeable Li Batteries by Coating With Organic Aromatic Acids and Their Li Salts

Sandipan Maiti, Hadar Sclar, Judith Grinblat, Michael Talianker, Yuval Elias, Xiaohan Wu, Aleksandr Kondrakov, Doron Aurbach

Here, three types of surface coatings based on adsorption of organic aromatic acids or their Li salts are applied as functional coating substrates to engineer the surface properties of high voltage LiNi0.5Mn1.5O4 (LNMO) spinel cathodes. The materials used as coating include 1,3,5‐benzene‐tricarboxylic acid (trimesic acid [TMA]), its Li‐salt, and 1,4‐benzene‐dicarboxylic acid (terephthalic acid). The surface coating involves simple ethanol liquid‐phase mixing and low‐temperature heat treatment under nitrogen flow. In typical comparative studies, TMA‐coated (3–5%) LNMO cathodes deliver >90% capacity retention after 400 cycles with significantly improved rate performance in Li‐coin cells at 30 °C compared to uncoated material with capacity retention of ≈40%. The cathode coating also prevents the rapid drop in the electrochemical activity of high voltage Li cells at 55 °C. Studies of high voltage full cells …

Show more

Sep 2022 • Colloids and Surfaces A: Physicochemical and Engineering Aspects

Design of silane-based UV-absorbing thin coatings on polyethylene films

Taly Iline-Vul, Naftali Kanovsky, Daniel Yom-Tov, Merav Nadav-Tsubery, Shlomo Margel

UV-absorbing surfaces have received much attention and focus due to their relevance in a variety of research applications and industrial fields. However, these surfaces currently suffer from drawbacks such as instability due to leakage of the entrapped UV-absorbing compounds, complicated non-green synthetic processes, and/or lack of good optical properties. We propose a modified Stöber method where UV absorbing silane monomers containing the group2-hydroxy-4-(3-triethoxysilylpropoxy) diphenylketone (SiUV) in presence of the mesoporous producing surfactant cetyltrimethyl ammonium chloride (CTAC) was polymerized in an ethanol/water continuous phase under basic conditions. UV absorbing thin coatings onto polyethylene (PE) films were then spread with the former dispersion on corona-treated PE, followed by a thermal drying process. These films were highly UV absorbent and durable with …

Show more

Sep 2022 • Langmuir

Counterions under a Surface-Adsorbed Cationic Surfactant Monolayer: Structure and Thermodynamics

Eli Sloutskin, Lilach Tamam, Zvi Sapir, Benjamin M Ocko, Colin D Bain, Ivan Kuzmenko, Thomas Gog, Moshe Deutsch

The surface adsorption of ionic surfactants is fundamental for many widespread phenomena in life sciences and for a wide range of technological applications. However, direct atomic-resolution structural experimental studies of noncrystalline surface-adsorbed films are scarce. Thus, even the most central physical aspects of these films, such as their charge density, remain uncertain. Consequently, theoretical models based on contradicting assumptions as for the surface films’ ionization are widely used for the description and prediction of surface thermodynamics. We employ X-ray reflectivity to obtain the Ångström-scale surface-normal structure of surface-adsorbed films of the cationic surfactant cetyltrimethylammonium bromide (CTAB) in aqueous solutions at several different temperatures and concentrations. In conjunction with published neutron reflectivity data, we determine the surface-normal charge …

Show more

Sep 2022 • Advanced Energy Materials

Superstructure Variation and Improved Cycling of Anion Redox Active Sodium Manganese Oxides Due to Doping by Iron

Xiaodong Qi, Langyuan Wu, Zhiwei Li, Yuxuan Xiang, Yunan Liu, Kangsheng Huang, Elias Yuval, Doron Aurbach, Xiaogang Zhang

Anionic redox provides an effective way to overcome the capacity bottleneck of sodium‐ion batteries. A dominant role is played by the arrangement of alkali A and transition metal M in the NaxAyM1‐yO2 superstructure. Here, in situ X‐ray diffraction and ex situ 7Li nuclear magnetic resonance of P2 type Na0.6Li0.2Mn0.8O2 with ribbon‐ordered superstructure illustrate structural changes and explain the evolution of the electrochemical behavior of electrodes comprising this active mass, during cycling. Upon substitution of a small amount of manganese by iron, Na0.67Li0.2Mn0.73Fe0.07O2 is formed with a honeycomb‐ordered superstructure. Experimental characterizations and theoretical calculations elucidate the effect of iron on oxygen redox activity. The iron‐doped material considerably outperforms the undoped Na0.6Li0.2Mn0.8O2 as a cathode material for rechargeable Na‐ion batteries. This research reveals …

Show more

Sep 2022 • arXiv preprint arXiv:2209.03410

Exponential Tails and Asymmetry Relations for the Spread of Biased Random Walks

Stanislav Burov, Wanli Wang, Eli Barkai

Exponential, and not Gaussian, decay of probability density functions was studied by Laplace in the context of his analysis of errors. Such Laplace propagators for the diffusive motion of single particles in disordered media were recently observed in numerous experimental systems. What will happen to this universality when an external driving force is applied? Using the ubiquitous continuous time random walk with bias, and the Crooks relation in conjunction with large deviations theory, we derive two properties of the positional probability density function that hold for a wide spectrum of random walk models: (I) Universal asymmetric exponential decay of for large , and (II) Existence of a time transformation that for large allows to express in terms of the propagator of the unbiased process (measured at a shorter time). These findings allow us to establish how the symmetric exponential-like tails, measured in many unbiased processes, will transform into asymmetric Laplace tails when an external force is applied.

Show more

Sep 2022 • arXiv preprint arXiv:2109.10326

Structured transmittance illumination coherence holography

Aditya Chandra Mandal, Tushar Sarkar, Zeev Zalevsky, Rakesh Kumar Singh

The coherence holography offers an unconventional way to reconstruct the hologram where an incoherent light illumination is used for reconstruction purposes, and object encoded into the hologram is reconstructed as the distribution of the complex coherence function. Measurement of the coherence function usually requires an interferometric setup and array detectors. This paper presents an entirely new idea of reconstruction of the complex coherence function in the coherence holography without an interferometric setup. This is realized by structured pattern projections on the incoherent source structure and implementing measurement of the cross-covariance of the intensities by a single-pixel detector. This technique, named structured transmittance illumination coherence holography (STICH), helps to reconstruct the complex coherence from the intensity measurement in a single-pixel detector without an interferometric setup and also keeps advantages of the intensity correlations. A simple experimental setup is presented as a first step to realize the technique, and results based on the computer modeling of the experimental setup are presented to show validation of the idea.

Show more

Sep 2022 • Sensors and Actuators B: Chemical

Nitrogen-doped carbon dots as a highly selective and sensitive fluorescent probe for sensing Mg2+ ions in aqueous solution, and their application in the detection and imaging …

Hari Krishna Sadhanala, Saurav Aryal, Kusha Sharma, Ziv Orpaz, Shulamit Michaeli, Aharon Gedanken

The magnesium (Mg2+) ion is the second most abundant intracellular cation after potassium, and it is involved in a variety of biological processes and physiological functions. Because of the different effects which are dependent on Mg2+ ion concentration, it is critical to monitor Mg2+ ion levels in biological systems. Here, we report the hydrothermal synthesis of photoluminescent N-doped carbon dots (NCDs) using 4-Hydroxybenzaldehyde and 1, 2, 4, 5-benzenetetramine tetrahydrochloride as carbon and nitrogen sources, respectively. The as-synthesized NCDs demonstrated excitation dependent photoluminescence (PL) with a quantum yield of 16.2%. Because of water dispersibility and chelating functional groups, NCDs were used for highly selective detection of Mg2+ ions using ratiometric PL enhancement with a detection limit of 60 μM. Following that, based on highly biocompatibility and sensing of Mg2+ ions …

Show more

Sep 2022 • Small

Interfacial Carbon Makes Nano‐Particulate RuO2 an Efficient, Stable, pH‐Universal Catalyst for Splitting of Seawater

Fang Fang, Yong Wang, Le‐Wei Shen, Ge Tian, David Cahen, Yu‐Xuan Xiao, Jiang‐Bo Chen, Si‐Ming Wu, Liang He, Kenneth I Ozoemena, Mark D Symes, Xiao‐Yu Yang

An electrocatalyst composed of RuO2 surrounded by interfacial carbon, is synthesized through controllable oxidization‐calcination. This electrocatalyst provides efficient charge transfer, numerous active sites, and promising activity for pH‐universal electrocatalytic overall seawater splitting. An electrolyzer with this catalyst gives current densities of 10 mA cm−2 at a record low cell voltage of 1.52 V, and shows excellent durability at current densities of 10 mA cm−2 for up to 100 h. Based on the results, a mechanism for the catalytic activity of the composite is proposed. Finally, a solar‐driven system is assembled and used for overall seawater splitting, showing 95% Faraday efficiency.

Show more

logo
Articali

Powered by Articali

TermsPrivacy