2708 articles

72 publishers

Join mailing list

Oct 2022 • ACS Energy Letters

Solvent-Assisted Hopping Mechanism Enables Ultrafast Charging of Lithium-Ion Batteries

Xiaoteng Huang, Ruhong Li, Chuangchao Sun, Haikuo Zhang, Shuoqing Zhang, Ling Lv, Yiqiang Huang, Liwu Fan, Lixin Chen, Malachi Noked, Xiulin Fan

Fast charging is regarded as one of the most coveted technologies for commercial Li-ion batteries (LIBs), but the lack of suitable electrolytes with sufficient ionic conductivity and effective passivation properties hinders its development. Herein, we designed a mixed-solvent electrolyte (1 M LiPF6 in fluoroethylene carbonate/acetonitrile, FEC/AN, 7/3 by vol.) to overcome these two limitations by achieving an FEC-dominated solvation structure and an AN-rich environment. The specific AN-assisted Li+ hopping transport behavior shortens the Li+ diffusion time, doubling the ionic conductivity to 12 mS cm–1, thus endowing the graphite anode with >300 mAh g–1 at 20C and reversible (de)intercalation over a wide temperature range (from −20 to +60 °C). Furthermore, the designed electrolyte triples the capacity of the 1 Ah graphite||LiNi0.8Mn0.1Co0.1O2 (NMC811) pouch cells at 8C in comparison with the commercial …

Show more

Oct 2022 • Applied Sciences

Kerr-Lens Mode-Locking: Numerical Simulation of the Spatio-Temporal Dynamics on All Time Scales

Idan Parshani, Leon Bello, Mallachi-Elia Meller, Avi Pe’er

We present a complete numerical analysis and simulation of the full spatio-temporal dynamics of Kerr-lens mode-locking in a laser. This dynamic, which is the workhorse mechanism for generating ultrashort pulses, relies on the intricate coupling between the spatial nonlinear propagation and the temporal nonlinear compression. Our numerical tool emulates the dynamical evolution of the optical field in the cavity on all time-scales: the fast time scale of the pulse envelope within a single round trip, and the slow time-scale between round-trips. We employ a nonlinear ABCD formalism that fully handles all relevant effects in the laser, namely—self focusing and diffraction, dispersion and self-phase modulation, and space-dependent loss and gain saturation. We confirm the validity of our model by reproducing the pulse-formation in all aspects: The evolution of the pulse energy, duration, and gain during the entire cavity buildup, demonstrating the nonlinear mode competition in full, as well as the dependence of the final pulse in steady state on the interplay between gain bandwidth, dispersion, and self-phase modulation. The direct observation of the nonlinear evolution of the pulse in space-time is a key enabler to analyze and optimize the Kerr-lens mode-locking operation, as well as to explore new nonlinear phenomena.

Show more

Oct 2022 • Optics Continuum

16-channel O-band silicon-photonic wavelength division multiplexer with a 1 nm channel spacing

Matan Slook, Saawan Kumar Bag, Moshe Katzman, Dvir Munk, Yuri Kaganovskii, Michael Rosenbluh, Naor Inbar, Inbar Shafir, Leroy Dokhanian, Maayan Priel, Mirit Hen, Elad Zehavi, Avi Zadok

Silicon-photonic integrated circuits are a pivotal technology for the continued growth of data communications. A main task of silicon photonics is the wavelength division multiplexing of communication channels to aggregate bandwidths that exceed the working rates available in electronics. In this work, we design and implement a 16-channel, wavelength division multiplexing device in silicon-on-insulator. The device operates at the O-band wavelengths, centered at 1310 nm, which are favored by many data center applications. The spacing between adjacent channels is 0.96 nm (167 GHz), close to those of dense wavelength division multiplexing standards in the 1550 nm wavelength range (C band). The layout consists of 15 Mach-Zehnder interferometers, cascaded in a four-stage tree topology. The differential phase delay within each interferometer is precisely trimmed post-fabrication, through local illumination of a photosensitive upper cladding layer of As 2 Se 3 chalcogenide glass. Trimming is performed subject to closed-loop feedback of transfer functions measurements. The devices can be useful in data center optical communications.

Show more

Oct 2022 • arXiv preprint arXiv:2210.07732

The identification of mean quantum potential with Fisher information leads to a strong uncertainty relation

Yakov Bloch, Eliahu Cohen

The Cramer-Rao bound, satisfied by classical Fisher information, a key quantity in information theory, has been shown in different contexts to give rise to the Heisenberg uncertainty principle of quantum mechanics. In this paper, we show that the identification of the mean quantum potential, an important notion in Bohmian mechanics, with the Fisher information, leads, through the Cramer-Rao bound, to an uncertainty principle which is stronger, in general, than both Heisenberg and Robertson-Schrodinger uncertainty relations, allowing to experimentally test the validity of such an identification.

Show more

Oct 2022 • Cureus

Effect of Cocaine on Potassium-Evoked Release of Glutamate From Fetal Rat Brain Synaptosomes

Donald H Penning, Brian Jones, Mohamed Fayed, Xiaoxia Han, Chaya Brodie

MethodRat pups' brains were dissected and placed on a chilled petri dish. They then entered the experimental protocol. The suspended synaptosomes were divided equally into four experimental groups (control, high potassium" surrogate to hypoxic stimulation," cocaine, and cocaine+ high K). Reversed-phase high-performance liquid chromatography analyzed glutamate with fluorescent detectionResultsThe glutamate level was lowest in the cocaine-only group, with a level of 1.96× 10 4, compared to the control and high potassium group. However, combining cocaine with high potassium seemed to generate a synergistic effect, achieving the highest glutamate level of all groups with a value of 5.31× 10 4.

Show more

Oct 2022 • Forward Brillouin Scattering in Standard Optical Fibers: Single-Mode …, 2022

Forward Brillouin Scattering in Polarization-Maintaining Fibers

Avi Zadok, Hilel Hagai Diamandi, Yosef London, Gil Bashan

Polarization-maintaining fibers support guided acoustic modes that are more complex than those of single-mode fibers, due to the presence of strain rods. Forward Brillouin scattering interactions in those fibers can be intra-modal as well as inter-modal. Intra-modal interactions involve the stimulation of guided acoustic waves by a pair of optical fields that co-propagate in a common principal axis. The intra-modal processes can lead to phase modulation of co-polarized optical probe signals, similar to standard single-mode fibers. The forward Brillouin scattering spectra differ between the two axes. In addition, acoustic modes stimulated through an intra-modal process in one axis may also modulate a probe wave in the orthogonal axis. Such inter-polarization cross-phase modulation is analogous to the dynamic gratings of backward Brillouin scattering in polarization-maintaining fibers. In inter-modal forward Brillouin …

Show more

Oct 2022 • Forward Brillouin Scattering in Standard Optical Fibers: Single-Mode …, 2022

Experimental Results

Avi Zadok, Hilel Hagai Diamandi, Yosef London, Gil Bashan

Experimental characterization and applications of forward Brillouin scattering in various types of optical fibers are presented. Measurements are compared with the predictions of analysis and calculations whenever possible. Results include the forward Brillouin scattering spectra of bare and coated single-mode fibers, multi-core fibers, and polarization-maintaining fibers. Both intra-modal and inter-modal process in polarization-maintaining fibers are reported. The contributions of radial and torsional-radial modes are identified and classified. The interplay of forward Brillouin scattering and the Kerr effect is characterized as well. Position-integrated, point-measurement, and spatially distributed analyses of liquid media outside the fiber are demonstrated. The sensing of surrounding media is enabled by forward Brillouin scattering processes, even though guided light does not come in contact with such media. The …

Show more

Oct 2022 • Biophysical Reviews, 1-19, 2022

The use of EPR spectroscopy to study transcription mechanisms

L Hofmann, A Mandato, S Saxena, S Ruthstein

Electron paramagnetic resonance (EPR) spectroscopy has become a promising structural biology tool to resolve complex and dynamic biological mechanisms in-vitro and in-cell. Here, we focus on the advantages of continuous wave (CW) and pulsed EPR distance measurements to resolve transcription processes and protein-DNA interaction. The wide range of spin-labeling approaches that can be used to follow structural changes in both protein and DNA render EPR a powerful method to study protein-DNA interactions and structure–function relationships in other macromolecular complexes. EPR-derived data goes well beyond static structural information and thus serves as the method of choice if dynamic insight is needed. Herein, we describe the conceptual details of the theory and the methodology and illustrate the use of EPR to study the protein-DNA interaction of the copper-sensitive transcription factor, CueR.

Show more

Oct 2022 • 2022 IEEE International Topical Meeting on Microwave Photonics (MWP), 1-4, 2022

Electro-Opto-Mechanical Microwave-Frequency Oscillator in a Surface Acoustic Wave Silicon-Photonic Circuit

Maayan Priel, Saawan Kumar Bag, Matan Slook, Leroy Dokhanian, Inbar Shafir, Etai Grunwald, Moshe Katzman, Mirit Hen, Avi Zadok

An electro-opto-mechanical microwave frequency oscillator is demonstrated through a silicon photonic circuit. An electrical signal modulates an optical pump wave input. Modulation is converted to a surface acoustic wave on the silicon circuit through absorption in a metallic grating and thermoelastic expansion. The acoustic wave is delayed and converted back to optics through photoelastic modulation of a continuous optical input probe wave in a racetrack resonator waveguide. The output probe is detected, and the obtained voltage is amplified and fed back to modulate the input optical pump wave. With sufficient feedback gain, the electro-opto-mechanical loop is driven to oscillations at 2.21 GHz frequency. The oscillator can be useful for integrated microwave photonics signal processing.

Show more

Oct 2022 • ACS Applied Materials & Interfaces

Mitigation of Oxygen Evolution and Phase Transition of Li-Rich Mn-Based Layered Oxide Cathodes by Coating with Oxygen-Deficient Perovskite Compounds

Yike Lei, Yuval Elias, Yongkang Han, Dongdong Xiao, Jun Lu, Jie Ni, Yingchuan Zhang, Cunman Zhang, Doron Aurbach, Qiangfeng Xiao

Li-rich Mn-based layered oxide cathodes with a high discharge capacity hold great promise for high energy density lithium-ion batteries. However, application is hampered by voltage and capacity decay and gas evolution during cycling due to interfacial side reactions. Here, we report coating by oxygen-deficient perovskite La0.9Sr0.1CoO3 using the Pechini process. X-ray photoelectron spectroscopy and scanning transmission electron microscopy both exhibit a uniform coating layer with a high oxygen vacancy concentration. The coating effectively mitigates the first cycle irreversible capacity loss and voltage decay while increasing cyclability. Optimized coating improves capacity retention from 55.6% to 84.8% after 400 cycles at 2 C. Operando differential electrochemical mass spectroscopy shows that such a coating can significantly mitigate the release of oxygen and carbon dioxide. Electrochemical impedance …

Show more

Oct 2022 • Nature Physics

Topology-driven surface patterning of liquid spheres

Subhomoy Das, Alexander V Butenko, Yitzhak Mastai, Moshe Deutsch, Eli Sloutskin

Surfaces of classical spherical liquid droplets are isotropic, promoting the random distribution of surface-adsorbed molecules. Here we demonstrate a counterintuitive temperature-controlled self-assembly of well-defined and highly ordered patterns of surface-adsorbed fluorescent molecules on the surfaces of water-suspended spherical oil droplets. These patterns are induced by precisely self-positioned, topology-dictated structural defects in a crystalline monolayer covering these droplets’ surfaces over a wide temperature range. We elucidate the pattern formation mechanism, visualize the defects’ positions and map the stress fields within the surface crystal. The observed phenomena provide insights into the interfacial freezing effect on curved surfaces, enable precise positioning of functional ligands on droplets for their self-assembly into higher-hierarchy structures– and may also play an important role in vital …

Show more

Oct 2022 • arXiv preprint arXiv:2010.12220

Light chaotic dynamics in the transformation from curved to flat surfaces

Chenni Xu, Itzhack Dana, Li-Gang Wang, Patrick Sebbah

Light propagation on a two-dimensional curved surface embedded in a three-dimensional space has attracted increasing attention as an analog model of four-dimensional curved spacetime in laboratory. Despite recent developments in modern cosmology on the dynamics and evolution of the universe, investigation of nonlinear dynamics of light in non-Euclidean geometry is still scarce and remains challenging. Here, we study classical and wave chaotic dynamics on a family of surfaces of revolution by considering its equivalent conformally transformed flat billiard, with nonuniform distribution of refractive index. This equivalence is established by showing how these two systems have the same equations and the same dynamics. By exploring the Poincar\'{e} surface of section, the Lyapunov exponent and the statistics of eigenmodes and eigenfrequency spectrum in the transformed inhomogeneous table billiard, we find that the degree of chaos is fully controlled by a single geometric parameter of the curved surface. A simple interpretation of our findings in transformed billiards, the "fictitious force", allows to extend our prediction to other class of curved surfaces. This powerful analogy between two a prior unrelated systems not only brings forward a novel approach to control the degree of chaos, but also provides potentialities for further studies and applications in various fields, such as billiards design, optical fibers, or laser microcavities.

Show more

Oct 2022 • Journal of The Electrochemical Society

Pulsed Charging Protocols with Non-Zero Relaxation Time for Lithium-Ion Batteries

Lautaro Nicolás Acosta, Guillermo Garaventta, Mikhael Levi, Doron Aurbach, Victoria Flexer

Lithium-ion batteries are commonly charged following the constant current-constant voltage (CC-CV) protocol. Current flow during charging implies an equivalent ionic flow through the battery materials. Intercalation and de-intercalation of Li+ are accompanied by concentration gradients that are reflected by the rise in the cells' potentials that is required to maintain the constant current during the CC regime. In this work, two new pulsed charging protocols were tested. First, a square current pulse is applied to the cell until the cut-off voltage is reached, followed by a pulsed square voltage protocol (PV). The second methodology keeps the same current pulse; however, after the limiting voltage was reached, the pulsing regime consisted in alternating between a maximum voltage value and a minimum, non-zero, constant current value. Different voltage pulse widths and frequencies were tested, in order to study the …

Show more

Oct 2022 • arXiv preprint arXiv:2110.12418

Gas of sub-recoiled laser cooled atoms described by infinite ergodic theory

Eli Barkai, Günter Radons, Takuma Akimoto

The velocity distribution of a classical gas of atoms in thermal equilibrium is the normal Maxwell distribution. It is well known that for sub-recoiled laser cooled atoms L\'evy statistics and deviations from usual ergodic behaviour come into play. Here we show how tools from infinite ergodic theory describe the cool gas. Specifically, we derive the scaling function and the infinite invariant density of a stochastic model for the momentum of laser cooled atoms using two approaches. The first is a direct analysis of the master equation and the second following the analysis of Bertin and Bardou using the lifetime dynamics. The two methods are shown to be identical, but yield different insights into the problem. In the main part of the paper we focus on the case where the laser trapping is strong, namely the rate of escape from the velocity trap is for and . We construct a machinery to investigate the time averages of physical observables and their relation to ensemble averages. The time averages are given in terms of functionals of the individual stochastic paths, and here we use a generalisation of L\'evy walks to investigate the ergodic properties of the system. Exploring the energy of the system, we show that when it exhibits a transition between phases where it is either an integrable or non integrable observable, with respect to the infinite invariant measure. This transition corresponds to very different properties of the mean energy, and to a discontinuous behaviour of the fluctuations. Since previous experimental work showed that both and are attainable we believe that both phases could be explored also experimentally.

Show more

Oct 2022 • ACS Applied Materials & Interfaces

NiN-Passivated NiO Hole-Transport Layer Improves Halide Perovskite-Based Solar Cell

Anat Itzhak, Xu He, Adi Kama, Sujit Kumar, Michal Ejgenberg, Antoine Kahn, David Cahen

The interfaces between inorganic selective contacts and halide perovskites (HaPs) are possibly the greatest challenge for making stable and reproducible solar cells with these materials. NiOx, an attractive hole-transport layer as it fits the electronic structure of HaPs, is highly stable and can be produced at a low cost. Furthermore, NiOx can be fabricated via scalable and controlled physical deposition methods such as RF sputtering to facilitate the quest for scalable, solvent-free, vacuum-deposited HaP-based solar cells (PSCs). However, the interface between NiOx and HaPs is still not well-controlled, which leads at times to a lack of stability and Voc losses. Here, we use RF sputtering to fabricate NiOx and then cover it with a NiyN layer without breaking vacuum. The NiyN layer protects NiOx doubly during PSC production. Firstly, the NiyN layer protects NiOx from Ni3+ species being reduced to Ni2+ by Ar plasma …

Show more

Oct 2022 • Materials Research Bulletin

In-situ design, characterization and use of durable superhydrophobic thin coatings applied on polymeric films

Naftali Kanovsky, Sarit Cohen, Shlomo Margel

Superhydrophobic coatings on polymeric films are in high demand due to their various real-world applications in a number of different fields. However, reported coatings lack durability or have complicated processes rendering them impractical. Here, tetraethylorthosilicate is polymerized via a modified Stöber method in the presence of a corona treated PP film (in-situ) which results in a thin silica-structured layer, covalently bonded to the PP film. Fluorocarbon silanes are then further reacted with the silica layer. The high surface roughness of the silica structures and low surface energy of the fluorocarbon silanes produce superhydrophobic surfaces. PP films coated with flake-like silica structures resulted in higher surface roughness and superhydrophobicity than the particle-like coating. Additionally, the flake-like silica coating exhibited good self-cleaning properties and durability to sandpaper abrasion tests. This …

Show more

Oct 2022 • ACS nano

Optoelectronics of Atomic Metal–Semiconductor Interfaces in Tin-Intercalated MoS2

Avraham Twitto, Chen Stern, Michal Poplinger, Ilana Perelshtein, Sabyasachi Saha, Akash Jain, Kristie J Koski, Francis Leonard Deepak, Ashwin Ramasubramaniam, Doron Naveh

Metal–semiconductor interfaces are ubiquitous in modern electronics. These quantum-confined interfaces allow for the formation of atomically thin polarizable metals and feature rich optical and optoelectronic phenomena, including plasmon-induced hot-electron transfer from metal to semiconductors. Here, we report on the metal–semiconductor interface formed during the intercalation of zero-valent atomic layers of tin (Sn) between layers of MoS2, a van der Waals layered material. We demonstrate that Sn interaction leads to the emergence of gap states within the MoS2 band gap and to corresponding plasmonic features between 1 and 2 eV (0.6–1.2 μm). The observed stimulation of the photoconductivity, as well as the extension of the spectral response from the visible regime toward the mid-infrared suggests that hot-carrier generation and internal photoemission take place.

Show more

Oct 2022 • The Journal of Allergy and Clinical Immunology: In Practice

Lessons learned from five years of newborn screening for severe combined immunodeficiency in Israel

Atar Lev, Idan Sharir, Amos J Simon, Shiran Levy, Yu Nee Lee, Shirly Frizinsky, Suha Daas, Talia Saraf-Levy, Arnon Broides, Amit Nahum, Suhair Hanna, Polina Stepensky, Ori Toker, Ilan Dalal, Amos Etzioni, Jerry Stein, Etai Adam, Ayal Hendel, Nufar Marcus, Shlomo Almashanu, Raz Somech

BackgroundImplementation of newborn screening (NBS) programs for severe combined immunodeficiency (SCID) have advanced the diagnosis and management of affected infants and undoubtedly improved their outcomes. Reporting long-term follow-up of such programs is of great importance.ObjectiveWe report a 5-year summary of the NBS program for SCID in Israel.MethodsImmunologic and genetic assessments, clinical analyses, and outcome data from all infants who screened positive were evaluated and summarized.ResultsA total of 937,953 Guthrie cards were screened for SCID. A second Guthrie card was requested on 1,169 occasions (0.12%), which resulted in 142 referrals (0.015%) for further validation tests. Flow cytometry immune-phenotyping, T cell receptor excision circle measurement in peripheral blood, and expression of TCRVβ repertoire for the validation of positive cases revealed a …

Show more

Oct 2022 • Springer Nature, 2022

Forward Brillouin Scattering in Standard Optical Fibers: Single-Mode, Polarization-Maintaining, and Multi-Core

Avi Zadok, Hilel Hagai Diamandi, Yosef London, Gil Bashan

This book, the first dedicated to the topic, provides a comprehensive treatment of forward stimulated Brillouin scattering (SBS) in standard optical fibers. SBS interactions between guided light and sound waves have drawn much attention for over fifty years, and optical fibers provide an excellent playground for the study of Brillouin scattering as they support guided modes of both wave types and provide long interaction lengths. This book is dedicated to forward SBS processes that are driven by co-propagating optical fields. The physics of forward SBS is explained in detail, starting from the fundamentals of interactions between guided optical and acoustic waves, with emphasis given to the acoustic modes that are stimulated in the processes. The realization of forward SBS in standard single-mode, polarization-maintaining and multi-core fibers is then discussed in depth. Innovative potential applications in sensors, monitoring of coating layers, lasers, and radio-frequency oscillators are presented. This book introduces the subject to graduate students in optics and applied physics, and it will be of interest to scientists working in fiber-optics, nonlinear optics and opto-mechanics. Provides the first treatment of forward stimulated Brillouin scattering (SBS) in book form; Reflects the dramatic recent increase in interest in forward SBS processes, driven in part by the promise of new fiber sensing concepts; Delivers a solid and comprehensive grounding in the physics of forward SBS along with detailed experimental set-ups, measurement protocols, and applications.

Show more

Oct 2022 • Protein Science

Copper coordination states affect the flexibility of copper Metallochaperone Atox1: Insights from molecular dynamics simulations

Renana Schwartz, Sharon Ruthstein, Dan Thomas Major

Copper is an essential element in nature but in excess it is toxic to the living cell. The human metallochaperone Atox1 participates in copper homeostasis and is responsible for copper transmission. In a previous multiscale simulation study, we noticed a change in the coordination state of the Cu(I) ion, from 4 bound cysteine residues to 3, in agreement with earlier studies. Here we perform and analyse classical molecular dynamic simulations of various coordination states: 2, 3, and 4. The main observation is an increase in protein flexibility as a result of a decrease in coordination state. Additionally, we identified several populated conformations that correlate well with double electron‐electron resonance distance distributions or an X‐ray structure of Cu(I)‐bound Atox1. We suggest that the increased flexibility might benefit the process of ion transmission between interacting proteins. Further experiments can …

Show more

Oct 2022

Characterization of nanometric thin films with far-field light

Adi Salomon, Omer Shavit, Carine Julien, Ilya Olevsko, Mohamed Hamode, Yossi Abulafia, Hervé Suaudeau, Vincent Armand, Martin Oheim

The fabrication and characterisation of ultra-thin, transparent lms is paramount for protective layers on semiconductors, solar cells, as well as for nano-composite materials and optical coatings. Similarly, the probe volume of nano-sensors, as well the calibration of axial distances in super-resolution microscopies, all require the metrology of axial uorophore distances. However, the reliable production and precise characterisation of such nanometric thin layers are di cult and labor-intense and they require specialized equipment and trained personnel. In our present work, we describe a simple, non-invasive, all-optical technique for simultaneously measuring the refractive index, thickness, and homogeneity of such thin lms. We assemble transparent layers from My-133-MC, a biomimetic transparent polymer with a refractive index of 1.33, amenable for applications in the life sciences. All parameters characterising the lms are obtained in a single measurement from the analysis of supercritical angle uorescence radiation patterns acquired on a minimally modi ed inverted microscope. Results compare favorably to those obtained through a combination of atomic force and electron microscopy, surface-plasmon resonance spectroscopy and ellipsometry. To illustrate the utility of our technique, we present two applications, one in metrology and one in bio-imaging;(i), the calibration of axial uorophore distance in a total internal re ection uorescence geometry; and,(ii), live-cell super-resolution imaging of organelle dynamics in cortical astrocytes, an important type of brain cell. Our approach is cheap, versatile and it has obvious applications in pro lometry …

Show more


Powered by Articali