Nov 2024 • arXiv preprint arXiv:2411.12702
Yishai Klein, Edward Strizhevsky, Haim Aknin, Moshe Deutsch, Eliahu Cohen, Avi Pe'er, Kenji Tamasaku, Tobias Schulli, Ebrahim Karimi, Sharon Shwartz
The invention of X-ray interferometers has led to advanced phase-sensing devices that are invaluable in various applications. These include the precise measurement of universal constants, e.g. the Avogadro number, of lattice parameters of perfect crystals, and phase-contrast imaging, which resolves details that standard absorption imaging cannot capture. However, the sensitivity and robustness of conventional X-ray interferometers are constrained by factors, such as fabrication precision, beam quality, and, importantly, noise originating from external sources or the sample itself. In this work, we demonstrate a novel X-ray interferometric method of phase measurement with enhanced immunity to various types of noise, by extending, for the first time, the concept of the SU(1,1) interferometer into the X-ray regime. We use a monolithic silicon perfect crystal device with two thin lamellae to generate correlated photon pairs via spontaneous parametric down-conversion (SPDC). Arrival time coincidence and sum-energy filtration allow a high-precision separation of the correlated photon pairs, which carry the phase information from orders-of-magnitude larger uncorrelated photonic noise. The novel SPDC-based interferometric method presented here is anticipated to exhibit enhanced immunity to vibrations as well as to mechanical and photonic noise, compared to conventional X-ray interferometers. Therefore, this SU(1,1) X-ray interferometer should pave the way to unprecedented precision in phase measurements, with transformative implications for a wide range of applications.
Show moreNov 2024 • 2D Semiconducting Materials for Electronic, Photonic, and Optoelectronic Devices
Rajashree Konar, Gilbert Daniel Nessim
The grapheme breakthrough in 2004 led to extensive research into the family of twodimensional semiconducting materials (2D SCMs)[1]. The growing attention toward 2D semiconductors can be attributed to the challenges in achieving a substantial bandgap in graphene [1]. Despite its great properties, graphene lacks a bandgap that limits its targeted applications. 2D SCMs are emerging semiconductor materials that promise to overcome this limitation and offer new properties for specific applications [2]. Intriguingly, they have excellent performance even at the monolayer. The complex band structures and the heterostructures free of lattice-mismatch offer potential avenues for tailoring specific mechanisms to cater to the requirements of diverse electronic systems. Over hundreds of distinct 2D SCMs have been successfully isolated through experimentation, exhibiting bandgap values ranging from a few millielectronvolts to several electronvolts [2]. Additionally, several other semiconductors are expected to be extracted soon. Thanks to the wide range of available 2D materials, one can use a specific SCM for tailored applications. Researchers have successfully produced single layers of different materials like boron nitride, silicon, boron, germanium, phosphorus, and transition metal dichalcogenides (TMDCs)[3]. Additionally, heterostructures of these 2D SCMs have been synthesized by simply integrating multiple layers of these specific materials [4]. Engineering 2D SCMs in the nanoscale dimensions provides unprecedented opportunities for advancing nextgeneration technologies. The confinement observed in reduced dimensionality systems …
Show moreNov 2024 • Oxford University Press
Pietro D’Addabbo, Roni Cohen-Fultheim, Itamar Twersky, Adriano Fonzino, Domenico Alessandro Silvestris, Ananth Prakash, Pietro Luca Mazzacuva, Juan Antonio Vizcaino, Andrew Green, Blake Sweeney, Andy Yates, Yvonne Lussi, Jie Luo, Maria-Jesus Martin, Eli Eisenberg, Erez Y Levanon, Graziano Pesole, Ernesto Picardi
A-to-I RNA editing is the most common non-transient epitranscriptome modification. It plays several roles in human physiology and has been linked to several disorders. Large-scale deep transcriptome sequencing has fostered the characterization of A-to-I editing at the single nucleotide level and the development of dedicated computational resources. REDIportal is a unique and specialized database collecting ∼16 million of putative A-to-I editing sites designed to face the current challenges of epitranscriptomics. Its running version has been enriched with sites from the TCGA project (using data from 31 studies). REDIportal provides an accurate, sustainable and accessible tool enriched with interconnections with widespread ELIXIR core resources such as Ensembl, RNAcentral, UniProt and PRIDE. Additionally, REDIportal now includes information regarding RNA editing in putative double-stranded RNAs …
Show moreNov 2024 • ACS omega
Ya’akov Mandelbaum, Maria Tkachev, Abhijit Sanjeev, Zeev Zalevsky, David Zitoun, Avi Karsenty
Plasmonic nanostructure arrays, designed for performance as pixels in an advanced SERS imaging device, were fabricated by gallium focused ion beam (FIB). Though the FIB is best suited for etching holes and negative structures, our previously reported simulations favor protrusions. Herein, we report on the FIB methodology to “sculpt” positive structures by “ion-blasting” away the surrounding material. Nanoprotrusions and nanoholes with different aspect ratios are compared experimentally with depth and height controlled by the dwell time. The amplitude and spectra of optical absorption and scattering from the two species are compared as a function of structure height. Measurements were performed using ASI’s model Rainbow hyperspectral camera, demonstrating the utility of hyperspectral microscopy for plasmonic imaging applications. Both the scattered and absorbed radiation display the broad peak …
Show moreNov 2024 • arXiv preprint arXiv:2411.12702
Yishai Klein, Edward Strizhevsky, Haim Aknin, Moshe Deutsch, Eliahu Cohen, Avi Pe'er, Kenji Tamasaku, Tobias Schulli, Ebrahim Karimi, Sharon Shwartz
The invention of X-ray interferometers has led to advanced phase-sensing devices that are invaluable in various applications. These include the precise measurement of universal constants, e.g. the Avogadro number, of lattice parameters of perfect crystals, and phase-contrast imaging, which resolves details that standard absorption imaging cannot capture. However, the sensitivity and robustness of conventional X-ray interferometers are constrained by factors, such as fabrication precision, beam quality, and, importantly, noise originating from external sources or the sample itself. In this work, we demonstrate a novel X-ray interferometric method of phase measurement with enhanced immunity to various types of noise, by extending, for the first time, the concept of the SU(1,1) interferometer into the X-ray regime. We use a monolithic silicon perfect crystal device with two thin lamellae to generate correlated photon pairs via spontaneous parametric down-conversion (SPDC). Arrival time coincidence and sum-energy filtration allow a high-precision separation of the correlated photon pairs, which carry the phase information from orders-of-magnitude larger uncorrelated photonic noise. The novel SPDC-based interferometric method presented here is anticipated to exhibit enhanced immunity to vibrations as well as to mechanical and photonic noise, compared to conventional X-ray interferometers. Therefore, this SU(1,1) X-ray interferometer should pave the way to unprecedented precision in phase measurements, with transformative implications for a wide range of applications.
Show moreNov 2024 • Journal of the American Chemical Society
Qidi Wang, Chenglong Zhao, Xia Hu, Jianlin Wang, Swapna Ganapathy, Stephen Eustace, Xuedong Bai, Baohua Li, Hong Li, Doron Aurbach, Marnix Wagemaker
The formation of stable interphases on the electrodes is crucial for rechargeable lithium (Li) batteries. However, next-generation high-energy batteries face challenges in controlling interphase formation due to the high reactivity and structural changes of electrodes, leading to reduced stability and slow ion transport, which accelerate battery degradation. Here, we report an approach to address these issues by introducing multicomponent grain-boundary-rich interphase that boosts the rapid transport of ions and enhances passivation toward prolonged lifespan. This is guided by fundamental principles of solid-state ionics and geological crystallization differentiation theory, achieved through improved solvation chemistry. Demonstrations showcase how the introduction of the interphase substantially impacts the Li-ion transport across the interphase and the electrode–electrolyte compatibility in cost-effective electrolyte …
Show moreNov 2024 • arXiv preprint arXiv:2311.00590
Ilya Olevsko, Omer Shavit, Moshe Feldberg, Yossi Abulafia, Adi Salomon, Martin Oheim
Recent progress has boosted the resolving power of optical microscopies to spatial dimensions well below the diffraction limit. Yet, axial super-resolution and axial single-molecule localisation typically require more complicated implementations than their lateral counterparts. In the present work, we propose a simple solution for axial metrology by providing a multi-layered single-excitation, dual-emission test slide, in which axial distance is colour-encoded. Our test slide combines on a standard microscope coverslip substrate two flat, thin, uniform and brightly emitting fluorophore layers, separated by a nanometric transparent spacer layer having a refractive index close to a biological cell. The ensemble is sealed in an index-matched protective polymer. As a proof-of-principle, we estimate the light confinement resulting from evanescent-wave excitation in total internal reflection fluorescence (TIRF) microscopy. Our test sample permits, even for the non-expert user, a facile axial metrology at the sub-100-nm scale, a critical requirement for axial super-resolution, as well as near-surface imaging, spectroscopy and sensing.
Show moreNov 2024 • arXiv preprint arXiv:2411.12702
Yishai Klein, Edward Strizhevsky, Haim Aknin, Moshe Deutsch, Eliahu Cohen, Avi Pe'er, Kenji Tamasaku, Tobias Schulli, Ebrahim Karimi, Sharon Shwartz
The invention of X-ray interferometers has led to advanced phase-sensing devices that are invaluable in various applications. These include the precise measurement of universal constants, e.g. the Avogadro number, of lattice parameters of perfect crystals, and phase-contrast imaging, which resolves details that standard absorption imaging cannot capture. However, the sensitivity and robustness of conventional X-ray interferometers are constrained by factors, such as fabrication precision, beam quality, and, importantly, noise originating from external sources or the sample itself. In this work, we demonstrate a novel X-ray interferometric method of phase measurement with enhanced immunity to various types of noise, by extending, for the first time, the concept of the SU(1,1) interferometer into the X-ray regime. We use a monolithic silicon perfect crystal device with two thin lamellae to generate correlated photon pairs via spontaneous parametric down-conversion (SPDC). Arrival time coincidence and sum-energy filtration allow a high-precision separation of the correlated photon pairs, which carry the phase information from orders-of-magnitude larger uncorrelated photonic noise. The novel SPDC-based interferometric method presented here is anticipated to exhibit enhanced immunity to vibrations as well as to mechanical and photonic noise, compared to conventional X-ray interferometers. Therefore, this SU(1,1) X-ray interferometer should pave the way to unprecedented precision in phase measurements, with transformative implications for a wide range of applications.
Show moreNov 2024 • Scientific Reports
Ariel Roitman, Leonid Burlachkov, Amos Sharoni, Avner Shaulov, Yosef Yeshurun
We present a method for improving the performance of microwave coplanar resonators in magnetic fields, by using narrow superconducting strips of width close to the London penetration depth. In a range of low fields, the narrow strips inhibit the presence of magnetic vortices, thus preventing the generation of losses caused by their motion, leading to enhanced resistance to magnetic fields. Our method provides a more straightforward solution compared to previously proposed techniques designed to restrict vortex motion, holding potential for the development of improved devices based on microwave resonators.
Show moreNov 2024 • The Journal of Physical Chemistry C
Pallavi Singh, Davide Raffaele Ceratti, Yahel Soffer, Sudipta Bera, Yishay Feldman, Michael Elbaum, Dan Oron, David Cahen, Gary Hodes
Self-healing materials can become game changers for developing sustainable (opto)electronics. APbX3 halide (=X–) perovskites, HaPs, have shown a remarkable ability to self-heal damage. While we demonstrated self-healing in pure HaP compounds, in single crystals, and in polycrystalline thin films (as used in most devices), HaP compositions with multiple A+ (and X–) constituents are preferred for solar cells. We now show self-healing in mixed A+ HaPs. Specifically, if at least 15 atom % of the methylammonium (MA+) A cation is substituted for by guanidinium (Gua+) or acetamidinium (AA+), then the self-healing rate after damage is enhanced. In contrast, replacing MA+ with dimethylammonium (DMA+), comparable in size to Gua+ or AA+, does not alter this rate. Based on the times for self-healing, we infer that the rate-determining step involves short-range diffusion of A+ and/or Pb2+ cations and that the self …
Show moreNov 2024 • Physical Review Research
Shirel Davidyan, Daniel A Matoz-Fernandez, Alexander V Butenko, Ireth García-Aguilar, Luca Giomi, Eli Sloutskin
The closed topology of spherical crystals renders the presence of topological defects inevitable. These defects can organize in a plethora of different structures, such as “clouds” or grain boundary “scars”, challenging for theoretical modeling and experimental visualization. Visualizing the defects by fluorescent dye adsorption, we reveal ion concentration control of a clouds-to-scars transition, which we attribute to commonly neglected defects' core energy. The consequent line tension energy probes the defects' molecular scale energetics, enabling pattern tuning for future applications.
Show moreNov 2024 • Journal of Applied Physics
Vladimir Kostriukov, Lidor Geri, Amos Sharoni
The magnetic state of an antiferromagnetic (AFM) insulator can be read and manipulated in spintronics devices using bilayers of an AFM and a conducting layer, making it useful for spintronics devices. To date, research has focused on single crystals of AFMs, which enables the study of properties related to different crystallographic surfaces. However, combining single-crystal AFMs in spintronics devices may be problematic due to substrate selectivity and deposition conditions. In this work, we study the properties of polycrystalline Fe 2 O 3 coupled with Pt as the conducting layer, asking how the magnetoresistive behavior differs in polycrystalline AFMs. We report on the angle dependent magnetoresistance and transverse magnetoresistance properties as a function of temperature and magnetic fields, comparing Fe 2 O 3/Pt and Fe 2 O 3/Cu/Pt thin films, in addition to magnetometry and structural characterization …
Show moreNov 2024
Yogendra Kumar, BEN Dlugatch, Ananya Maddegalla, Yuri Glagovsky, Natalia Fridman, Sri Harsha Akella, Nicole Leifer, Doron Aurbach, Dmitry Bravo-Zhivotovski, Malachi Noked
The development of efficient electrolytes is crucial for advancing magnesium (Mg) batteries, which hold promise for next-generation energy storage systems. Previously, electrolytes such as [Mg2(µ-Cl)3•6THF]+ [Ph4Al]-, A, and [Mg2(µ-Cl)3•6THF]+ [Ph3AlCl]-, B, have been studied, but their performance has been limited by issues related to ion dissociation and electrochemical stability. In this study, we report the synthesis of novel electrolytes by introducing polydentate ligands to these known systems, leading to the formation of [DME•MgCl•3THF]+ [Ph4Al]- 1 and [DG•MgCl•2THF]+ [Ph4Al]- 2, [Mg•3DME]2+ [Ph3AlCl-]2 3 and [Mg•2DG]2+ [Ph3AlCl-]2 4. These firstly discovered compounds were thoroughly characterized using X-ray crystallography and NMR spectroscopy. Our findings reveal that the choice of counter anion plays a pivotal role in the products and mechanism of the dissociation of the bridged [Mg2(µ-Cl)3•6THF]+ cation upon the addition of polydentate ligands. Specifically, with the [Ph4Al]- counter anion (precursor A), the dissociation results in a [MgCl]+ mono-cation, while with the [Ph3AlCl]- counter anion (precursor B), a [Mg]2+ divalent cation is formed. The resultant MgCl2 byproduct enhances solubility, expands electrochemical windows, and improves cyclic stability, leading to superior electrochemical performance of the new electrolytes (1, 2, 3, and 4) compared to the original precursors. These insights offer valuable guidelines for the design and synthesis of advanced electrolytes for rechargeable magnesium batteries, potentially paving the way for more efficient and stable energy storage solutions.
Show moreNov 2024 • Heliyon
Saja Nasser, Gili Cohen-Taguri, Tali Mass, Iddo Pinkas, Gil Goobes
In the original published version of this article, the graphical abstract was omitted. The authors wish to update the article with the graphical abstract included. The authors apologize for the error. Both the HTML and PDF versions of the article have been updated to correct the error.
Show moreNov 2024 • Nature Medicine
Johanna Klughammer, Daniel L Abravanel, Åsa Segerstolpe, Timothy R Blosser, Yury Goltsev, Yi Cui, Daniel R Goodwin, Anubhav Sinha, Orr Ashenberg, Michal Slyper, Sébastien Vigneau, Judit Jané‐Valbuena, Shahar Alon, Chiara Caraccio, Judy Chen, Ofir Cohen, Nicole Cullen, Laura K DelloStritto, Danielle Dionne, Janet Files, Allison Frangieh, Karla Helvie, Melissa E Hughes, Stephanie Inga, Abhay Kanodia, Ana Lako, Colin MacKichan, Simon Mages, Noa Moriel, Evan Murray, Sara Napolitano, Kyleen Nguyen, Mor Nitzan, Rebecca Ortiz, Miraj Patel, Kathleen L Pfaff, Caroline Porter, Asaf Rotem, Sarah Strauss, Robert Strasser, Aaron R Thorner, Madison Turner, Isaac Wakiro, Julia Waldman, Jingyi Wu, Jorge Gómez Tejeda Zañudo, Diane Zhang, Nancy U Lin, Sara M Tolaney, Eric P Winer, Edward S Boyden, Fei Chen, Garry P Nolan, Scott J Rodig, Xiaowei Zhuang, Orit Rozenblatt-Rosen, Bruce E Johnson, Aviv Regev, Nikhil Wagle
Although metastatic disease is the leading cause of cancer-related deaths, its tumor microenvironment remains poorly characterized due to technical and biospecimen limitations. In this study, we assembled a multi-modal spatial and cellular map of 67 tumor biopsies from 60 patients with metastatic breast cancer across diverse clinicopathological features and nine anatomic sites with detailed clinical annotations. We combined single-cell or single-nucleus RNA sequencing for all biopsies with a panel of four spatial expression assays (Slide-seq, MERFISH, ExSeq and CODEX) and H&E staining of consecutive serial sections from up to 15 of these biopsies. We leveraged the coupled measurements to provide reference points for the utility and integration of different experimental techniques and used them to assess variability in cell type composition and expression as well as emerging spatial expression …
Show moreNov 2024 • arXiv preprint arXiv:2411.04684
Ohad Vilk, Motti Charter, Sivan Toledo, Eli Barkai, Ran Nathan
Natural and anomalous diffusion are widely observed and used to explore causes and consequences of movement across organisms, resulting in extensive use of the mean and mean-squared displacement (MSD). Using high-resolution data from over 70 million localizations of young and adult free-ranging Barn Owls (\textit{Tyto alba}), we demonstrate the necessity of a broad spectrum of displacement moments to characterize bird movement across scales. The mean and MSD -- interchangeable with moments and 2 -- are insufficient special cases. We reveal empirical strong anomalous diffusion as a nonlinear growth of displacement moments according to . The moment spectrum function displays piecewise linearity with a critical moment marking the crossover point between two scaling regimes, linked to a combination of age-specific behavioral modes. A critical timescale of five minutes marks an unexpected transition from a convex to a concave , related to environmental and behavioral constraints. Using two stochastic models of varying ecological complexity, we demonstrate that strong anomalous diffusion may be widespread in animal movement, underscoring the importance of expanding analysis beyond the average and MSD.
Show moreNov 2024 • Nucleic Acids Research, gkae1083, 2024
Pietro D’Addabbo, Roni Cohen-Fultheim, Itamar Twersky, Adriano Fonzino, Domenico Alessandro Silvestris, Ananth Prakash, Pietro Luca Mazzacuva, Juan Antonio Vizcaino, Andrew Green, Blake Sweeney, Andy Yates, Yvonne Lussi, Jie Luo, Maria-Jesus Martin, Eli Eisenberg, Erez Y Levanon, Graziano Pesole, Ernesto Picardi
A-to-I RNA editing is the most common non-transient epitranscriptome modification. It plays several roles in human physiology and has been linked to several disorders. Large-scale deep transcriptome sequencing has fostered the characterization of A-to-I editing at the single nucleotide level and the development of dedicated computational resources. REDIportal is a unique and specialized database collecting ∼16 million of putative A-to-I editing sites designed to face the current challenges of epitranscriptomics. Its running version has been enriched with sites from the TCGA project (using data from 31 studies). REDIportal provides an accurate, sustainable and accessible tool enriched with interconnections with widespread ELIXIR core resources such as Ensembl, RNAcentral, UniProt and PRIDE. Additionally, REDIportal now includes information regarding RNA editing in putative double-stranded RNAs …
Show moreNov 2024 • Journal of The Electrochemical Society
Gayathri peta, Nagaprasad Reddy Samala, Miryam Fayena-Greenstein, Yuval Elias, Doron Aurbach
Developing polymer electrolytes as an alternative to aprotic liquid electrolytes for lithium and sodium-ion batteries aims to enhance their safety, durability, and cost. Among these, polyethylene oxide (PEO) is a favorite choice due to its wide availability, excellent versatility, and mechanical properties. PEO:NaTFSI and PEO:NaFSI are stable and efficient ion-conducting solid polymer electrolytes compared to other PEO:NaX matrices (for instance, X=[PF6]-, [ClO4]-). We tested Na/PEO:NaTFSI/NVP cells at low temperatures (40C) and carried out a series of electrochemical measurements to extract vital performance metrics such as diffusion coefficient, transference number, conductivity, and activation energy. Our findings emphasize the important role of the anions’ nature in the properties of polymeric electrolytes like those based on PEO, in which there are strong interactions between the ions and the oxygen atoms …
Show moreNov 2024 • Journal of Biomedical Optics 29 (3), 037003-037003, 2024
Zeev Kalyuzhner, Sergey Agdarov, Yevgeny Beiderman, Aviya Bennett, Yafim Beiderman, Zeev Zalevsky
Intraocular pressure (IOP) measurements comprise an essential tool in modern medicine for the early diagnosis of glaucoma, the second leading cause of human blindness. The world's highest prevalence of glaucoma is in low-income countries.Current diagnostic methods require experience in running expensive equipment as well as the use of anesthetic eye drops. We present herein a remote photonic IOP biomonitoring method based on deep learning of secondary speckle patterns, captured by a fast camera, that are reflected from eye sclera stimulated by an external sound wave. By combining speckle pattern analysis with deep learning, high precision measurements are possible.
Show moreOct 2024 • Small
Naresh Vangapally, David Lusztig, Suman Rathod, Amreen Bano, Hadar Scalar, Sri Harsha Akella, Malachi Noked, Dan T Major, Ion C Halalay, Suresh Sriramulu, Shalom Luski, Doron Aurbach
Li‐ion batteries based on high specific capacity LixSiO‐Graphite anodes and LiNi0.89Co0.05 Mn0.05Al0.01O2 (NCMA) cathodes may have numerous practical applications owing to high energy density without a necessary compromise on safety. SiO, which is an attractive Li insertion anode material, offers more cycling stability than Si and a higher capacity than graphite. Therefore, a new trend has emerged for developing composite C‐Si anodes, possessing the excellent cyclability of graphite coupled with high capacity SiO. The composite structure described herein prevents the volume expansion of SiO and maintains the structural integrity during prolonged cycling. However, graphite electrodes suffer from exfoliation in propylene carbonate (PC) based electrolyte solutions, which avoids well known safety benefits related to a possible use of PC based electrolyte solutions in all kinds of Li batteries. Herein, it is …
Show moreOct 2024 • Active Photonic Platforms (APP) 2024 13110, 1311002, 2024
T Bucher, Y Kurman, K Wang, Q Yan, A Niedermayr, R Ruimy, H Nahari, R Dahan, H Herzig Sheinfux, GM Vanacore, I Kaminer
Recent advancements in ultrafast electron microscopy have provided direct access to polariton dynamics, visualizing such dynamics in space and time. This work presents new experimental results revealing a myriad of phenomena involving interactions of vortex-anti-vortex pairs, their creation and annihilation. We show new behaviors that became accessible thanks to a new development in electron microscopy - Free-Electron Ramsey Imaging (FERI) - which enabled extracting both the sub-cycle and group dynamics of polariton wavepackets. Our demonstrations involve optical phonon-polaritons in hexagonal boron nitride (hBN) and Molybdenum oxide, renowned for their unique dispersion and novel wavepacket propagations behaviors. These discoveries not only enhance our understanding of vortex phenomena across various systems, but also offer promising avenues for accessing new kinds of light-matter …
Show more