BINA

3964 articles

77 publishers

Join mailing list

Feb 2024 • arXiv preprint arXiv:2402.14023

25-Fold Resolution Enhancement of X-ray Microscopy Using Multipixel Ghost Imaging

O Sefi, A Ben Yehuda, Y Klein, S Bloch, H Schwartz, E Cohen, S Shwartz

Hard x-ray imaging is indispensable across diverse fields owing to its high penetrability. However, the resolution of traditional x-ray imaging modalities, such as computed tomography (CT) systems, is constrained by factors including beam properties, the absence of optical components, and detection resolution. As a result, typical resolution in commercial imaging systems is limited to a few hundred microns. This study advances high-photon-energy imaging by extending the concept of computational ghost imaging to multipixel ghost imaging with x-rays. We demonstrate a remarkable enhancement in resolution from 500 microns to approximately 20 microns for an image spanning 0.9 by 1 cm^2, comprised of 400,000 pixels and involving only 1000 realizations. Furthermore, we present a high-resolution CT reconstruction using our method, revealing enhanced visibility and resolution. Our achievement is facilitated by an innovative x-ray lithography technique and the computed tiling of images captured by each detector pixel. Importantly, this method can be scaled up for larger images without sacrificing the short measurement time, thereby opening intriguing possibilities for noninvasive high-resolution imaging of small features that are invisible with the present modalities.

Show more

Feb 2024 • ACS Applied Energy Materials

Improved Electrochemical Properties of Nickel-Rich, Low-Cobalt Layered Oxide Cathodes Using Dual-Functional Di-tert-butylmethyl Adamantoyl Silane Additives

Sri Harsha Akella, Mamta Sham Lal, Yogendra Kumar, Melina Zysler, Dmitry Bravo-Zhivotovskii, Yitzhak Apeloig, Malachi Noked

With an increasing demand for high-energy-density lithium-ion batteries (LIBs), nickel-rich cathodes such as LiNi0.9Mn0.05Co0.05O2 (NMC90) have gained significant interest due to their relatively low cobalt and high specific energy. However, cycling stability is compromised due to parasitic reactions at the electrode–electrolyte interfaces of NMC90. Herein, we demonstrate improved electrochemical properties of NMC90 using di-tert-butylmethyl adamantoyl silane (RSiCOAd: R is tBu(CH3)2 and Ad is 1-Ad) as an additive in a commercial electrolyte. Upon detailed electrochemical and spectroscopic analysis, we demonstrate that the RSiCOAd additive undergoes in situ decomposition to form a fluorinated organosiloxane passivation layer on the NMC90 surface and enhanced fluorination on the lithium anode surface. This phenomenon could significantly mitigate the parasitic reactions at the cathode–electrolyte …

Show more

Feb 2024 • Photonics Research

Diffraction limit of light in curved space

Jingxuan Zhang, Chenni Xu, Patrick Sebbah, Li-Gang Wang

Overcoming the diffraction limit is crucial for obtaining high-resolution images and observing fine microstructures. With this conventional difficulty still puzzling us and the prosperous development of wave dynamics of light interacting with gravitational fields in recent years, how spatial curvature affects the diffraction limit is an attractive and important question. Here we investigate the issue of the diffraction limit and optical resolution on two-dimensional curved space—surfaces of revolution (SORs) with constant or variable spatial curvature. We show that the diffraction limit decreases and the resolution is improved on SORs with positive Gaussian curvature, opening a new avenue to super-resolution. The diffraction limit is also influenced by the propagation direction, as well as the propagation distance in curved space with variable spatial curvature. These results provide a possible method to control the optical …

Show more

Feb 2024 • ACS Omega

Optical Method for Detection and Classification of Heavy Metal Contaminants in Water Using Iso-pathlength Point Characterization

Alon Tzroya, Hamootal Duadi, Dror Fixler

Water pollution caused by hazardous substances, particularly heavy metal (HM) ions, poses a threat to human health and the environment. Traditional methods for measuring HM in water are expensive and time-consuming and require extensive sample preparation. Therefore, developing robust, simple, and sensitive techniques for the detection and classification of HM is needed. We propose an optical approach that exploits the full scattering profile, meaning the angular intensity distribution, and utilizes the iso-pathlength (IPL) point. This point appears where the intensity is constant for different scattering coefficients, while the absorption coefficient is set. The absorption does not affect the IPL point position, it only reduces its intensity. In this paper, we explore the wavelength influence on the IPL point both in Monte Carlo simulations and experimentally. Next, we present the characterization of ferric chloride (FeCl2 …

Show more

Feb 2024 • Journal of The Electrochemical Society

Protective Al2O3 Thin Film Coating by ALD to Enhance the Anodic Stability of Metallic Current Collectors in Ethereal Mg Electrolyte Solutions

Ananya Maddegalla, Yogendra Kumar, Sri Harsha Akella, Sarah Taragin, Dmitry Brav-Zhivotovksii, Hari Krishna Sadhanala, Doron Aurbach, Malachi Noked

Organometallic complex-based magnesium electrolytes in ethereal solutions have been extensively studied in the context of rechargeable magnesium batteries (RMBs) due to their ability to facilitate highly reversible magnesium deposition while demonstrating wide enough electrochemical stability windows. However, these solutions containing a unique mixture of organo-halo aluminate complexes have a detrimental effect on the anodic stability of metallic current collectors for cathodes, like Ni and Al foils. We were able to synthesize and isolate Mg2Cl3(THF)6Ph2AlCl2/THF electrolyte as the sole electroactive species using simple precursors: Ph2AlCl and MgCl2 in THF, via atom efficient mono-chloro abstraction Schlenk technique. We characterized the anodic stability of Ni, Ni@C, Al, and Al@C current collectors by monitoring their electrochemical behavior. Additionally, we investigated the anodic stability …

Show more

Feb 2024 • Molecules

Synthesis and Characterization of Durable Antifog Silane–Pyrrolidone Thin Coatings onto Polymeric Films

Natalie Mounayer, Taly Iline-Vul, Shlomo Margel

The fogging of transparent surfaces—condensation of water vapor in the air to a small liquid surface at specific environmental conditions—scatters incident light, creating a blurry vision. Fogging presents a significant challenge in various industries, adversely affecting numerous applications including plastic packaging, agricultural films, and various optical devices. Superhydrophobic or superhydrophilic coatings are the main strategies used to induce antifogging to minimize light scattering. Here, an innovative approach is introduced to mitigate fogging by modifying the surface properties of polymeric films, focusing on corona-treated polyethylene as a model. Coatings were prepared in two successive steps: the addition of radical co-polymerization of methacryloxypropyltriethoxysilane and N-vinylpyrrolidone followed by the step-growth Stöber polymerization of the formed silane monomer. The polymeric dispersion was spread on oxidized films via a Mayer rod and dried. Scanning and force microscopy, FIB, XPS, and UV-vis spectroscopy revealed a thin coating composed of cross-linked siloxane (Si-O-Si) covalently bonded to surface hydroxyls exposing pyrrolidone groups. Contact angle measurements, hot-fog examination, and durability tests indicated a durable antifogging activity.

Show more

Feb 2024 • Journal of the Electrochemical Society

Protective Al2O3 Thin Film Coating by ALD to Enhance the Anodic Stability of Metallic Current Collectors in Ethereal Mg Electrolyte Solutions

Ananya Maddegalla, Yogendra Kumar, Sri Harsha Akella, Sarah Taragin, Dmitry Bravo-Zhivotovskii, Hari Krishna Sadhanala, Doron Aurbach, Malachi Noked

Rechargeable magnesium batteries (RMBs) have the potential to contribute towards alternative energy storage due to their low cost, high abundance, dendrites free deposition of Mg and high volumetric energy density. Organometallic complex-based electrolytes in ethereal solutions have been extensively studied in the context of RMBs due to their ability to facilitate highly reversible magnesium deposition in rechargeable magnesium batteries, while demonstrating wide enough electrochemical stability windows. However, these solutions containing unique mixture of organo-halo aluminate complexes have detrimental effect on the anodic stability of metallic current collectors for cathodes, like Ni and Al foils. In this work, we were able to synthesize and isolate Mg 2 Cl 3 (THF) 6 Ph 2 AlCl 2/THF electrolyte as the sole electroactive species using simple precursors: Ph 2 AlCl and MgCl 2 in THF, via atom efficient mono …

Show more

Feb 2024 • Physical Review E

Stretched-exponential relaxation in weakly confined Brownian systems through large deviation theory

Lucianno Defaveri, Eli Barkai, David A Kessler

Stretched-exponential relaxation is a widely observed phenomenon found in ordered ferromagnets as well as glassy systems. One modeling approach connects this behavior to a droplet dynamics described by an effective Langevin equation for the droplet radius with an r 2/3 potential. Here, we study a Brownian particle under the influence of a general confining, albeit weak, potential field that grows with distance as a sublinear power law. We find that for this memoryless model, observables display stretched-exponential relaxation. The probability density function of the system is studied using a rate-function ansatz. We obtain analytically the stretched-exponential exponent along with an anomalous power-law scaling of length with time. The rate function exhibits a point of nonanalyticity, indicating a dynamical phase transition. In particular, the rate function is double valued both to the left and right of this point …

Show more

Feb 2024 • JOURNAL OF THE ELECTROCHEMICAL SOCIETY

Protective Al2O3 Thin Film Coating by ALD to Enhance the Anodic Stability of Metallic Current Collectors in Ethereal Mg Electrolyte Solutions

Ananya Maddegalla, Yogendra Kumar, Sri Harsha Akella, Sarah Taragin, Dmitry Bravo-Zhivotovskii, Hari Krishna Sadhanala, Doron Aurbach, Malachi Noked

Rechargeable magnesium batteries (RMBs) have the potential to contribute towards alternative energy storage due to their low cost, high abundance, dendrites free deposition of Mg and high volumetric energy density. Organometallic complex-based electrolytes in ethereal solutions have been extensively studied in the context of RMBs due to their ability to facilitate highly reversible magnesium deposition in rechargeable magnesium batteries, while demonstrating wide enough electrochemical stability windows. However, these solutions containing unique mixture of organo-halo aluminate complexes have detrimental effect on the anodic stability of metallic current collectors for cathodes, like Ni and Al foils. In this work, we were able to synthesize and isolate Mg2Cl3(THF)(6)Ph2AlCl2/THF electrolyte as the sole electroactive species using simple precursors: Ph2AlCl and MgCl2 in THF, via atom efficient mono …

Show more

Feb 2024 • Nucleic Acids Research

Nuclear RNA-related processes modulate the assembly of cytoplasmic RNA granules

Mor Angel, Eden Fleshler, Mohammad Khaled Atrash, Noa Kinor, Jennifer IC Benichou, Yaron Shav-Tal

Stress granules (SGs) are cytoplasmic assemblies formed under various stress conditions as a consequence of translation arrest. SGs contain RNA-binding proteins, ribosomal subunits and messenger RNAs (mRNAs). It is well known that mRNAs contribute to SG formation; however, the connection between SG assembly and nuclear processes that involve mRNAs is not well established. Here, we examine the effects of inhibiting mRNA transcription, splicing and export on the assembly of SGs and the related cytoplasmic P body (PB). We demonstrate that inhibition of mRNA transcription, splicing and export reduces the formation of canonical SGs in a eukaryotic initiation factor 2α phosphorylation-independent manner, and alters PB size and quantity. We find that the splicing inhibitor madrasin promotes the assembly of stress-like granules. We show that the addition of synthetic mRNAs directly to the cytoplasm …

Show more

Feb 2024 • Journal of The Electrochemical Society

A Novel Approach for Post-Mortem Analysis in All-Solid-State Batteries: Isolating Solid Polymer Electrolytes from Lithium Anodes

Ortal Breuer, Ido Rozen, Nicole Leifer, Gayathri peta, Miryam Fayena-Greenstein, Doron Aurbach, Gil Goobes

Polymeric electrolytes are currently at the forefront of research for the next generation of lithium all-solid-state batteries. Polyethylene oxide (PEO), a commonly used polymer for these batteries, operates at elevated temperatures at which it reacts with active metal electrodes (e.g., lithium). Rich surface chemistry is developed at the Li-PEO interfaces, thereby controlling these batteries' electrochemical behavior. Interfacial studies are essential to comprehend batteries' stabilization or capacity fading mechanisms. For that, post-mortem analysis with an emphasis on interfaces is a necessary approach to underpinning these mechanisms. While it can be readily done with liquid electrolytes, post-mortem characterization of similar interfaces with solid electrolytes is hampered by the Li-PEO stack firm adhesion, which is impossible to separate. Here, various methods were attempted to separate polymer electrolytes from …

Show more

Feb 2024 • Biophysical Journal

Herpesviral capsid mobility in the cellular chromatin labyrinth

Visa Ruokolainen, Sami Salminen, Inka Huusko, Vesa Aho, Yaron Shav-Tal, Maija Vihinen-Ranta

Herpesviruses are promising candidates as therapeutic vectors. During the progression of herpes simplex virus type 1 infection, the growth of nuclear replication compartments leads to the marginalization of chromatin to the nuclear periphery. By using a combination of fluorescence imaging, EM, and soft X-ray tomography along with machine learning we have described how virusinduced chromatin marginalization leads to changes in chromatin organization and local density. In addition, live cell single-particle tracking of capsid motion showed that the viral capsid movement during their nuclear exit was restricted by the nuclear chromatin. The capsid diffusion coefficient was lower inside than outside the chromatin, but as the infection proceeded, the chromatin became more permissive and the probability of capsids to enter the chromatin was increased. In this work, we use live cell FLIM-FRET to measure the DNA …

Show more

Feb 2024 • npj Genomic Medicine

DNA and RNA base editors can correct the majority of pathogenic single nucleotide variants

Ariel Dadush, Rona Merdler-Rabinowicz, David Gorelik, Ariel Feiglin, Ilana Buchumenski, Lipika R Pal, Shay Ben-Aroya, Eytan Ruppin, Erez Y Levanon

The majority of human genetic diseases are caused by single nucleotide variants (SNVs) in the genome sequence. Excitingly, new genomic techniques known as base editing have opened efficient pathways to correct erroneous nucleotides. Due to reliance on deaminases, which have the capability to convert A to I(G) and C to U, the direct applicability of base editing might seem constrained in terms of the range of mutations that can be reverted. In this evaluation, we assess the potential of DNA and RNA base editing methods for treating human genetic diseases. Our findings indicate that 62% of pathogenic SNVs found within genes can be amended by base editing; 30% are G>A and T>C SNVs that can be corrected by DNA base editing, and most of them by RNA base editing as well, and 29% are C>T and A>G SNVs that can be corrected by DNA base editing directed to the complementary strand. For each, we …

Show more

Feb 2024 • Nature nanotechnology

High-energy all-solid-state lithium batteries enabled by Co-free LiNiO2 cathodes with robust outside-in structures

Longlong Wang, Ayan Mukherjee, Chang-Yang Kuo, Sankalpita Chakrabarty, Reut Yemini, Arrelaine A Dameron, Jaime W DuMont, Sri Harsha Akella, Arka Saha, Sarah Taragin, Hagit Aviv, Doron Naveh, Daniel Sharon, Ting-Shan Chan, Hong-Ji Lin, Jyh-Fu Lee, Chien-Te Chen, Boyang Liu, Xiangwen Gao, Suddhasatwa Basu, Zhiwei Hu, Doron Aurbach, Peter G Bruce, Malachi Noked

A critical current challenge in the development of all-solid-state lithium batteries (ASSLBs) is reducing the cost of fabrication without compromising the performance. Here we report a sulfide ASSLB based on a high-energy, Co-free LiNiO2 cathode with a robust outside-in structure. This promising cathode is enabled by the high-pressure O2 synthesis and subsequent atomic layer deposition of a unique ultrathin LixAlyZnzOδ protective layer comprising a LixAlyZnzOδ surface coating region and an Al and Zn near-surface doping region. This high-quality artificial interphase enhances the structural stability and interfacial dynamics of the cathode as it mitigates the contact loss and continuous side reactions at the cathode/solid electrolyte interface. As a result, our ASSLBs exhibit a high areal capacity (4.65 mAh cm−2), a high specific cathode capacity (203 mAh g−1), superior cycling stability (92% capacity retention …

Show more

Feb 2024 • Journal of Coatings Technology and Research

Engineering of new anti-biofilm phosphonium thin coatings onto polymeric films

Matan Nissim, Sivan Shoshani, Gila Jacobi, Eyal Malka, Ehud Banin, Shlomo Margel

Biofilms comprising sessile microorganisms attached to surfaces are increasingly researched for their importance in medicine and industry. Current studies focus on development of antibiotics that unfortunately can lead to resistance and environmental pollution. Phosphonium cations are known to exhibit significant activity with less resistance. Here, silane-phosphonium thin coatings are applied by Stöber polymerization of new silane-phosphonium monomer onto oxidized polypropylene film to eliminate phosphonium leaching and reduce the risk of environmental pollution. The composition and morphology were investigated by infrared spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and contact angle measurements. Coating durability was assessed by adhesion test. The significant anti-biofilm activity against S. aureus and E. coli suggests applications in medicine and agriculture.

Show more

Feb 2024 • Frontiers in Immunology

AIRR-C IG Reference Sets: curated sets of immunoglobulin heavy and light chain germline genes

Andrew M Collins, Mats Ohlin, Martin Corcoran, James M Heather, Duncan Ralph, Mansun Law, Jesus Martínez-Barnetche, Jian Ye, Eve Richardson, William S Gibson, Oscar L Rodriguez, Ayelet Peres, Gur Yaari, Corey T Watson, William D Lees

IntroductionAnalysis of an individual’s immunoglobulin (IG) gene repertoire requires the use of high-quality germline gene reference sets. When sets only contain alleles supported by strong evidence, AIRR sequencing (AIRR-seq) data analysis is more accurate and studies of the evolution of IG genes, their allelic variants and the expressed immune repertoire is therefore facilitated.MethodsThe Adaptive Immune Receptor Repertoire Community (AIRR-C) IG Reference Sets have been developed by including only human IG heavy and light chain alleles that have been confirmed by evidence from multiple high-quality sources. To further improve AIRR-seq analysis, some alleles have been extended to deal with short 3’ or 5’ truncations that can lead them to be overlooked by alignment utilities. To avoid other challenges for analysis programs, exact paralogs (e.g. IGHV1-69*01 and IGHV1-69D*01) are only represented once in each set, though alternative sequence names are noted in accompanying metadata.Results and discussionThe Reference Sets include less than half the previously recognised IG alleles (e.g. just 198 IGHV sequences), and also include a number of novel alleles: 8 IGHV alleles, 2 IGKV alleles and 5 IGLV alleles. Despite their smaller sizes, erroneous calls were eliminated, and excellent coverage was achieved when a set of repertoires comprising over 4 million V(D)J rearrangements from 99 individuals were analyzed using the Sets. The version-tracked AIRR-C IG Reference Sets are freely available at the OGRDB website (https://ogrdb.airr-community.org/germline_sets/Human) and will be regularly updated to include newly …

Show more

Feb 2024 • Journal of The Electrochemical Society

Protective Al2O3 Thin Film Coating by ALD to Enhance the Anodic Stability of Metallic Current Collectors in Ethereal Mg Electrolyte Solutions

Ananya Maddegalla, Yogendra Kumar, Sri Harsha Akella, Sarah Taragin, Dmitry Brav-Zhivotovksii, Hari Krishna Sadhanala, Doron Aurbach, Malachi Noked

Organometallic complex-based magnesium electrolytes in ethereal solutions have been extensively studied in the context of rechargeable magnesium batteries (RMBs) due to their ability to facilitate highly reversible magnesium deposition while demonstrating wide enough electrochemical stability windows. However, these solutions containing a unique mixture of organo-halo aluminate complexes have a detrimental effect on the anodic stability of metallic current collectors for cathodes, like Ni and Al foils. We were able to synthesize and isolate Mg2Cl3(THF)6Ph2AlCl2/THF electrolyte as the sole electroactive species using simple precursors: Ph2AlCl and MgCl2 in THF, via atom efficient mono-chloro abstraction Schlenk technique. We characterized the anodic stability of Ni, Ni@C, Al, and Al@C current collectors by monitoring their electrochemical behavior. Additionally, we investigated the anodic stability …

Show more

Feb 2024 • Communications Materials

Deeply subwavelength mid-infrared phase retardation with α-MoO3 flakes

Michael T Enders, Mitradeep Sarkar, Maxime Giteau, Aleksandra Deeva, Hanan Herzig Sheinfux, Mehrdad Shokooh-Saremi, Frank HL Koppens, Georgia T Papadakis

Phase retardation is a cornerstone of modern optics, yet, at mid-infrared (mid-IR) frequencies, it remains a major challenge due to the scarcity of simultaneously transparent and birefringent crystals. Most materials resonantly absorb due to lattice vibrations occurring at mid-IR frequencies, and natural birefringence is weak, calling for hundreds of microns to millimeters-thick phase retarders for sufficient polarization rotation. Here, we demonstrate mid-IR phase retardation with flakes of α-MoO3 that are more than ten times thinner than the operational wavelength, achieving 90 degrees polarization rotation within one micrometer of material. We report conversion ratios above 50% in reflection or transmission mode, and wavelength tunability by several micrometers. Our results showcase that exfoliated flakes of low-dimensional crystals can serve as a platform for mid-IR miniaturized integrated low-loss polarization control.

Show more

Feb 2024 • arXiv preprint arXiv:2402.13733

Laplace’s first law of errors applied to diffusive motion

Omer Hamdi, Stanislav Burov, Eli Barkai

In biological, glassy, and active systems, various tracers exhibit Laplace-like, i.e., exponential, spreading of the diffusing packet of particles. The limitations of the central limit theorem in fully capturing the behaviors of such diffusive processes, especially in the tails, have been studied using the continuous time random walk model. For cases when the jump length distribution is super-exponential, e.g., a Gaussian, we use large deviations theory and relate it to the appearance of exponential tails. When the jump length distribution is sub-exponential the packet of spreading particles is described by the big jump principle. We demonstrate the applicability of our approach for finite time, indicating that rare events and the asymptotics of the large deviations rate function can be sampled for large length scales within a reasonably short measurement time.

Show more

Feb 2024 • ACS Applied Nano Materials

Superparamagnetic Amine-Functionalized Maghemite Nanoparticles as a Thixotropy Promoter for Hydrogels and Magnetic Field-Driven Diffusion-Controlled Drug Release

Sayan Ganguly, Poushali Das, Seshasai Srinivasan, Amin Reza Rajabzadeh, Xiaowu Shirley Tang, Shlomo Margel

Superparamagnetic nanoparticle-arrested hydrogel matrices have immense significance in smart soft biomaterials. Herein, we report the synthesis of superparamagnetic nanoparticle-loaded magneto-responsive tough elastomeric hydrogels for dual-responsive drug delivery. In the first phase of work, we carried out room-temperature synthesis of amine-functionalized superparamagnetic iron oxide nanoparticles (IONPs), and in the second phase of work, we demonstrated that IONPs could act as a toughening agent as well as a viscosity modifier for poly(acrylic acid-co-hydroxyethyl methacrylate) copolymer hydrogels. The hydrogel was tested by Fourier transformed infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and continuous-wave-electron paramagnetic resonance (CW-EPR). Moreover, the IONPs affect its gelation time and elasticity significantly, which was also evaluated from its …

Show more

Jan 2024 • Journal of Physics: Materials

2024 Roadmap on Magnetic Microscopy Techniques and Their Applications in Materials Science

Dennis Valbjørn Christensen, Urs Staub, TR Devidas, Beena Kalisky, Katja Nowack, James Luke Webb, Ulrik L Andersen, Alexander Huck, David Aaron Broadway, Kai Wagner, Patrick Maletinsky, Toeno van der Sar, Chunhui Du, Amir Yacoby, David Collomb, Simon J Bending, Ahmet Oral, Hans Josef Hug, Andrada Oana Mandru, Volker Neu, Hans Werner Schumacher, Sibylle Sievers, Hitoshi Saito, Alexander Ako Khajetoorians, Nadine Hauptmann, Susanne Baumann, Alexander Eichler, Christian Degen, Jeffrey McCord, Michael Vogel, Manfred Fiebig, Peter Fischer, Aurelio Hierro-Rodriguez, Simone Finizio, Sarnjeet Dhesi, Claire Donnelly, Felix Buttner, Ofer Kfir, Wen Hu, Sergey Zayko, Stefan Eisebitt, Bastian Pfau, Robert Frömter, Mathias Kläui, Fehmi Yasin, Benjamin J McMorran, Shinichiro Seki, Xiuzhen Yu, Axel Lubk, Daniel Wolf, Nini Pryds, Denys Makarov, Martino Poggio

Considering the growing interest in magnetic materials for unconventional computing, data storage, and sensor applications, there is active research not only on material synthesis but also characterisation of their properties. In addition to structural and integral magnetic characterisations, imaging of magnetization patterns, current distributions and magnetic fields at nano- and microscale is of major importance to understand the material responses and qualify them for specific applications. In this roadmap, we aim to cover a broad portfolio of techniques to perform nano- and microscale magnetic imaging using SQUIDs, spin center and Hall effect magnetometries, scanning probe microscopies, x-ray- and electron-based methods as well as magnetooptics and nanoMRI. The roadmap is aimed as a single access point of information for experts in the field as well as the young generation of students outlining prospects of …

Show more

logo
Articali

Powered by Articali

TermsPrivacy