BINA

4313 articles

77 publishers

Join mailing list

Jul 2024 • 2024 24th International Conference on Transparent Optical Networks (ICTON), 1-1, 2024

Quantum-adapted all-optical time multiplexing super-resolved imaging

Ariel Ashkenazy, Nadav Shabairou, Dror Fixler, Eliahu Cohen, Zeev Zalevsky

In this presentation we explore a novel scheme for super-resolution that can also be adjusted for quantum sensing case. The scheme is sharing the same ideas of time-multiplexing followed by spatial homodyne detection. In the proposed super-resolving approach, the super resolution is performed without knowing the projected random encoding pattern (i.e. projected on the object) since the decoding is done in an-all optical manner and not in digital post-processing. This is obtained since the same random projected pattern is projected both on the object as well as on the sensing detector. Due to the non-linearity of the detector (it captures intensity) a product between the low-resolution image and the projected high resolution encoding pattern is generated, which is essential for the decoding process. By performing time integration while modifying the projected encoding pattern, a super-resolved image is decoded …

Show more

Jul 2024 • Optics & Laser Technology

Cepstrum-based interferometric microscopy (CIM) for quantitative phase imaging

Ricardo Rubio-Oliver, Javier García, Zeev Zalevsky, José Ángel Picazo-Bueno, Vicente Micó

A universal methodology for coding-decoding the complex amplitude field of an imaged sample in coherent microscopy is presented, where no restrictions on any of the two interferometric beams are required. Thus, the imaging beam can be overlapped with, in general, any other complex amplitude distribution and, in particular, with a coherent and shifted version of itself considering two orthogonal directions. The complex field values are retrieved by a novel Cepstrum-based algorithm, named as Spatial-Shifting Cepstrum (SSC), based on a weighted subtraction of the Cepstrum transform in the cross-correlation term of the object field spectrum in addition with the generation of a complex pupil from the combination of the information retrieved from different holographic recordings (one in horizontal and one in vertical direction) where one of the interferometric beams is shifted 1 pixel. As a result, the field of view is …

Show more

Jul 2024 • IEEE Transactions on Magnetics

Two-Axis planar Hall magnetic field sensors with sub nanoTesla resolution

PT Das, H Nhalil, V Mor, M Schultz, N Hasidim, A Grosz, L Klein

The planar Hall effect (PHE) magnetic sensors are attractive for various applications, where the field resolution is required in the range of sub-nanotesla or in picotesla. Here, we present a detailed noise study of PHE sensors consisting of two or three intersecting ellipses. It can be used to measure two components of the magnetic field vector in the sensor plane in particular along the two perpendicular easy axes in the overlapping region for two intersecting ellipses and three easy axes at an angle of 60° for three crossing ellipses. Thus, for each remanent magnetic state in the overlap area, the sensor can measure the vector component of the magnetic field perpendicular to the direction of the remanent magnetization. The two field components are measured with a field resolution pT/ Hz at 10 Hz and 350 pT/ Hz at 1 Hz in the same region, while maintaining a similar size and noise level of a single-axis …

Show more

Jul 2024 • arXiv preprint arXiv:2207.12960

Projective measurements can probe nonclassical work extraction and time correlations

Santiago Hernández-Gómez, Stefano Gherardini, Alessio Belenchia, Matteo Lostaglio, Amikam Levy, Nicole Fabbri

We demonstrate an experimental technique to characterize genuinely nonclassical multi-time correlations using projective measurements with no ancillae. We implement the scheme in a nitrogen-vacancy center in diamond undergoing a unitary quantum work protocol. We reconstruct quantum-mechanical time correlations encoded in the Margenau-Hills quasiprobabilities. We observe work extraction peaks five times those of sequential projective energy measurement schemes and in violation of newly-derived stochastic bounds. We interpret the phenomenon via anomalous energy exchanges due to the underlying negativity of the quasiprobability distribution.

Show more

Jul 2024 • arXiv preprint arXiv:2407.16598

A tale of three approaches: dynamical phase transitions for weakly bound Brownian particles

Lucianno Defaveri, Eli Barkai, David A Kessler

We investigate a system of Brownian particles weakly bound by attractive parity-symmetric potentials that grow at large distances as , with . The probability density function at long times reaches the Boltzmann-Gibbs equilibrium state, with all moments finite. However, the system's relaxation is not exponential, as is usual for a confining system with a well-defined equilibrium, but instead follows a stretched exponential with exponent . This problem is studied from three perspectives. First, we propose a straightforward and general scaling rate-function solution for . This rate-function, which is an important tool from large deviation theory, also displays anomalous time scaling and a dynamical phase transition. Second, through the eigenfunctions of the Fokker-Planck operator, we obtain, using the WKB method, more complete solutions that reproduce the rate function approach. Finally, we show how the alternative path-integral formalism allows us to recover the same results, with the above rate-function being the solution of the classical Hamilton-Jacobi equation describing the most probable path. Properties such as parity, the role of initial conditions, and the dynamical phase transition are thoroughly studied in all three approaches.

Show more

Jul 2024 • Sensors

Planar Hall Effect Magnetic Sensors with Extended Field Range

Daniel Lahav, Moty Schultz, Shai Amrusi, Asaf Grosz, Lior Klein

The magnetic field range in which a magnetic sensor operates is an important consideration for many applications. Elliptical planar Hall effect (EPHE) sensors exhibit outstanding equivalent magnetic noise (EMN) on the order of pT/Hz, which makes them promising for many applications. Unfortunately, the current field range in which EPHE sensors with pT/Hz EMN can operate is sub-mT, which limits their potential use. Here, we fabricate EPHE sensors with an increased field range and measure their EMN. The larger field range is obtained by increasing the uniaxial shape-induced anisotropy parallel to the long axis of the ellipse. We present measurements of EPHE sensors with magnetic anisotropy which ranges between 12 Oe and 120 Oe and show that their EMN at 10 Hz changes from 800 pT/Hz to 56 nT/Hz. Furthermore, we show that the EPHE sensors behave effectively as single magnetic domains with negligible hysteresis. We discuss the potential use of EPHE sensors with extended field range and compare them with sensors that are widely used in such applications.

Show more

Jul 2024 • Carbon

The innovative design of carbon dots on polymer texture for highly selective detection of amino compounds

Moorthy Maruthapandi, Arulappan Durairaj, Arumugam Saravanan, John HT Luong, Aristides Bakandritsos, Aharon Gedanken, Radek Zboril

Volatile organic compounds (VOCs) are of growing concern due to their toxicity and environmental impact. Their facile detection is thus of a high importance but still challenging because they are unreactive and often present at very low concentrations. Developing sensing schemes for VOCs based on low-cost, sensitive, selective, and user-friendly methods is therefore crucial for environmental monitoring. To address these issues, we herein developed polymer supported carbon dots (CDs) by reacting tetraminobenzene with 2,4,6-trichlorophenyl oxalate using a simple reflux method. Owing to the selection of precursors, polymer supported fluorescent carbon dots (P-CDs) were grown decorating the synthesized polymeric spheres. The P-CDs composites were highly stable, and their fluorescence was drastically quenched by several VOC analytes (ethanolamine, diethanolamine, triethanolamine, and ammonia) due …

Show more

Jul 2024 • IEEE Transactions on Magnetics

Two-Axis planar Hall magnetic field sensors with sub nanoTesla resolution

PT Das, H Nhalil, V Mor, M Schultz, N Hasidim, A Grosz, L Klein

Planar Hall effect (PHE) magnetic sensors are attractive for various applications where the field resolution is required in the range of sub-nano Tesla or in Pico Tesla. Here we present a detailed noise study of the PHE sensors consisting of two or three intersecting ellipses. It can be used to measure two axes of the magnetic field in the sensor plane in particular along the two perpendicular easy axes in the overlapping region for two intersecting ellipses and three easy axes at an angle of 60 degrees for three crossing ellipses. Thus, for each remanent magnetic state in the overlap area, the sensor can measure the vector component of the magnetic field perpendicular to the direction of the remanent magnetization. The two field components are measured with a field resolution ≤ 200 pT/√Hz at 10 Hz and 350 pT/√Hz at 1 Hz in the same region, while maintaining a similar size and noise level of a single-axis sensor …

Show more

Jul 2024 • Neuroinformatics

Classifying Neuronal Cell Types Based on Shared Electrophysiological Information from Humans and Mice

Ofek Ophir, Orit Shefi, Ofir Lindenbaum

The brain is an intricate system that controls a variety of functions. It consists of a vast number of cells that exhibit diverse characteristics. To understand brain function in health and disease, it is crucial to classify neurons accurately. Recent advancements in machine learning have provided a way to classify neurons based on their electrophysiological activity. This paper presents a deep-learning framework that classifies neurons solely on this basis. The framework uses data from the Allen Cell Types database, which contains a survey of biological features derived from single-cell recordings from mice and humans. The shared information from both sources is used to classify neurons into their broad types with the help of a joint model. An accurate domain-adaptive model, integrating electrophysiological data from both mice and humans, is implemented. Furthermore, data from mouse neurons, which also includes …

Show more

Jul 2024 • Journal of Vacuum Science & Technology A

Continuous wave laser-assisted evaporation of halide perovskite thin films from a single stoichiometric source

Naga Prathibha Jasti, Shay Tirosh, Ansuman Halder, Eti Teblum, David Cahen

We report continuous wave laser-assisted evaporation (CLE), a thin film deposition technique that yields phase-pure and stoichiometric thin films of halide perovskites (HaPs) from stoichiometric HaP targets. We use methylammonium lead bromide (MAPbBr 3) to demonstrate the ability to grow with CLE well-oriented and smooth thin films on various substrates. Further, we show the broader applicability of CLE by preparing films of several other 3D HaP compounds, viz., methylammonium lead iodide, formamidinium lead bromide, and a 2D one, butylammonium lead iodide. CLE is a single-source, solvent-free, room-temperature process that needs only roughing pump vacuum; it allows the deposition of hybrid organic-inorganic compound films without needing post-thermal treatment or an additional organic precursor source to yield the intended product. The resulting films are polycrystalline and highly oriented. All …

Show more

Jul 2024 • Cancer Immunology Research

Targeting Tumor-Associated Sialic Acids Using Chimeric Switch Receptors Based on Siglec-9 Enhances the Antitumor Efficacy of Engineered T Cells

Vasyl Eisenberg, Shiran Hoogi, Erel Katzman, Nimrod Ben Haim, Raphaelle Zur-Toledano, Maria Radman, Yishai Reboh, Oranit Zadok, Iris Kamer, Jair Bar, Irit Sagi, Ayal Hendel, Cyrille J Cohen

Cancer exploits different mechanisms to escape T-cell immunosurveillance, including overexpression of checkpoint ligands, secretion of immunosuppressive molecules, and aberrant glycosylation. Herein, we report that IFNγ, a potent immunomodulator secreted in the tumor microenvironment, can induce α2,6 hypersialylation in cancer cell lines derived from various histologies. We then focused on Siglec-9, a receptor for sialic acid moieties, and demonstrated that the Siglec-9+ T-cell population displayed reduced effector function. We speculated that Siglec-9 in primary human T cells can act as a checkpoint molecule and demonstrated that knocking out Siglec-9 using a CRISPR/Cas9 system enhanced the functionality of primary human T cells. Finally, we aimed to augment cancer-specific T-cell activity by taking advantage of tumor hypersialylation. Thus, we designed several Siglec-9–based chimeric switch …

Show more

Jul 2024 • Journal of Molecular Structure 1297, 136943, 2024

Probing chirality of crystals using electron paramagnetic resonance (EPR) spectroscopy

Gil Otis, Denial Aias, Ilya Grinberg, Sharon Ruthstein, Yitzhak Mastai

One of the most challenging tasks in analytical chemistry is the determination of the chirality (identi cation of an enantio-meric composition) in solids mainly because of the strict requirements of the pharmaceutical industry for enantiomerically pure drugs. Although there are a few methods available to accomplish enantio-differentiation in solids, for example: X-ray diffraction (XRD), differential scanning calorimetry (DSC), CD spectroscopy, and low-frequency (LF) Raman spectroscopy, this is still very challenging. In this work, we have developed a new method to measure the chirality of crystals, based on electron paramagnetic resonance (EPR) spectroscopy of chiral crystals doped with Cu2+ as the EPR active ion. Here, we demonstrate our approach using a model system of L-and DL-Histidine crystals doped with Cu2+. We show that EPR measurements of the Cu2+-doped Histidine crystals can accurately determine the chirality and enantiomeric composition of the crystals. We present a very preliminary example of this technique, and we hope that in the future it will be possible to re ne and develop this method for many other chiral organic crystal systems.

Show more

Jul 2024 • arXiv preprint arXiv:2307.01874

Nonrelativistic spatiotemporal quantum reference frames

Michael Suleymanov, Ismael L Paiva, Eliahu Cohen

Quantum reference frames have attracted renewed interest recently, as their exploration is relevant and instructive in many areas of quantum theory. Among the different types, position and time reference frames have captivated special attention. Here, we introduce and analyze a non-relativistic framework in which each system contains an internal clock, in addition to its external (spatial) degree of freedom and, hence, can be used as a spatiotemporal quantum reference frame. Among other applications of this framework, we show that even in simple scenarios with no interactions, the relative uncertainty between clocks affects the relative spatial spread of the systems.

Show more

Jul 2024 • International Journal of High Speed Electronics and Systems

Mid-Infrared Spectrometer Based on Tunable Photoresponses in Pdse2

Jea Jung Lee, Adi Levi, Doron Naveh, Fengnian Xia

Mid-infrared (mid-IR) photodetection is important for various applications, including biomedical diagnostics, security, chemical identification, and free-spacing optical communications. However, conventional “photon” mid-IR photodetectors require liquid nitrogen cooling (i.e., MCT). Furthermore, acquiring mid-IR spectra usually involves a complex and expensive Fourier Transform Infrared spectrometer, a tabletop instrument consisting of a meter-long interferometer and MCT detectors, which is not suitable for mobile and compact device applications. In this work, we present tunable photoresponsivity in the mid-IR wavelength in palladium diselenide (PdSe2) – molybdenum disulfide (MoS2) heterostructure field-effect transistors (FETs), operating at room temperature. Furthermore, we applied a tunable membrane cavity to modulate the Fabry–Pérot resonance to modulate the absorption spectrum of the device layer …

Show more

Jul 2024 • arXiv preprint arXiv:2407.08899

Directed Motion and Spatial Coherence in the Cell Nucleus

M Hidalgo-Soria, Y Haddad, E Barkai, Y Garini, S Burov

Investigating the dynamics of chromatin and the factors that are affecting it, has provided valuable insights into the organization and functionality of the genome in the cell nucleus. We control the expression of Lamin-A, an important organizer protein of the chromatin and nucleus structure. By simultaneously tracking tens of chromosomal loci (telomeres) in each nucleus, we find that the motion of chromosomal loci in Lamin-A depleted cells is both faster and more directed on a scale of a few micrometers, which coincides with the size of chromosome territories. Moreover, in the absence of Lamin-A we reveal the existence of correlations among neighboring telomeres. We show how these pairwise correlations are linked with the intermittent and persistent character of telomere trajectories, underscoring the importance of Lamin-A protein in chromosomal organization.

Show more

Jul 2024 • Nature Photonics

Coherently amplified ultrafast imaging using a free-electron interferometer

Tomer Bucher, Harel Nahari, Hanan Herzig Sheinfux, Ron Ruimy, Arthur Niedermayr, Raphael Dahan, Qinghui Yan, Yuval Adiv, Michael Yannai, Jialin Chen, Yaniv Kurman, Sang Tae Park, Daniel J Masiel, Eli Janzen, James H Edgar, Fabrizio Carbone, Guy Bartal, Shai Tsesses, Frank HL Koppens, Giovanni Maria Vanacore, Ido Kaminer

Accessing the low-energy non-equilibrium dynamics of materials and their polaritons with simultaneous high spatial and temporal resolution has been a bold frontier of electron microscopy in recent years. One of the main challenges lies in the ability to retrieve extremely weak signals and simultaneously disentangling the amplitude and phase information. Here we present free-electron Ramsey imaging—a microscopy approach based on light-induced electron modulation that enables the coherent amplification of optical near fields in electron imaging. We provide simultaneous time-, space- and phase-resolved measurements of a micro-drum made from a hexagonal boron nitride membrane, visualizing the sub-cycle dynamics of two-dimensional polariton wavepackets therein. The phase-resolved measurement reveals vortex–anti-vortex singularities on the polariton wavefronts, together with an intriguing …

Show more

Jul 2024 • Journal of The Electrochemical Society

Investigating the Temperature Dependency of Trimethyl Aluminum Assisted Atomic Surface Reduction of Li and Mn-Rich NCM

Eliran Evenstein, Sarah Taragin, Arka Saha, Malachi Noked, Rosy Rosy

Most next-generation electrode materials are prone to interfacial degradation, which eventually spreads to the bulk and impairs electrochemical performance. One promising method for reducing interfacial degradation is to surface engineer the electrode materials to form an artificial cathode electrolyte interphase as a protective layer. Nevertheless, the majority of coating techniques entail wet processes, high temperatures, or exposure to ambient conditions. These experimental conditions are only sometimes conducive and can adversely affect the material structure or composition. Therefore, we investigate the efficacy of a low-temperature, facile atomic surface reduction (ASR) using trimethylaluminum vapors as a surface modification strategy for Li and Mn-rich NCM (LMR-NCM). The results presented herein manifest that the extent of TMA-assisted ASR is temperature-dependent. All tested temperatures …

Show more

Jul 2024 • Journal of The Electrochemical Society

Mild and Fast Chemical Presodiation of Na0. 44MnO2

Roman R Kapaev, Sankalpita Chakrabarty, Ayan Mukherjee, Masato Sonoo, Malachi Noked

This work presents a mild, fast, and scalable approach for chemical presodiation of Na-ion battery cathodes employing a tunnel-type Na0.44MnO2 (NMO) as a model material to demonstrate its sodiation with sodium-phanazine solutions. After presodiation using this approach, there is an 80% increase in specific capacity and a 66% increase in specific energy of NMO in full cells with hard carbon anodes.

Show more

Jul 2024 • Development

From promoter motif to cardiac function: a single DPE motif affects transcription regulation and organ function in vivo

Anna Sloutskin, Dekel Itzhak, Georg Vogler, Hadar Pozeilov, Diana Ideses, Hadar Alter, Orit Adato, Hadar Shachar, Tirza Doniger, Galit Shohat-Ophir, Manfred Frasch, Rolf Bodmer, Sascha H Duttke, Tamar Juven-Gershon

Transcription initiates at the core promoter, which contains distinct core promoter elements. Here, we highlight the complexity of transcriptional regulation by outlining the effect of core promoter-dependent regulation on embryonic development and the proper function of an organism. We demonstrate in vivo the importance of the downstream core promoter element (DPE) in complex heart formation in Drosophila. Pioneering a novel approach utilizing both CRISPR and nascent transcriptomics, we show the effects of mutating a single core promoter element within the natural context. Specifically, we targeted the downstream core promoter element (DPE) of the endogenous tin gene, encoding the Tinman transcription factor, a homologue of human NKX2-5 associated with congenital heart diseases. The 7bp substitution mutation results in massive perturbation of the Tinman regulatory network orchestrating dorsal …

Show more

Jul 2024 • arXiv preprint arXiv:2407.06369

Loss-resilient, efficient x-ray interaction-free measurements

Ron Cohen, Sharon Shwartz, Eliahu Cohen

Interaction-free measurement (IFM) is a promising technique for low-dose detection and imaging, offering the unique advantage of probing an object without absorption of the interrogating photons. We propose an experiment to demonstrate IFM in the single x-ray photon regime. The proposed scheme relies on the triple-Laue (LLL) symmetric x-ray interferometer, where each Laue diffraction acts as a lossy beamsplitter. In contrast to many quantum effects which are highly vulnerable to loss, we show that an experimental demonstration of this effect in the x-ray regime is feasible and can achieve high IFM efficiency even in the presence of substantial loss in the system. The latter aspect is claimed to be a general property of IFM based on our theoretical analysis. We scrutinize two suitable detection schemes that offer efficiencies of up to . The successful demonstration of IFM with x-rays promises intriguing possibilities for measurements with reduced dose, mainly advantageous for biological samples, where radiation damage is a significant limitation.

Show more

Jul 2024 • arXiv preprint arXiv:2407.06369

Loss-resilient, efficient x-ray interaction-free measurements

Ron Cohen, Sharon Shwartz, Eliahu Cohen

Interaction-free measurement (IFM) is a promising technique for low-dose detection and imaging, offering the unique advantage of probing an object without absorption of the interrogating photons. We propose an experiment to demonstrate IFM in the single x-ray photon regime. The proposed scheme relies on the triple-Laue (LLL) symmetric x-ray interferometer, where each Laue diffraction acts as a lossy beamsplitter. In contrast to many quantum effects which are highly vulnerable to loss, we show that an experimental demonstration of this effect in the x-ray regime is feasible and can achieve high IFM efficiency even in the presence of substantial loss in the system. The latter aspect is claimed to be a general property of IFM based on our theoretical analysis. We scrutinize two suitable detection schemes that offer efficiencies of up to . The successful demonstration of IFM with x-rays promises intriguing possibilities for measurements with reduced dose, mainly advantageous for biological samples, where radiation damage is a significant limitation.

Show more

logo
Articali

Powered by Articali

TermsPrivacy