Dec 2023 • Advanced Optical Materials 11 (5), 2201475, 2023
Racheli Ron, Tchiya Zar, Adi Salomon
Disordered metallic nanostructures have features that are not realized in well‐defined nanometallic counterparts, such as broadband light localization and inhomogeneous refraction index at the nanoscale. Disordered metal systems with a networked inner architecture have both particles and voids with subwavelength dimensions which are randomly 3D organized in space. These disordered structures are benefited from high surface area and damage stability, permit guest materials permeability, and can be achieved in large scales employing less costs and expertise. Their abundant nanosize gaps and sharp tips can interact with incident light over a broadband range to generate a rich pattern of hot‐spots and can therefore function as an artificial leaf, for example. Here, the linear and nonlinear optical properties of both well‐defined and disordered plasmonic structures are reviewed with a focus on largescale 3D …
Show moreDec 2023 • Journal of Biological Engineering
Gal Shpun, Nairouz Farah, Yoav Chemla, Amos Markus, Tamar Azrad Leibovitch, Erel Lasnoy, Doron Gerber, Zeev Zalevsky, Yossi Mandel
Tissue-integrated micro-electronic devices for neural stimulation hold great potential in restoring the functionality of degenerated organs, specifically, retinal prostheses, which are aimed at vision restoration. The fabrication process of 3D polymer-metal devices with high resolution and a high aspect-ratio (AR) is very complex and faces many challenges that impair its functionality. Here we describe the optimization of the fabrication process of a bio-functionalized 3D high-resolution 1mm circular subretinal implant composed of SU-8 polymer integrated with dense gold microelectrodes (23μm pitch) passivated with 3D micro-well-like structures (20μm diameter, 3μm resolution). The main challenges were overcome by step-by-step planning and optimization while utilizing a two-step bi-layer lift-off process; bio-functionalization was carried out by N2 plasma treatment and the addition of a bio-adhesion molecule. In-vitro and in-vivo investigations, including SEM and FIB cross section examinations, revealed a good structural design, as well as a good long-term integration of the device in the rat sub-retinal space and cell migration into the wells. Moreover, the feasibility of subretinal neural stimulation using the fabricated device was demonstrated in-vitro by electrical activation of rat’s retina. The reported process and optimization steps described here in detail can aid in designing and fabricating retinal prosthetic devices or similar neural implants.
Show moreDec 2023 • Journal of Biological Engineering
Dafna Rivka Levenberg, Eli Varon, Ganit Indech, Tal Ben Uliel, Lidor Geri, Amos Sharoni, Orit Shefi
The ability to control neuronal mobility and organization is of great importance in developing neuronal interfaces and novel therapeutic approaches. An emerging promising method is the manipulation of neuronal cells from afar via magnetic forces. Nevertheless, using magnetic iron oxide nanoparticles as internal actuators may lead to biotoxicity, adverse influence on intracellular processes, and thus requires prerequisite considerations for therapeutic approaches. Magnetizing the cells via the incorporation of magnetic particles that can be applied extracellularly is advantageous. Herein, we have developed a magnetic system based on streptavidin–biotin interaction to decorate cellular membrane with magnetic elements. In this model, superparamagnetic microparticles, coated with streptavidin, were specifically bound to biotinylated PC12 cells. We demonstrated that cell movement can be directed remotely by the forces produced by pre-designed magnetic fields. First, using time lapse imaging, we analyzed the kinetics of cell migration towards the higher flux zone. Next, to form organized networks of cells we designed and fabricated micro-patterned magnetic devices. The fabricated devices were composed of a variety of ferromagnetic shapes, sputter-deposited onto glass substrates. Cells that were conjugated to the magnetic particles were plated atop the micro-patterned substrates, attracted to the magnetic actuators and became fixed onto the magnetic patterns. In all, our study presents a novel system based on a well-known molecular technology combined with nanotechnology that may well lead to the expansion of implantable magnetic …
Show moreDec 2023 • Journal of Investigative Dermatology
Miriam Karmon, Eli Kopel, Aviv Barzilai, Polina Geva, Eli Eisenberg, Erez Y Levanon, Shoshana Greenberger
Atopic dermatitis (AD) is associated with dysregulated type 1 interferon (IFN)–mediated responses, in parallel with the dominant type 2 inflammation. However, the pathophysiology of this dysregulation is largely unknown. Adenosine-to-inosine (A-to-I) RNA editing plays a critical role in immune regulation by preventing double-stranded (ds) RNA recognition by MDA5 and IFN activation. We studied global A-to-I editing in AD in order to elucidate the role played by altered editing in the pathophysiology of this disease.Analysis of three RNA sequencing (RNA-seq) datasets of AD skin samples revealed reduced levels of A-to-I RNA editing in AD. This reduction was seen globally throughout Alu repeats, as well as in coding genes and in specific pre-mRNA loci expected to create long dsRNA, the main substrate of MDA5 leading to type I IFN activation. Consistently, IFN signature genes (ISG) were upregulated. In contrast …
Show moreDec 2023 • Journal of Biological Engineering
Dafna Rivka Levenberg, Eli Varon, Ganit Indech, Tal Ben Uliel, Lidor Geri, Amos Sharoni, Orit Shefi
The ability to control neuronal mobility and organization is of great importance in developing neuronal interfaces and novel therapeutic approaches. An emerging promising method is the manipulation of neuronal cells from afar via magnetic forces. Nevertheless, using magnetic iron oxide nanoparticles as internal actuators may lead to biotoxicity, adverse influence on intracellular processes, and thus requires prerequisite considerations for therapeutic approaches. Magnetizing the cells via the incorporation of magnetic particles that can be applied extracellularly is advantageous. Herein, we have developed a magnetic system based on streptavidin–biotin interaction to decorate cellular membrane with magnetic elements. In this model, superparamagnetic microparticles, coated with streptavidin, were specifically bound to biotinylated PC12 cells. We demonstrated that cell movement can be directed remotely by the forces produced by pre-designed magnetic fields. First, using time lapse imaging, we analyzed the kinetics of cell migration towards the higher flux zone. Next, to form organized networks of cells we designed and fabricated micro-patterned magnetic devices. The fabricated devices were composed of a variety of ferromagnetic shapes, sputter-deposited onto glass substrates. Cells that were conjugated to the magnetic particles were plated atop the micro-patterned substrates, attracted to the magnetic actuators and became fixed onto the magnetic patterns. In all, our study presents a novel system based on a well-known molecular technology combined with nanotechnology that may well lead to the expansion of implantable magnetic …
Show moreDec 2023 • Genome Research
Modi Safra, Lael Werner, Pazit Polak, Ayelet Peres, Naomi Salamon, Michael Schvimer, Batia Weiss, Iris Barshack, Dror S Shouval, Gur Yaari
Nov 2023 • Advanced Optical Materials
Andrea Villa, Madina Telkhozhayeva, Fabio Marangi, Eti Teblum, Aaron M Ross, Mirko Prato, Luca Andena, Roberto Frassine, Francesco Scotognella, Gilbert Daniel Nessim
Copper chalcogenides are materials characterized by intrinsic doping properties, allowing them to display high carrier concentrations due to their defect‐heavy structures, independent of the preparation method. Such high doping enables these materials to display plasmonic resonances, tunable by varying their stoichiometry. Here, plasmonic dynamics is studied in drop‐cast Cu9S5 (digenite) nanocrystals (NCs) film using ultrafast pump–probe spectroscopy. The NCs are synthesized by thermal annealing of copper foil using chemical vapor deposition (CVD), followed by sonication and drop‐casting of the isolated few‐layered flakes on different substrates. The samples display a broad localized surface plasmon resonance (LSPR) in the near‐infrared (NIR), peaking at 2100 nm. The free carrier response is further confirmed by fitting the linear absorption with a Drude–Lorentz effective medium approximation model …
Show moreNov 2023 • Ultrasonics Sonochemistry
Moorthy Maruthapandi, Akanksha Gupta, Arumugam Saravanan, Gila Jacobi, Ehud Banin, John HT Luong, Aharon Gedanken
Under ultrasonication, cuprous oxide (Cu2O) microparticles (<5 µm) were fragmented into nanoparticles (NPs, ranging from 10 to 30 nm in diameter), and interacted strongly with alkali lignin (Mw= 10 kDa) to form a nanocomposite. The ultrasonic wave generates strong binding interaction between lignin and Cu2O. The L-Cu nanocomposite exhibited synergistic effects with enhanced antibiofilm activities against E. coli, multidrug-resistant (MDR) E. coli, S. aureus (SA), methicillin-resistant SA, and P. aeruginosa (PA). The lignin-Cu2O (L-Cu) nanocomposite also imparted notable eradication of such bacterial biofilms. Experimental evidence unraveled the destruction of bacterial cell walls by L-Cu, which interacted strongly with the bacterial membrane. After exposure to L-Cu, the bacterial cells lost the integrated structural morphology. The estimated MIC for biofilm inhibition for the five tested pathogens was 1 mg/mL L …
Show moreNov 2023 • Materials Today Energy
Arka Saha, Ortal Shalev, Sandipan Maiti, Longlong Wang, Sri Harsha Akella, Bruria Schmerling, Sarah Targin, Maria Tkachev, Xiulin Fan, Malachi Noked
[(LiNi0.8Co0.1Mn0.1)O2], or NCM811, a member of the LixNi1−y−zCoyMnzO2 (NCM) family of cathode active materials (CAMs), is gaining recognition in the battery community as the CAM of choice for future high energy density lithium-ion batteries, given its high nickel content of c. 80%. Yet, its commercialization is impeded by its mechanochemical instability at a high state of charge (SOC), which results in severe capacity fading and active lithium loss during cycling. In this contribution, we report conformal nanometer-thick (c. 4–7 nm) lithiated tin-oxide ternary coatings (LixSnyOz) deposited on NCM811 cathode powder using the atomic layer deposition (ALD) technique. The first-of-its-kind ALD coating, where Li is being accompanied by a second metal ion (Sn); provides a combination of benefits: (i) it stabilizes the crystal structure, (ii) suppresses electrode polarization, (iii) lowers the voltage hysteresis, and (iv …
Show moreNov 2023 • Ultrasonics Sonochemistry
Moorthy Maruthapandi, Akanksha Gupta, Arumugam Saravanan, Gila Jacobi, Ehud Banin, John HT Luong, Aharon Gedanken
Under ultrasonication, cuprous oxide (Cu2O) microparticles (<5 µm) were fragmented into nanoparticles (NPs, ranging from 10 to 30 nm in diameter), and interacted strongly with alkali lignin (Mw= 10 kDa) to form a nanocomposite. The ultrasonic wave generates strong binding interaction between lignin and Cu2O. The L-Cu nanocomposite exhibited synergistic effects with enhanced antibiofilm activities against E. coli, multidrug-resistant (MDR) E. coli, S. aureus (SA), methicillin-resistant SA, and P. aeruginosa (PA). The lignin-Cu2O (L-Cu) nanocomposite also imparted notable eradication of such bacterial biofilms. Experimental evidence unraveled the destruction of bacterial cell walls by L-Cu, which interacted strongly with the bacterial membrane. After exposure to L-Cu, the bacterial cells lost the integrated structural morphology. The estimated MIC for biofilm inhibition for the five tested pathogens was 1 mg/mL L …
Show moreNov 2023 • arXiv preprint arXiv:2211.13658
Klavs Hansen, Ori Licht, Adeliya Kurbanov, Yoni Toker
The time development of the excitation energy of molecules and clusters cooling by emission of thermal vibrational infrared radiation has been studied. The energy distributions and the photon emission rates develop into near-universal functions that can be characterized with only a few parameters, irrespective of the precise vibrational spectra and oscillator strengths of the systems. The photon emission constant and emitted power averaged over all thermally populated states vary linearly with total excitation energy with a small offset. The time developments of ensemble internal energy distributions are calculated with respect to their first two moments. For the derived linear dependence of the emission rate constant, these results are exact.
Show moreOct 2023 • Materials Today Energy
Bar Gavriel, Gil Bergman, Meital Turgeman, Amey Nimkar, Yuval Elias, Mikhael D Levi, Daniel Sharon, Netanel Shpigel, Doron Aurbach
Large grid energy storage devices are critical for the success of the clean and sustainable energy revolution. As Li-ion batteries are earmarked for electric vehicles and portable devices such as laptops and cellphones, other electrochemical systems should be developed that enable cost-effective, safe, and durable large-scale energy storage. Due to the low cost and non-flammability of aqueous electrolyte solutions, much effort is being put into development of 'beyond-Li' batteries and supercapacitors that can work in these environments. Here, we propose new proton batteries comprising an acetic acid electrolyte solution, NiII[FeIII(CN)6]2/3·4H2O Prussian blue analog cathodes, and Ti3C2Tx MXene anodes. Both electrodes were investigated independently to discover ideal settings for electrochemical performance and stability. Significant attention was given to the cathodes' protons storage mechanism. In-situ …
Show moreOct 2023 • 244th ECS Meeting (October 8-12, 2023), 2023
Oana Leonte, Oscar van der Straten, Malachi Noked
Oct 2023 • arXiv preprint arXiv:2210.10935
Lucianno Defaveri, Eli Barkai, David A Kessler
We study the motion of an overdamped particle connected to a thermal heat bath in the presence of an external periodic potential. When the coarse-graining is larger than the periodicity of the potential, the packet of spreading particles, all starting from a common origin, converges to a normal distribution centered at the origin with a mean-squared displacement that grows like , with an effective diffusion constant that is smaller than that of a freely diffusing particle. We examine the interplay between this coarse-grained description and the fine structure of the density, which is given by the Boltzmann-Gibbs factor , the latter being non-normalizable. We explain this result and construct a theory of observables using the Fokker-Planck equation. These observables are classified as those that are related to the BG fine structure, like the energy or occupation times, while others, like the positional moments, for long times, converge to those of the large-scale description. Entropy falls into a special category as it has a coarse-grained and a fine structure description. The basic thermodynamic formula is extended to this far from equilibrium system. The ergodic properties are also studied using tools from infinite ergodic theory.
Show moreOct 2023 • 244th ECS Meeting (October 8-12, 2023), 2023
Oscar van der Straten, Andrea Illiberi, Malachi Noked
Oct 2023 • 244th ECS Meeting (October 8-12, 2023)
Akanksha Joshi, Sankalpita Chakrabarty, Sri Harsha Akella, Arka Saha, Ayan Mukherjee, Rosy Sharma, Malachi Noked
Oct 2023 • 244th ECS Meeting (October 8-12, 2023)
Roman R Kapaev, Amit Ohayon, Masato Sonoo, Malachi Noked
Oct 2023 • 244th ECS Meeting (October 8-12, 2023)
Sankalpita Chakrabarty, Ayan Mukherjee, Malachi Noked
Oct 2023 • Journal of Energy Storage
Michael Küttinger, Kobby Saadi, Théo Faverge, Nagaprasad Reddy Samala, Ilya Grinberg, David Zitoun, Peter Fischer
1-n-Hexylpyridin-1-ium bromide [C6Py]Br is investigated in this work as bromine complexing agent (BCA) in aqueous bromine electrolytes on its influence on hydrogen bromine redox flow battery (H2/Br2-RFB) performance. [C6Py]+-cations bind bromine of aqueous polybromide solutions safely in an additional fused salt phase limiting the vapor pressure of Br2. Dissolved in aqueous electrolyte solutions, however, [BCA]+ cations drastically lower PFSA membranes' conductivity in the H2/Br2-RFB. In this work the combination of the very strong bromine-binding [C6Py]+cation and an excess of bromine in the electrolyte lead to an almost complete absorption of 99.6 mol% [C6Py]+ into the fused salt within the electrolyte's operation range. In comparison to similar application of short side chain 1-ethylpyridinium bromide, adverse effects are stronger compensated by use of [C6Py]Br. Increases in membrane resistance of …
Show moreOct 2023 • 244th ECS Meeting (October 8-12, 2023)
Peter N Pintauro, Xiaozong Fan, Krysta Waldrop, John Slack, Ethan Self, John Waugh, Ryszard Wycisk, Kobby Saadi, David Zitoun
Oct 2023 • arXiv preprint arXiv:2210.02743
Renu Yadav, Patrick Sebbah, Maruthi M Brundavanam
The disorder induced feedback makes random lasers very susceptible to any changes in the scattering medium. The sensitivity of the lasing modes to perturbations in the disordered systems have been utilized to map the regions of perturbation. A tracking parameter, that takes into account the cumulative effect of changes in the spatial distribution of the lasing modes of the system has been defined to locate the region in which a scatterer is displaced by a few nanometers. We show numerically that the precision of the method increases with the number of modes. The proposed method opens up the possibility of application of random lasers as a tool for monitoring locations of nanoscale displacement which can be useful for single particle detection and monitoring.
Show more