BINA

3709 articles

75 publishers

Join mailing list

Dec 2024 • Quantum Science and Technology

Quantum circuits for measuring weak values, Kirkwood–Dirac quasiprobability distributions, and state spectra

Rafael Wagner, Zohar Schwartzman-Nowik, Ismael Lucas Paiva, Amit Te'eni, Antonio Ruiz-Molero, Rui Soares Barbosa, Eliahu Cohen, Ernesto Galvão

Weak values and Kirkwood--Dirac (KD) quasiprobability distributions have been independently associated with both foundational issues in quantum theory and advantages in quantum metrology. We propose simple quantum circuits to measure weak values, KD distributions, and spectra of density matrices without the need for post-selection. This is achieved by measuring unitary-invariant, relational properties of quantum states, which are functions of Bargmann invariants, the concept that underpins our unified perspective. Our circuits also enable experimental implementation of various functions of KD distributions, such as out-of-time-ordered correlators (OTOCs) and the quantum Fisher information in post-selected parameter estimation, among others. An upshot is a unified view of nonclassicality in all those tasks. In particular, we discuss how negativity and imaginarity of Bargmann invariants relate to set coherence.

Show more

Dec 2024 • arXiv preprint arXiv:2312.10805

Nernst Sign Reversal in the Hexatic Vortex Phase of Weakly Disordered Thin Films

Y Wu, A Roy, S Dutta, J Jesudasan, P Raychaudhuri, A Frydman

The hexatic phase is an intermediate stage in the melting process of a 2D crystal due to topological defects. Recently, this exotic phase was experimentally identified in the vortex lattice of 2D weakly disordered superconducting MoGe by scanning tunneling microscopic measurements. Here we study this vortex state by the Nernst effect, which is an effective and sensitive tool to detect vortex motion, especially in the superconducting fluctuation regime. We find a surprising Nernst sign reversal at the melting transition of the hexatic phase. We propose that they are a consequence of vortex dislocations in the hexatic state which diffuse preferably from the cold to hot.

Show more

Nov 2024 • Journal of Biomedical Optics 29 (3), 037003-037003, 2024

Remote and low-cost intraocular pressure monitoring by deep learning of speckle patterns

Zeev Kalyuzhner, Sergey Agdarov, Yevgeny Beiderman, Aviya Bennett, Yafim Beiderman, Zeev Zalevsky

Intraocular pressure (IOP) measurements comprise an essential tool in modern medicine for the early diagnosis of glaucoma, the second leading cause of human blindness. The world's highest prevalence of glaucoma is in low-income countries.Current diagnostic methods require experience in running expensive equipment as well as the use of anesthetic eye drops. We present herein a remote photonic IOP biomonitoring method based on deep learning of secondary speckle patterns, captured by a fast camera, that are reflected from eye sclera stimulated by an external sound wave. By combining speckle pattern analysis with deep learning, high precision measurements are possible.

Show more

Nov 2024 • arXiv preprint arXiv:2311.00590

A colour-encoded nanometric ruler for axial super-resolution microscopies

Ilya Olevsko, Omer Shavit, Moshe Feldberg, Yossi Abulafia, Adi Salomon, Martin Oheim

Recent progress has boosted the resolving power of optical microscopies to spatial dimensions well below the diffraction limit. Yet, axial super-resolution and axial single-molecule localisation typically require more complicated implementations than their lateral counterparts. In the present work, we propose a simple solution for axial metrology by providing a multi-layered single-excitation, dual-emission test slide, in which axial distance is colour-encoded. Our test slide combines on a standard microscope coverslip substrate two flat, thin, uniform and brightly emitting fluorophore layers, separated by a nanometric transparent spacer layer having a refractive index close to a biological cell. The ensemble is sealed in an index-matched protective polymer. As a proof-of-principle, we estimate the light confinement resulting from evanescent-wave excitation in total internal reflection fluorescence (TIRF) microscopy. Our test sample permits, even for the non-expert user, a facile axial metrology at the sub-100-nm scale, a critical requirement for axial super-resolution, as well as near-surface imaging, spectroscopy and sensing.

Show more

Oct 2024 • Nature nanotechnology

High-energy all-solid-state lithium batteries enabled by Co-free LiNiO2 cathodes with robust outside-in structures

Longlong Wang, Ayan Mukherjee, Chang-Yang Kuo, Sankalpita Chakrabarty, Reut Yemini, Arrelaine A Dameron, Jaime W DuMont, Sri Harsha Akella, Arka Saha, Sarah Taragin, Hagit Aviv, Doron Naveh, Daniel Sharon, Ting-Shan Chan, Hong-Ji Lin, Jyh-Fu Lee, Chien-Te Chen, Boyang Liu, Xiangwen Gao, Suddhasatwa Basu, Zhiwei Hu, Doron Aurbach, Peter G Bruce, Malachi Noked

A critical current challenge in the development of all-solid-state lithium batteries (ASSLBs) is reducing the cost of fabrication without compromising the performance. Here we report a sulfide ASSLB based on a high-energy, Co-free LiNiO2 cathode with a robust outside-in structure. This promising cathode is enabled by the high-pressure O2 synthesis and subsequent atomic layer deposition of a unique ultrathin LixAlyZnzOδ protective layer comprising a LixAlyZnzOδ surface coating region and an Al and Zn near-surface doping region. This high-quality artificial interphase enhances the structural stability and interfacial dynamics of the cathode as it mitigates the contact loss and continuous side reactions at the cathode/solid electrolyte interface. As a result, our ASSLBs exhibit a high areal capacity (4.65 mAh cm−2), a high specific cathode capacity (203 mAh g−1), superior cycling stability (92% capacity retention …

Show more

Sep 2024 • arXiv e-prints

Confirming X-ray parametric down conversion by time–energy correlation

NJ Hartley, D Hodge, T Buckway, R Camacho, P Chow, E Christie, A Gleason, S Glenzer, A Halavanau, AM Hardy, C Recker, S Sheehan, S Shwartz, H Tarvin, M Ware, J Wunschel, Y Xiao, RL Sandberg, G Walker

We present measurements of X-ray Parametric Down Conversion at the Advanced Photon Source synchrotron facility. Using an incoming pump beam at 22 keV, we observe the simultaneous, elastic emission of down-converted photon pairs generated in a diamond crystal. The pairs are detected using high count rate silicon drift detectors with low noise. Production by down-conversion is confirmed by measuring time-energy correlations in the detector signal, where photon pairs within an energy window ranging from 10 to 12 keV are only observed at short time differences. By systematically varying the crystal misalignment and detector positions, we obtain results that are consistent with the constant total of the down-converted signal. Our maximum rate of observed pairs was 130/hour, corresponding to a conversion efficiency for the down-conversion process of .

Show more

Sep 2024 • arXiv preprint arXiv:2309.08391

Fractional advection diffusion asymmetry equation, derivation, solution and application

Wanli Wang, Eli Barkai

The non-Markovian continuous-time random walk model, featuring fat-tailed waiting times and narrow distributed displacements with a non-zero mean, is a well studied model for anomalous diffusion. Using an analytical approach, we recently demonstrated how a fractional space advection diffusion asymmetry equation, usually associated with Markovian L\'evy flights, describes the spreading of a packet of particles. Since we use Gaussian statistics for jump lengths though fat-tailed distribution of waiting times, the appearance of fractional space derivatives in the kinetic equation demands explanations provided in this manuscript. As applications we analyse the spreading of tracers in two dimensions, breakthrough curves investigated in the field of contamination spreading in hydrology and first passage time statistics. We present a subordination scheme valid for the case when the mean waiting time is finite and the variance diverges, which is related to L\'evy statistics for the number of renewals in the process.

Show more

Sep 2024 • arXiv preprint arXiv:2309.01347

Piezoelectric electrostatic superlattices in monolayer

Ashwin Ramasubramaniam, Doron Naveh

Modulation of electronic properties of materials by electric fields is central to the operation of modern semiconductor devices, providing access to complex electronic behaviors and greater freedom in tuning the energy bands of materials. Here, we explore one-dimensional superlattices induced by a confining electrostatic potential in monolayer MoS, a prototypical two-dimensional semiconductor. Using first-principles calculations, we show that periodic potentials applied to monolayer MoS induce electrostatic superlattices in which the response is dominated by structural distortions relative to purely electronic effects. These structural distortions reduce the intrinsic band gap of the monolayer substantially while also polarizing the monolayer through piezoelectric coupling, resulting in spatial separation of charge carriers as well as Stark shifts that produce dispersive minibands. Importantly, these minibands inherit the valley-selective magnetic properties of monolayer MoS, enabling fine control over spin-valley coupling in MoS and similar transition-metal dichalcogenides.

Show more

Aug 2024 • arXiv preprint arXiv:2308.09336

Diffraction limit of light in curved space

Jingxuan Zhang, Chenni Xu, Patrick Sebbah, Li-Gang Wang

Overcoming diffraction limit is crucial for obtaining high-resolution image and observing fine microstructure. With this conventional difficulty still puzzling us and the prosperous development of wave dynamics of light interacting with gravitational fields in recent years, how spatial curvature affect the diffraction limit is an attractive and important question. Here we investigate the issue of diffraction limit and optical resolution on two-dimensional curved spaces - surfaces of revolution (SORs) with constant or variable spatial curvature. We show that the diffraction limit decreases and resolution is improved on SORs with positive Gaussian curvature, opening a new avenue to super-resolution. The diffraction limit is also influenced by propagation direction, as well as the propagation distance in curved space with variable spatial curvature. These results provide a possible method to control optical resolution in curved space or equivalent waveguides with varying refractive index distribution and may allow one to detect the presence of non-uniform strong gravitational effect by probing locally the optical resolution.

Show more

Jul 2024 • Journal of Molecular Structure 1297, 136943, 2024

Probing chirality of crystals using electron paramagnetic resonance (EPR) spectroscopy

Gil Otis, Denial Aias, Ilya Grinberg, Sharon Ruthstein, Yitzhak Mastai

One of the most challenging tasks in analytical chemistry is the determination of the chirality (identi cation of an enantio-meric composition) in solids mainly because of the strict requirements of the pharmaceutical industry for enantiomerically pure drugs. Although there are a few methods available to accomplish enantio-differentiation in solids, for example: X-ray diffraction (XRD), differential scanning calorimetry (DSC), CD spectroscopy, and low-frequency (LF) Raman spectroscopy, this is still very challenging. In this work, we have developed a new method to measure the chirality of crystals, based on electron paramagnetic resonance (EPR) spectroscopy of chiral crystals doped with Cu2+ as the EPR active ion. Here, we demonstrate our approach using a model system of L-and DL-Histidine crystals doped with Cu2+. We show that EPR measurements of the Cu2+-doped Histidine crystals can accurately determine the chirality and enantiomeric composition of the crystals. We present a very preliminary example of this technique, and we hope that in the future it will be possible to re ne and develop this method for many other chiral organic crystal systems.

Show more

Jul 2024 • Optics & Laser Technology

Cepstrum-based interferometric microscopy (CIM) for quantitative phase imaging

Ricardo Rubio-Oliver, Javier García, Zeev Zalevsky, José Ángel Picazo-Bueno, Vicente Micó

A universal methodology for coding-decoding the complex amplitude field of an imaged sample in coherent microscopy is presented, where no restrictions on any of the two interferometric beams are required. Thus, the imaging beam can be overlapped with, in general, any other complex amplitude distribution and, in particular, with a coherent and shifted version of itself considering two orthogonal directions. The complex field values are retrieved by a novel Cepstrum-based algorithm, named as Spatial-Shifting Cepstrum (SSC), based on a weighted subtraction of the Cepstrum transform in the cross-correlation term of the object field spectrum in addition with the generation of a complex pupil from the combination of the information retrieved from different holographic recordings (one in horizontal and one in vertical direction) where one of the interferometric beams is shifted 1 pixel. As a result, the field of view is …

Show more

Jul 2024 • arXiv preprint arXiv:2307.01874

Nonrelativistic spatiotemporal quantum reference frames

Michael Suleymanov, Ismael L Paiva, Eliahu Cohen

Quantum reference frames have attracted renewed interest recently, as their exploration is relevant and instructive in many areas of quantum theory. Among the different types, position and time reference frames have captivated special attention. Here, we introduce and analyze a non-relativistic framework in which each system contains an internal clock, in addition to its external (spatial) degree of freedom and, hence, can be used as a spatiotemporal quantum reference frame. Among other applications of this framework, we show that even in simple scenarios with no interactions, the relative uncertainty between clocks affects the relative spatial spread of the systems.

Show more

Jul 2024 • Optics & Laser Technology

Cepstrum-based interferometric microscopy (CIM) for quantitative phase imaging

Ricardo Rubio-Oliver, Javier García, Zeev Zalevsky, José Ángel Picazo-Bueno, Vicente Micó

A universal methodology for coding-decoding the complex amplitude field of an imaged sample in coherent microscopy is presented, where no restrictions on any of the two interferometric beams are required. Thus, the imaging beam can be overlapped with, in general, any other complex amplitude distribution and, in particular, with a coherent and shifted version of itself considering two orthogonal directions. The complex field values are retrieved by a novel Cepstrum-based algorithm, named as Spatial-Shifting Cepstrum (SSC), based on a weighted subtraction of the Cepstrum transform in the cross-correlation term of the object field spectrum in addition with the generation of a complex pupil from the combination of the information retrieved from different holographic recordings (one in horizontal and one in vertical direction) where one of the interferometric beams is shifted 1 pixel. As a result, the field of view is …

Show more

Jul 2024 • Journal of Molecular Structure 1297, 136943, 2024

Probing chirality of crystals using electron paramagnetic resonance (EPR) spectroscopy

Gil Otis, Denial Aias, Ilya Grinberg, Sharon Ruthstein, Yitzhak Mastai

One of the most challenging tasks in analytical chemistry is the determination of the chirality (identi cation of an enantio-meric composition) in solids mainly because of the strict requirements of the pharmaceutical industry for enantiomerically pure drugs. Although there are a few methods available to accomplish enantio-differentiation in solids, for example: X-ray diffraction (XRD), differential scanning calorimetry (DSC), CD spectroscopy, and low-frequency (LF) Raman spectroscopy, this is still very challenging. In this work, we have developed a new method to measure the chirality of crystals, based on electron paramagnetic resonance (EPR) spectroscopy of chiral crystals doped with Cu2+ as the EPR active ion. Here, we demonstrate our approach using a model system of L-and DL-Histidine crystals doped with Cu2+. We show that EPR measurements of the Cu2+-doped Histidine crystals can accurately determine the chirality and enantiomeric composition of the crystals. We present a very preliminary example of this technique, and we hope that in the future it will be possible to re ne and develop this method for many other chiral organic crystal systems.

Show more

May 2024 • arXiv preprint arXiv:2305.12468

High-resolution computed tomography with scattered X-ray radiation and a single pixel detector

A Ben Yehuda, O Sefi, Y Klein, RH Shukrun, H Schwartz, E Cohen, S Shwartz

X-ray imaging is a prevalent technique for non-invasively visualizing the interior of the human body and opaque instruments. In most commercial x-ray modalities, an image is formed by measuring the x-rays that pass through the object of interest. However, despite the potential of scattered radiation to provide additional information about the object, it is often disregarded due to its inherent tendency to cause blurring. Consequently, conventional imaging modalities do not measure or utilize these valuable data. In contrast, we propose and experimentally demonstrate a high-resolution technique for x-ray computed tomography (CT) that measures scattered radiation by exploiting computational ghost imaging (CGI). We show that our method can provide sub-200 {\mu}m resolution, exceeding the capabilities of most existing x-ray imaging modalities. Our research reveals a promising technique for incorporating scattered radiation data in CT scans to improve image resolution and minimize radiation exposure for patients. The findings of our study suggest that our technique could represent a significant advancement in the fields of medical and industrial imaging, with the potential to enhance the accuracy and safety of diagnostic imaging procedures.

Show more

May 2024 • 245th ECS Meeting (May 26-30, 2024)

Elucidating the Hydrogen Evolution Reaction Mechanism of Immobilized Iron Porphyrin Electrocatalysts

Nils Heppe, Charlotte Gallenkamp, Rifael Z Snitkoff-Sol, Stephen Daniel Paul, Nicole Segura Salas, Vasily Potapkin, Atefeh Jafari, Olaf Leupold, Volker Schuenemann, Lior Elbaz, Vera Krewald, Ulrike I Kramm


May 2024 • arXiv preprint arXiv:2305.12468

High-resolution computed tomography with scattered X-ray radiation and a single pixel detector

A Ben Yehuda, O Sefi, Y Klein, RH Shukrun, H Schwartz, E Cohen, S Shwartz

X-ray imaging is a prevalent technique for non-invasively visualizing the interior of the human body and opaque instruments. In most commercial x-ray modalities, an image is formed by measuring the x-rays that pass through the object of interest. However, despite the potential of scattered radiation to provide additional information about the object, it is often disregarded due to its inherent tendency to cause blurring. Consequently, conventional imaging modalities do not measure or utilize these valuable data. In contrast, we propose and experimentally demonstrate a high-resolution technique for x-ray computed tomography (CT) that measures scattered radiation by exploiting computational ghost imaging (CGI). We show that our method can provide sub-200 {\mu}m resolution, exceeding the capabilities of most existing x-ray imaging modalities. Our research reveals a promising technique for incorporating scattered radiation data in CT scans to improve image resolution and minimize radiation exposure for patients. The findings of our study suggest that our technique could represent a significant advancement in the fields of medical and industrial imaging, with the potential to enhance the accuracy and safety of diagnostic imaging procedures.

Show more

May 2024 • 245th ECS Meeting (May 26-30, 2024)

Direct Hydroquinone Fuel Cells

Lior Elbaz, Yan Yurko


Apr 2024 • Materials Today Chemistry

Engineered thin coatings of cross-linked silane polymers with urea group onto polypropylene fabrics for controlled release of thymol against molds in hay

Elisheva Sasson, Eyal Malka, Ayelet Caspi, Naftali Kanovsky, Shlomo Margel

With world population on the rise, animal food source production has significantly increased. Susceptibility of hay and other sources to molds poses a serious threat to food quality and safety. This study proposes an innovative approach to address this issue – an anti-mold fungicide comprising thymol bound on silica urea thin coating of polypropylene fabrics. The coating enhances the thermal stability of thymol allowing prolonged release. Coating composition and morphology as well as thermal stability and release rates were investigated. The coating provided efficient protection against mold growth with no side effects on hay exposed to thymol fumes. The results underscore the potential of this fungicide as a safe and effective hay preservative.

Show more

Apr 2024 • Cancer Research

Abstract LB007: A systematic evaluation of the therapeutic potential of Endogenous-ADAR base editors in cancer prevention and treatment

Rona Merdler-Rabinowicz, Ariel Dadush, Sumeet Patiyal, Padma Sheila Rajagopal, Gulzar Daya, Alejandro Schäffer, Eli Eisenberg, Eytan Ruppin, Erez Y Levanon

Base editing encompasses techniques that efficiently alter specific nucleotides at the DNA or RNA level. Initially explored for inherited diseases, these techniques hold promise for addressing various genetically driven disorders caused by single nucleotide variants (SNVs). The precise programmability of base editors (BEs) for specific sequences allows customization for rare genetic variants, tailoring them to individual patients within affordability and delivery constraints. Cancer stems from the accumulation of mutations. However, the relevance of BEs in cancer therapy is doubted due to the limited types of mutations they can address within tumors. Yet, their untapped potential in the realm of cancer treatment invites exploration. BEs utilize a modified form of a deaminase enzyme to catalyze the conversion of one nucleotide to another by removing an amino group. A 'classic' BE consists of a deaminase, a Cas …

Show more

Apr 2024 • RNA

Computational analysis of super-resolved in situ sequencing data reveals genes modified by immune-tumor contact events

Michal Danino-Levi, Tal Goldberg, Maya Keter, Nikol Akselrod, Noa Shprach-Buaron, Modi Safra, Gonen Singer, Shahar Alon


logo
Articali

Powered by Articali

TermsPrivacy